1
|
Cui TW, Lu LF, Cao XD, Zhang QP, He YB, Wang YR, Ren R, Ben XY, Ni PL, Ma ZJ, Li YQ, Yi XN, Feng RJ. Exosomes combined with biosynthesized cellulose conduits improve peripheral nerve regeneration. IBRO Neurosci Rep 2023; 15:262-269. [PMID: 37841087 PMCID: PMC10570595 DOI: 10.1016/j.ibneur.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/17/2023] Open
Abstract
Peripheral nerve injury is one of the more common forms of peripheral nerve disorders, and the most severe type of peripheral nerve injury is a defect with a gap. Biosynthetic cellulose membrane (BCM) is a commonly used material for repair and ligation of nerve defects with gaps. Meanwhile, exosomes from mesenchymal stem cells can promote cell growth and proliferation. We envision combining exosomes with BCMs to leverage the advantages of both to promote repair of peripheral nerve injury. Prepared exosomes were added to BCMs to form exosome-loaded BCMs (EXO-BCM) that were used for nerve repair in a rat model of sciatic nerve defects with gaps. We evaluated the repair activity using a pawprint experiment, measurement and statistical analyses of sciatica function index and thermal latency of paw withdrawal, and quantitation of the number and diameter of regenerated nerve fibers. Results indicated that EXO-BCM produced comprehensive and durable repair of peripheral nerve defects that were similar to those for autologous nerve transplantation, the gold standard for nerve defect repair. EXO-BCM is not predicted to cause donor site morbidity to the patient, in contrast to autologous nerve transplantation. Together these results indicate that an approach using EXO-BCM represents a promising alternative to autologous nerve transplantation, and could have broad applications for repair of nerve defects.
Collapse
Affiliation(s)
- Tian-Wei Cui
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Li-Fang Lu
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Xu-Dong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, Canada
| | - Quan-Peng Zhang
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Yue-Bin He
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Ya-Ru Wang
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Rui Ren
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Xin-Yu Ben
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Pan-Li Ni
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Zhi-Jian Ma
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, China
| | - Xi-Nan Yi
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| | - Ren-Jun Feng
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Human Anatomy, Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Nigmatullin R, Taylor CS, Basnett P, Lukasiewicz B, Paxinou A, Lizarraga-Valderrama LR, Haycock JW, Roy I. Medium chain length polyhydroxyalkanoates as potential matrix materials for peripheral nerve regeneration. Regen Biomater 2023; 10:rbad063. [PMID: 37501678 PMCID: PMC10369215 DOI: 10.1093/rb/rbad063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 07/29/2023] Open
Abstract
Polyhydroxyalkanoates are natural, biodegradable, thermoplastic and sustainable polymers with a huge potential in fabrication of bioresorbable implantable devices for tissue engineering. We describe a comparative evaluation of three medium chain length polyhydroxyalkanoates (mcl-PHAs), namely poly(3-hydroxyoctanoate), poly(3-hydroxyoctanoate-co-3-hydoxydecanoate) and poly(3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate), one short chain length polyhydroxyalkanoate, poly(3-hydroxybutyrate), P(3HB) and synthetic aliphatic polyesters (polycaprolactone and polylactide) with a specific focus on nerve regeneration, due to mechanical properties of mcl-PHAs closely matching nerve tissues. In vitro biological studies with NG108-15 neuronal cell and primary Schwann cells did not show a cytotoxic effect of the materials on both cell types. All mcl-PHAs supported cell adhesion and viability. Among the three mcl-PHAs, P(3HO-co-3HD) exhibited superior properties with regards to numbers of cells adhered and viable cells for both cell types, number of neurite extensions from NG108-15 cells, average length of neurite extensions and Schwann cells. Although, similar characteristics were observed for flat P(3HB) surfaces, high rigidity of this biomaterial, and FDA-approved polymers such as PLLA, limits their applications in peripheral nerve regeneration. Therefore, we have designed, synthesized and evaluated these materials for nerve tissue engineering and regenerative medicine, the interaction of mcl-PHAs with neuronal and Schwann cells, identifying mcl-PHAs as excellent materials to enhance nerve regeneration and potentially their clinical application in peripheral nerve repair.
Collapse
Affiliation(s)
- Rinat Nigmatullin
- Higher Steaks Ltd., 25 Cambridge Science Park Rd, Milton, Cambridge CB4 0FW, UK
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1B 2HW, UK
| | - Caroline S Taylor
- Department of Materials Science & and Engineering, The University of Sheffield, Sheffield S3 7HQ, UK
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1B 2HW, UK
| | - Barbara Lukasiewicz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1B 2HW, UK
| | - Alexandra Paxinou
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1B 2HW, UK
- Foundation of Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes (FORTH/ICE-HT), P.O. Box 1414, GR 26504, Rion, Patras, Greece
| | | | - John W Haycock
- Department of Materials Science & and Engineering, The University of Sheffield, Sheffield S3 7HQ, UK
| | - Ipsita Roy
- Correspondence address. Tel: +44-114-222-5962, E-mail: (I.R.)
| |
Collapse
|
3
|
Taylor CS, Behbehani M, Glen A, Basnett P, Gregory DA, Lukasiewicz BB, Nigmatullin R, Claeyssens F, Roy I, Haycock JW. Aligned Polyhydroxyalkanoate Blend Electrospun Fibers as Intraluminal Guidance Scaffolds for Peripheral Nerve Repair. ACS Biomater Sci Eng 2023; 9:1472-1485. [PMID: 36848250 PMCID: PMC10015431 DOI: 10.1021/acsbiomaterials.2c00964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/02/2023] [Indexed: 03/01/2023]
Abstract
The use of nerve guidance conduits (NGCs) to treat peripheral nerve injuries is a favorable approach to the current "gold standard" of autografting. However, as simple hollow tubes, they lack specific topographical and mechanical guidance cues present in nerve grafts and therefore are not suitable for treating large gap injuries (30-50 mm). The incorporation of intraluminal guidance scaffolds, such as aligned fibers, has been shown to increase neuronal cell neurite outgrowth and Schwann cell migration distances. A novel blend of PHAs, P(3HO)/P(3HB) (50:50), was investigated for its potential as an intraluminal aligned fiber guidance scaffold. Aligned fibers of 5 and 8 μm diameter were manufactured by electrospinning and characterized using SEM. Fibers were investigated for their effect on neuronal cell differentiation, Schwann cell phenotype, and cell viability in vitro. Overall, P(3HO)/P(3HB) (50:50) fibers supported higher neuronal and Schwann cell adhesion compared to PCL fibers. The 5 μm PHA blend fibers also supported significantly higher DRG neurite outgrowth and Schwann cell migration distance using a 3D ex vivo nerve injury model.
Collapse
Affiliation(s)
- Caroline S. Taylor
- Department
of Materials Science & and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Mehri Behbehani
- The
Electrospinning Company, Unit 5, Zephyr Building, Eighth St., Harwell Campus,
Harwell, Didcot OX11 0RL, United Kingdom
| | - Adam Glen
- Department
of Materials Science & and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Pooja Basnett
- School
of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1B 2HW, United Kingdom
| | - David A. Gregory
- Department
of Materials Science & and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Barbara B. Lukasiewicz
- School
of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1B 2HW, United Kingdom
| | - Rinat Nigmatullin
- School
of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London W1B 2HW, United Kingdom
| | - Frederik Claeyssens
- Department
of Materials Science & and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Ipsita Roy
- Department
of Materials Science & and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - John W. Haycock
- Department
of Materials Science & and Engineering, The University of Sheffield, Sheffield S3 7HQ, United Kingdom
| |
Collapse
|
4
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
5
|
Microbially Synthesized Polymer-Metal Nanoparticles Composites as Promising Wound Dressings to Overcome Methicillin-Resistance Staphylococcus aureus Infections. Polymers (Basel) 2023; 15:polym15040920. [PMID: 36850204 PMCID: PMC9960834 DOI: 10.3390/polym15040920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/22/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Antimicrobial resistance has been declared one of the top 10 global public health threats. Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of recurring skin and soft tissue infections in patients with chronic skin conditions such as diabetic foot infections, making the treatment of the ulcers challenging. Wound dressings combined with metal nanoparticles have been suggested to prevent and treat MRSA-infected wounds. However, these particles are commonly synthesized by chemical approaches. In this study, we developed bio-based silver (Bio-AgNPs) and copper oxide nanoparticles (CuONPs) polymer composites using a microbially produced polyester from the Polyhydroxyalkanoates (PHAs) family. Poly(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate) (PHO) was synthesized by Pseudomonas putida and functionalized in-situ with Bio-AgNPs or ex-situ with CuONPs. PHO-CuONPs films did not inhibit MRSA growth, while a reduction of 6.0 log CFU/mL was achieved with PHO-Bio-AgNPs synthesized from silver nitrate (AgNO3) solution at 3.5 mM. Exposure of human fibroblast cells (HFF-1) to the bioactive films did not induce notable cytotoxicity and genotoxicity, as seen by a viability higher than 79% and no significant changes in basal DNA damage. However, exposure to PHO-Bio-AgNPs induced oxidative DNA damage in HFF-1 cells. No hemolytic potential was observed, while platelet aggregation was promoted and desired for wound healing. Here we demonstrate the biosynthesis of polymer-nanoparticle composites and their potential as bioactive films for MRSA treatment.
Collapse
|
6
|
Allı A, Allı S, Hazer B, Zinn M. Synthesis and characterization of star-shaped block copolymers composed of poly(3-hydroxy octanoate) and styrene via RAFT polymerization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2092408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Sema Allı
- Department of Chemistry, Düzce University, Düzce, Turkey
| | - Baki Hazer
- Department of Aircraft Airframe Engine Maintenance, Kapadokya University, Ürgüp, Nevşehir, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Manfred Zinn
- Institute of Life Technologies, University of Applied Sciences and Arts Western Switzerland Valais (HES-SO Valais-Wallis), Sion, Switzerland
| |
Collapse
|
7
|
Hazer Rosberg DB, Hazer B, Stenberg L, Dahlin LB. Gold and Cobalt Oxide Nanoparticles Modified Poly-Propylene Poly-Ethylene Glycol Membranes in Poly (ε-Caprolactone) Conduits Enhance Nerve Regeneration in the Sciatic Nerve of Healthy Rats. Int J Mol Sci 2021; 22:7146. [PMID: 34281198 PMCID: PMC8268459 DOI: 10.3390/ijms22137146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022] Open
Abstract
Reconstruction of nerve defects is a clinical challenge. Autologous nerve grafts as the gold standard treatment may result in an incomplete restoration of extremity function. Biosynthetic nerve conduits are studied widely, but still have limitations. Here, we reconstructed a 10 mm sciatic nerve defect in healthy rats and analyzed nerve regeneration in poly (ε-caprolactone) (PCL) conduits longitudinally divided by gold (Au) and gold-cobalt oxide (AuCoO) nanoparticles embedded in poly-propylene poly-ethylene glycol (PPEG) membranes (AuPPEG or AuCoOPPEG) and compared it with unmodified PPEG-membrane and hollow PCL conduits. After 21 days, we detected significantly better axonal outgrowth, together with higher numbers of activated Schwann cells (ATF3-labelled) and higher HSP27 expression, in reconstructed sciatic nerve and in corresponding dorsal root ganglia (DRG) in the AuPPEG and AuCoOPPEG groups; whereas the number of apoptotic Schwann cells (cleaved caspase 3-labelled) was significantly lower. Furthermore, numbers of activated and apoptotic Schwann cells in the regenerative matrix correlated with axonal outgrowth, whereas HSP27 expression in the regenerative matrix and in DRGs did not show any correlation with axonal outgrowth. We conclude that gold and cobalt-oxide nanoparticle modified membranes in conduits improve axonal outgrowth and increase the regenerative performance of conduits after nerve reconstruction.
Collapse
Affiliation(s)
- Derya Burcu Hazer Rosberg
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
- Department of Neurosurgery, Mugla Sitki Kocman University, Mugla 48100, Turkey
| | - Baki Hazer
- Department of Aircraft Airflame Engine Maintenance, Kapadokya University, Ürgüp 50420, Turkey;
- Department of Chemistry, Zonguldak Bülent Ecevit University, Zonguldak 67100, Turkey
| | - Lena Stenberg
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
| | - Lars B. Dahlin
- Department of Hand Surgery, Skåne University Hospital, 205 02 Malmö, Sweden; (L.S.); (L.B.D.)
- Department of Translational Medicine—Hand Surgery, Lund University, 205 02 Malmö, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
8
|
Mendibil X, González-Pérez F, Bazan X, Díez-Ahedo R, Quintana I, Rodríguez FJ, Basnett P, Nigmatullin R, Lukasiewicz B, Roy I, Taylor CS, Glen A, Claeyssens F, Haycock JW, Schaafsma W, González E, Castro B, Duffy P, Merino S. Bioresorbable and Mechanically Optimized Nerve Guidance Conduit Based on a Naturally Derived Medium Chain Length Polyhydroxyalkanoate and Poly(ε-Caprolactone) Blend. ACS Biomater Sci Eng 2021; 7:672-689. [DOI: 10.1021/acsbiomaterials.0c01476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xabier Mendibil
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco González-Pérez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Xabier Bazan
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Ruth Díez-Ahedo
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Iban Quintana
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
| | - Francisco Javier Rodríguez
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos, Finca La Peraleda S/n, 45071 Toledo, Spain
| | - Pooja Basnett
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Rinat Nigmatullin
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Barbara Lukasiewicz
- School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Caroline S. Taylor
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Adam Glen
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - John W. Haycock
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S3 7HQ, U.K
| | - Wandert Schaafsma
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Eva González
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Begoña Castro
- Histocell S.L., Parque Tecnológico de Bizkaia, 801 A, 2, 48160 Derio, Spain
| | - Patrick Duffy
- Ashland Specialties Ireland, Synergy Centre, Dublin Road, Petitswood Mullingar, Co. Westmeath N91 F6PD, Ireland
| | - Santos Merino
- Tekniker, Basque Research and Technology Alliance (BRTA), C/ Iñaki Goenaga 5, 20600 Eibar, Spain
- Departamento de Electricidad y Electrónica, Universidad del País Vasco UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
9
|
Novel poly(3-hydroxy butyrate) macro RAFT agent. Synthesis and characterization of thermoresponsive block copolymers. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02133-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Erol A, Rosberg DBH, Hazer B, Göncü BS. Biodegradable and biocompatible radiopaque iodinated poly-3-hydroxy butyrate: synthesis, characterization and in vitro/in vivo X-ray visibility. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02747-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Narancic T, Verstichel S, Reddy Chaganti S, Morales-Gamez L, Kenny ST, De Wilde B, Babu Padamati R, O'Connor KE. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10441-10452. [PMID: 30156110 DOI: 10.1021/acs.est.8b02963] [Citation(s) in RCA: 238] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plastic waste pollution is a global environmental problem which could be addressed by biodegradable plastics. The latter are blended together to achieve commercially functional properties, but the environmental fate of these blends is unknown. We have tested neat polymers, polylactic acid (PLA), polyhydroxybutyrate, polyhydroxyoctanoate, poly(butylene succinate), thermoplastic starch, polycaprolactone (PCL), and blends thereof for biodegradation across seven managed and unmanaged environments. PLA is one of the world's best-selling biodegradable plastics, but it is not home compostable. We show here that PLA when blended with PCL becomes home compostable. We also demonstrate that the majority of the tested bioplastics and their blends degrade by thermophilic anaerobic digestion with high biogas output, but degradation times are 3-6 times longer than the retention times in commercial plants. While some polymers and their blends showed good biodegradation in soil and water, the majority of polymers and their blends tested in this study failed to achieve ISO and ASTM biodegradation standards, and some failed to show any biodegradation. Thus, biodegradable plastic blends need careful postconsumer management, and further design to allow more rapid biodegradation in multiple environments is needed as their release into the environment can cause plastic pollution.
Collapse
Affiliation(s)
- Tanja Narancic
- UCD Earth Institute and School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin 4 , Ireland
| | | | | | - Laura Morales-Gamez
- Bioplastech Limited, Nova UCD, Belfield Innovation Park , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Shane T Kenny
- Bioplastech Limited, Nova UCD, Belfield Innovation Park , University College Dublin , Belfield, Dublin 4 , Ireland
| | | | - Ramesh Babu Padamati
- AMBER Centre, CRANN Institute, School of Physics , Trinity College Dublin , Dublin 2 , Ireland
- Bioplastech Limited, Nova UCD, Belfield Innovation Park , University College Dublin , Belfield, Dublin 4 , Ireland
| | - Kevin E O'Connor
- UCD Earth Institute and School of Biomolecular and Biomedical Science , University College Dublin , Belfield, Dublin 4 , Ireland
- BEACON - Bioeconomy Research Centre , University College Dublin , Belfield, Dublin 4 , Ireland
| |
Collapse
|