1
|
Mazurek M, Rola R. The implications of nitric oxide metabolism in the treatment of glial tumors. Neurochem Int 2021; 150:105172. [PMID: 34461111 DOI: 10.1016/j.neuint.2021.105172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/03/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Glial tumors are the most common intracranial malignancies. Unfortunately, despite such a high prevalence, patients' prognosis is usually poor. It is related to the high invasiveness, tendency to relapse and the resistance of tumors to traditional methods of treatment. An important link in the aspect of these issues may be nitric oxide (NO) metabolism. It is a very complex mechanism with multidirectional effects on the neoplastic process. Depending on the concentration axis, it can both exert pro-tumor action as well as contribute to the inhibition of tumorigenesis. The latest observations show that the control of its metabolism can be very helpful in the development of new methods of treating gliomas, as well as in increasing the effectiveness of the agents currently used. The influence of nitric oxide and nitric oxide synthase (NOS) activity on glioma stem cells seem to be of particular importance. The use of specific inhibitors may allow the reduction of tumor growth and its tendency to relapse. Another important feature of GSCs is their conditioning of glioma resistance to traditional forms of treatment. Recent studies have shown that modulation of NO metabolism can suppress this effect, preventing the induction of radio and chemoresistance. Moreover, nitric oxide is involved in the regulation of a number of immune mechanisms. Adequate modulation of its metabolism may contribute to the induction of an anti-tumor response in the patients' immune system.
Collapse
Affiliation(s)
- Marek Mazurek
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland.
| | - Radosław Rola
- Chair and Department of Neurosurgery and Paediatric Neurosurgery, Medical University in Lublin, Poland
| |
Collapse
|
2
|
Sahebnasagh A, Saghafi F, Negintaji S, Hu T, Shabani-Boroujeni M, Safdari M, Ghaleno HR, Miao L, Qi Y, Wang M, Liao P, Sureda A, Simal-Gándara J, Nabavi SM, Xiao J. Nitric Oxide and Immune Responses in Cancer: Searching for New Therapeutic Strategies. Curr Med Chem 2021; 29:1561-1595. [PMID: 34238142 DOI: 10.2174/0929867328666210707194543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an increasing interest in understanding the mysterious functions of nitric oxide (NO) and how this pleiotropic signaling molecule contributes to tumorigenesis. This review attempts to expose and discuss the information available on the immunomodulatory role of NO in cancer and recent approaches to the role of NO donors in the area of immunotherapy. To address the goal, the following databases were searched to identify relevant literature concerning empirical evidence: The Cochrane Library, Pubmed, Medline, EMBASE from 1980 through March 2020. Valuable attempts have been made to develop distinctive NO-based cancer therapy. Although the data do not allow generalization, the evidence seems to indicate that low / moderate levels may favor tumorigenesis while higher levels would exert anti-tumor effects. In this sense, the use of NO donors could have an important therapeutic potential within immunotherapy, although there are still no clinical trials. The emerging understanding of NO-regulated immune responses in cancer may help unravel the recent features of this "double-edged sword" in cancer physiological and pathologic processes and its potential use as a therapeutic agent for cancer treatment. In short, in this review, we discuss the complex cellular mechanism in which NO, as a pleiotropic signaling molecule, participates in cancer pathophysiology. We also debate the dual role of NO in cancer and tumor progression, and clinical approaches for inducible nitric oxide synthase (iNOS) based therapy against cancer.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sina Negintaji
- Student Research Committee, School of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Tingyan Hu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mojtaba Shabani-Boroujeni
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Lingchao Miao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, United States
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road. Hong Kong, China
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
| | - Jesus Simal-Gándara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
3
|
Morris G, Fernandes BS, Puri BK, Walker AJ, Carvalho AF, Berk M. Leaky brain in neurological and psychiatric disorders: Drivers and consequences. Aust N Z J Psychiatry 2018; 52:924-948. [PMID: 30231628 DOI: 10.1177/0004867418796955] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The blood-brain barrier acts as a highly regulated interface; its dysfunction may exacerbate, and perhaps initiate, neurological and neuropsychiatric disorders. METHODS In this narrative review, focussing on redox, inflammatory and mitochondrial pathways and their effects on the blood-brain barrier, a model is proposed detailing mechanisms which might explain how increases in blood-brain barrier permeability occur and can be maintained with increasing inflammatory and oxidative and nitrosative stress being the initial drivers. RESULTS Peripheral inflammation, which is causatively implicated in the pathogenesis of major psychiatric disorders, is associated with elevated peripheral pro-inflammatory cytokines, which in turn cause increased blood-brain barrier permeability. Reactive oxygen species, such as superoxide radicals and hydrogen peroxide, and reactive nitrogen species, such as nitric oxide and peroxynitrite, play essential roles in normal brain capillary endothelial cell functioning; however, chronically elevated oxidative and nitrosative stress can lead to mitochondrial dysfunction and damage to the blood-brain barrier. Activated microglia, redox control of which is mediated by nitric oxide synthases and nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, secrete neurotoxic molecules such as reactive oxygen species, nitric oxide, prostaglandin, cyclooxygenase-2, quinolinic acid, several chemokines (including monocyte chemoattractant protein-1 [MCP-1], C-X-C motif chemokine ligand 1 [CXCL-1] and macrophage inflammatory protein 1α [MIP-1α]) and the pro-inflammatory cytokines interleukin-6, tumour necrosis factor-α and interleukin-1β, which can exert a detrimental effect on blood-brain barrier integrity and function. Similarly, reactive astrocytes produce neurotoxic molecules such as prostaglandin E2 and pro-inflammatory cytokines, which can cause a 'leaky brain'. CONCLUSION Chronic inflammatory and oxidative and nitrosative stress is associated with the development of a 'leaky gut'. The following evidence-based approaches, which address the leaky gut and blood-brain barrier dysfunction, are suggested as potential therapeutic interventions for neurological and neuropsychiatric disorders: melatonin, statins, probiotics containing Bifidobacteria and Lactobacilli, N-acetylcysteine, and prebiotics containing fructo-oligosaccharides and galacto-oligosaccharides.
Collapse
Affiliation(s)
- Gerwyn Morris
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Brisa S Fernandes
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Basant K Puri
- 3 Department of Medicine, Hammersmith Hospital, Imperial College London, London, UK
| | - Adam J Walker
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia
| | - Andre F Carvalho
- 2 Centre for Addiction and Mental Health (CAMH) and Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Michael Berk
- 1 IMPACT Strategic Research Centre, Deakin University School of Medicine, and Barwon Health, Geelong, VIC, Australia.,4 Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
4
|
Vimalraj S, Bhuvaneswari S, Lakshmikirupa S, Jyothsna G, Chatterjee S. Nitric oxide signaling regulates tumor-induced intussusceptive-like angiogenesis. Microvasc Res 2018; 119:47-59. [PMID: 29649432 DOI: 10.1016/j.mvr.2018.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/12/2022]
Abstract
Existing animal models for screening tumor angiogenic process have various setbacks that necessitate further investigations. In this study, we developed an ex-ovo egg yolk angiogenesis model to screen the angiogenic potency of tumor cells (HeLa and SiHa cell lines). The egg yolk angiogenesis assay was applied to study the nitric oxide (NO) influence on switching from sprouting angiogenesis (SA) to intussusceptive angiogenesis (IA) under tumor microenvironment. Morphological analysis and SA-like or IA-like markers expression were determined during the development of chicken chorioallantoic membrane (CAM) from day 5 to 13. Expression of Notch1, Notch2, EphrinB2, and Tie2 were considered as SA-like while TEM8, CALD1, CXCR4 and HOMX1 were followed as IA-like markers. The HeLa and SiHa cell lines embedded CAM showed an increase in micro and macro blood vessels and vascular size, junction and length which are the pivotal morphological parameters of angiogenesis. Further, the study revealed that HeLa is more aggressive than SiHa in inducing tumor angiogenesis. To determine the NO signaling implication in tumor milieu, NO donor (Spermine NONOate (SPNO)), NOS inhibitor (L-nitro-L-arginine-methyl ester (L-NAME) and VEGF inhibitor (Avastin) were administrated to chick embryo vascular bed with and without HeLa cells. The results demonstrated that HeLa cells promote IA through NO signaling, VEGF and eNOS and it was documented by angiogenic morphological parameters and SA-like or IA-like markers expression. Therefore, our study claims that ex-ovo egg yolk angiogenesis model could be used to study tumor angiogenesis and NO plays a key role in switching of IA under tumor microenvironment.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Vascular Biology Lab, Department of Biotechnology and AU-KBC Research Centre, MIT Campus, Anna University, Chennai, India.
| | - Srinivasan Bhuvaneswari
- Vascular Biology Lab, Department of Biotechnology and AU-KBC Research Centre, MIT Campus, Anna University, Chennai, India
| | - Sundaresan Lakshmikirupa
- Vascular Biology Lab, Department of Biotechnology and AU-KBC Research Centre, MIT Campus, Anna University, Chennai, India
| | - Ganesh Jyothsna
- Vascular Biology Lab, Department of Biotechnology and AU-KBC Research Centre, MIT Campus, Anna University, Chennai, India
| | - Suvro Chatterjee
- Vascular Biology Lab, Department of Biotechnology and AU-KBC Research Centre, MIT Campus, Anna University, Chennai, India.
| |
Collapse
|
5
|
Tran AN, Boyd NH, Walker K, Hjelmeland AB. NOS Expression and NO Function in Glioma and Implications for Patient Therapies. Antioxid Redox Signal 2017; 26:986-999. [PMID: 27411305 PMCID: PMC5467121 DOI: 10.1089/ars.2016.6820] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Gliomas are central nervous system tumors that primarily occur in the brain and arise from glial cells. Gliomas include the most common malignant brain tumor in adults known as grade IV astrocytoma, or glioblastoma (GBM). GBM is a deadly disease for which the most significant advances in treatment offer an improvement in survival of only ∼2 months. CRITICAL ISSUES To develop novel treatments and improve patient outcomes, we and others have sought to determine the role of molecular signals in gliomas. Recent Advances: One signaling molecule that mediates important biologies in glioma is the free radical nitric oxide (NO). In glioma cells and the tumor microenvironment, NO is produced by three isoforms of nitric oxide synthase (NOS), NOS1, NOS2, and NOS3. NO and NOS affect glioma growth, invasion, angiogenesis, immunosuppression, differentiation state, and therapeutic resistance. FUTURE DIRECTIONS These multifaceted effects of NO and NOS on gliomas both in vitro and in vivo suggest the potential of modulating the pathway for antiglioma patient therapies. Antioxid. Redox Signal. 26, 986-999.
Collapse
Affiliation(s)
- Anh N Tran
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Nathaniel H Boyd
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Kiera Walker
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
6
|
Contribution of the Microenvironmental Niche to Glioblastoma Heterogeneity. BIOMED RESEARCH INTERNATIONAL 2017. [PMID: 28630875 PMCID: PMC5467280 DOI: 10.1155/2017/9634172] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glioblastoma is the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the heterogeneous nature of the tumor, which in addition to intrinsic molecular and genetic changes is also influenced by the microenvironmental niche in which the glioma cells reside. The cancer stem cells (CSCs) hypothesis suggests that all cancers arise from CSCs that possess the ability to self-renew and initiate tumor formation. CSCs reside in specialized niches where interaction with the microenvironment regulates their stem cell behavior. The reciprocal interaction between glioma stem cells (GSCs) and cells from the microenvironment, such as endothelial cells, immune cells, and other parenchymal cells, may also promote angiogenesis, invasion, proliferation, and stemness of the GSCs and be likely to have an underappreciated role in their responsiveness to therapy. This crosstalk may also promote molecular transition of GSCs. Hence the inherent plasticity of GSCs can be seen as an adaptive response, changing according to the signaling cue from the niche. Given the association of GSCs with tumor recurrence and treatment sensitivity, understanding this bidirectional crosstalk between GSCs and its niche may provide a framework to identify more effective therapeutic targets and improve treatment outcome.
Collapse
|
7
|
Bhattacharya D, Singh MK, Chaudhuri S, Acharya S, Basu AK, Chaudhuri S. T11TS impedes glioma angiogenesis by inhibiting VEGF signaling and pro-survival PI3K/Akt/eNOS pathway with concomitant upregulation of PTEN in brain endothelial cells. J Neurooncol 2013; 113:13-25. [PMID: 23471571 DOI: 10.1007/s11060-013-1095-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/22/2013] [Indexed: 02/06/2023]
Abstract
The crucial role of angiogenesis in malignant glioma progression makes it a potential target of therapeutic intervention in glioma. Previous studies from our lab showed that sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) has potent anti-neoplastic and immune stimulatory effects in rodent glioma model. In the present study we investigated the anti-angiogenic potential of T11TS and deciphered the underlying molecular mechanism of its anti-angiogenic action in malignant glioma. Vascular endothelial growth factor (VEGF) signaling is crucial for initiating tumor angiogenic responses. The present preclinical study was designed to evaluate the effect of T11TS therapy on VEGF and VEGFR-2 expression in glioma associated brain endothelial cells and to determine the effects of in vivo T11TS administration on expression of PTEN and downstream pro-survival PI3K/Akt/eNOS pathway proteins in glioma associated brain endothelial cells. T11TS therapy in rodent glioma model significantly downregulated expression of VEGF along with its receptor VEGFR-2 and inhibited the expression of pro-survival PI3K/Akt/eNOS proteins in glioma associated brain endothelial cells. Furthermore, T11TS therapy in glioma induced rats significantly upregulated brain endothelial cell PTEN expression, inhibited eNOS phosphorylation and production of nitric oxide in glioma associated brain endothelial cells. Taken together our findings suggest that T11TS can be introduced as an effective angiogenesis inhibitor in human glioma as T11TS targets multiple levels of angiogenic signaling cascade impeding glioma neovascularisation.
Collapse
Affiliation(s)
- Debanjan Bhattacharya
- Immunology Research Laboratory, Department of Laboratory Medicine, School of Tropical Medicine, 108 C. R. Avenue, Kolkata 700073, India
| | | | | | | | | | | |
Collapse
|
8
|
Karami R, Hosseini M, Khodabandehloo F, Khatami L, Taiarani Z. Different effects of L-arginine on morphine tolerance in sham and ovariectomized female mice. J Zhejiang Univ Sci B 2012; 12:1016-23. [PMID: 22135151 DOI: 10.1631/jzus.b1100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The roles of gonadal hormones and nitric oxide (NO) on the analgesic effects of morphine, tolerance to morphine, and their interactions have been widely investigated. In the present study, the effect of L-arginine (an NO precursor) on morphine tolerance in sham and ovariectomized (OVX) female mice was investigated. METHODS Forty mice were divided into sham and OVX groups. On the first day, a hot plate test ((55±0.2) °C; cut-off 30 s) was carried out as a base record 15 min before injection of morphine (10 mg/kg, subcutaneously (s.c.)) and was repeated every 15 min after injection. The sham group was then divided into two subgroups: sham-tolerance-L-arginine (Sham-Tol-LA) and sham-tolerance-saline (Sham-Tol-Sal) which received either L-arginine 50 mg/kg (intraperitoneally (i.p.)) or saline 10 ml/kg (i.p.), respectively, three times in a day for three consecutive days. Morphine tolerance was induced in animals by injecting 30 mg/kg morphine (s.c.) three times/day for three days. This treatment was also used for OVX subgroups. On the fifth day, the hot plate test was repeated. The analgesic effect of morphine was calculated as the maximal percent effect (MPE). The results were compared using repeated measure analysis of variance (ANOVA). RESULTS There was no significant difference in MPE between the OVX and sham groups. The MPEs in both the Sham-Tol-Sal and OVX-Tol-Sal groups were lower than those in both the sham and OVX groups (P<0.01). The MPE in the OVX-Tol-Sal group was greater than that in the Sham-Tol-Sal group (P<0.01). The MPE in the Sham-Tol-LA group was higher than that in the Sham-Tol-Sal group (P<0.01). However, there was no significant difference between the Sham-Tol-LA and sham groups or between the OVX-Tol-LA and OVX-Tol-Sal groups. CONCLUSIONS The results of the present study showed that repeated administration of morphine causes tolerance to the analgesic effect of morphine. L-arginine could prevent tolerance to morphine but its effect was different in the presence of ovarian hormones.
Collapse
Affiliation(s)
- Reza Karami
- Neuroscience Research Center and Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Iran
| | | | | | | | | |
Collapse
|
9
|
Takala H, Saarnio J, Wiik H, Ohtonen P, Soini Y. HIF-1α and VEGF are associated with disease progression in esophageal carcinoma. J Surg Res 2010; 167:41-8. [PMID: 20451923 DOI: 10.1016/j.jss.2009.11.725] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Revised: 08/12/2009] [Accepted: 11/19/2009] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hypoxia inducible factor-1alpha (HIF-1α) is a transcription factor that regulates the transcription of genes associated with cell proliferation and angiogenesis. The purpose of this study is to clarify the correlation of HIF-1α protein expression with vascular endothelial growth factor (VEGF) and inducible (iNOS), endothelial (eNOS), and neuronal nitric oxide synthase (nNOS) expression in esophageal tumors. Additionally, vascular density in tumor tissue was assessed. MATERIALS AND METHODS Eighty-eight esophageal carcinomas were analyzed by immunohistochemistry in paraffin embedded sections. RESULTS HIF-1α immunoreactivity was seen in 71.2 % of the tumors. Squamous cell carcinomas expressed more often HIF-1α than adenocarcinomas (P = 0.009). HIF-1α immunoreactivity was associated with iNOS (P = 0.049), and iNOS positivity was also more commonly seen in squamous cell carcinomas than adenocarcinomas (P = 0.016). VEGF immunoreaction tended to associate with HIF-1α (P = 0.073) and iNOS (P = 0.08). ENOS did not associate with HIF-1α, but tended to associate with VEGF (P = 0.072). T1-T2 tumors were more often VEGF negative than T3-T4 tumors (P = 0.063). In the subgroup of 78 operatively treated ECs patients with HIF-1α positivity (> +) had more often distant metastases (P = 0.036). There was no association between iNOS, eNOS, nNOS, or VEGF, and microvessel density in tumor tissue, tumor marginal zone, or in peripheral tissue. CONCLUSIONS These results show that there is a link in expression between HIF-1α, iNOS, (eNOS), and VEGF in esophageal cancer. This is in line with the fact of HIF-1α's function as a transcriptional factor for these angiogenic factors. Results also show that squamous cell and adenocarcinomas differ in their expression of HIF-1α and iNOS. VEGF appear to have association with depth of invasion in esophageal carcinomas. In our material HIF-1α positivity was associated with distant metastases, but not with patient survival.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Surgery, University Hospital of Oulu, Oulu, Finland.
| | | | | | | | | |
Collapse
|
10
|
Abstract
Abstract
A blueprint for the ideal anticancer molecule would include most of the properties of nitric oxide (NO•), but the ability to exploit these characteristics in a therapeutic setting requires a detailed understanding of the biology and biochemistry of the molecule. These properties include the ability of NO• to affect tumour angiogenesis, metastasis, blood flow and immuno surveillance. Furthermore NO• also has the potential to enhance both radio- and chemotherapy. However, all of these strategies are dependent on achieving appropriate levels of NO•, since endogenous levels of NO• appear to have a clear role in tumour progression. This review aims to summarize the role of NO• in cancer with particular emphasis on how the properties of NO• can be exploited for therapy.
Collapse
Affiliation(s)
- David Hirst
- School of Pharmacy, Queen's University Belfast, Belfast BT15 4DY, UK.
| | | |
Collapse
|
11
|
SHIRASUNA K, ASAHI T, SASAKI M, SHIMIZU T, MIYAMOTO A. Distribution of Arteriolovenous Vessels, Capillaries and eNOS Expression in the Bovine Corpus Luteum During the Estrous Cycle: a Possible Implication of Different Sensitivity by Luteal Phase to PGF2.ALPHA. in the Increase of Luteal Blood Flow. J Reprod Dev 2010; 56:124-30. [DOI: 10.1262/jrd.09-106o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Koumei SHIRASUNA
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Takayuki ASAHI
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Motoki SASAKI
- Department of Basic Veterinary Sciences, Obihiro University of Agriculture and Veterinary Medicine
| | - Takashi SHIMIZU
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| | - Akio MIYAMOTO
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine
| |
Collapse
|
12
|
Bulnes S, Argandoña EG, Bengoetxea H, Leis O, Ortuzar N, Lafuente JV. The role of eNOS in vascular permeability in ENU-induced gliomas. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 106:277-82. [PMID: 19812964 DOI: 10.1007/978-3-211-98811-4_52] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Brain edema in gliomas is an epiphenomenon related to blood-brain-barrier (BBB) breakdown in which endothelial nitric oxide synthase (eNOS) plays a key role. When induced by vascular endothelial growth factor (VEGF), eNOS synthesizes nitric oxide that increases vascular permeability. We investigated the relationship between eNOS, VEGF and BBB dysfunction in experimental gliomas.Tumors were produced in Sprague-Dawley rats by transplacentary administration of Ethylnitrosourea (ENU). Immunoexpression of eNOS and VEGF(165) was studied to identify locations of vascular permeability. BBB permeability was evaluated using gadolinium and intravital dyes and BBB integrity by endothelial barrier antigen (EBA), glucose transporter-1 (GluT-1) and occludin immunostaining. Low grade gliomas displayed constitutive eNOS expression in endothelial cells and in VEGF-positive astrocytes surrounding vessels. Malignant gliomas overexpressed eNOS in aberrant vessels and displayed numerous adjacent reactive astrocytes positive for VEGF. Huge dilated vessels inside tumors and glomeruloid vessels on the periphery of the tumor showed strong immunopositivity for eNOS and a lack of occludin and EBA staining in several vascular sections. BBB dysfunction on these aberrant vessels caused increased permeability as shown by Gadolinium contrast enhancement and intravital dye extravasation.These findings support the central role of eNOS in intra- and peritumoral edema in ENU-induced gliomas.
Collapse
Affiliation(s)
- S Bulnes
- Department of Neuroscience, LaNCE, Clinical and Experimental Neuroscience Laboratory, University of Basque Country, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Zheng PP, Hop WC, Luider TM, Sillevis Smitt PAE, Kros JM. Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Ann Neurol 2007; 62:40-8. [PMID: 17503506 DOI: 10.1002/ana.21151] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Gliomas are among the highest vascularized tumors. We hypothesized that patients with gliomas have increased levels of circulating endothelial progenitor cells (EPCs) and circulating endothelial nitric oxide synthase (eNOS). METHODS The fraction of EPCs was quantified by fluorescence-activated cell sorter analysis using anti-CD34, -CD133 and -KDR (kinase insert domain receptor) monoclonal antibodies in unselected peripheral blood samples of 32 patients with gliomas. Control groups included 47 patients with other central nervous system tumors or diseases, 10 patients with recent ischemic strokes, and 19 healthy blood donors. The circulating eNOS concentration of plasma was measured by a colorimetric assay in the same samples. In addition, CD34(+)CD105(+) KDR(+) and CD34(+)CD146(+)KDR(-) cell fractions were measured. RESULTS The percentage of CD34(+)CD133(+)KDR(+) EPCs in the blood of glioma patients is significantly greater than that in the blood of patients with other central nervous system tumors or diseases (p = 0.003), stroke patients (p = 0.005), or healthy donors (p = 0.013). The plasma eNOS concentration is also significantly greater in glioma patients compared with each of the control groups (p < 0.001 for all groupwise comparisons). No significant differences in the levels of the EPCs or eNOS between any of the control groups were demonstrated. In the glioma patients, the level of eNOS correlated with the fraction of CD34(+)CD105(+)KDR(+) cells (r = 0.748; p = 0.008). INTERPRETATION The data are suggestive of increased mobilization of EPCs contributing to neoplastic vasculogenesis in glioma. The increased levels of EPCs and eNOS in the peripheral blood of glioma patients trigger further investigations as to their value as independent parameters for use in clinical practice.
Collapse
Affiliation(s)
- Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Dr. Molewaterplein 50, 3000 DR Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|