1
|
Duan X, Zou H, Yang J, Liu S, Xu T, Ding J. Melittin-incorporated nanomedicines for enhanced cancer immunotherapy. J Control Release 2024; 375:285-299. [PMID: 39216597 DOI: 10.1016/j.jconrel.2024.08.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Immunotherapy is a rapidly developing and effective strategy for cancer therapy. Among various immunotherapy approaches, peptides have garnered significant attention due to their potent immunomodulatory effects. In particular, melittin emerged as a promising candidate to enhance cancer immunotherapy by inducing immunogenic cell death, promoting the maturation of antigen-presenting cells, activating T cells, enhancing the infiltration and cytotoxicity of effector lymphocytes, and modulating macrophage phenotypes for relieving immunosuppression. However, the clinical application of melittin is limited by poor targeting and systemic toxicity. To overcome these challenges, melittin has been incorporated into biomaterials and related nanotechnologies, resulting in extended circulation time in vivo, improved targeting, reduced adverse effects, and enhanced anti-cancer immunological action. This review provides an in-depth analysis of the immunomodulatory effects of melittin-incorporated nanomedicines and examines their development and challenges for clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Xuefeng Duan
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Haoyang Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China
| | - Jiazhen Yang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| | - Shixian Liu
- Department of Orthopedics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China
| | - Tianmin Xu
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130041, PR China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
2
|
Cui Z, Zhou Z, Sun Z, Duan J, Liu R, Qi C, Yan C. Melittin and phospholipase A2: Promising anti-cancer candidates from bee venom. Biomed Pharmacother 2024; 179:117385. [PMID: 39241571 DOI: 10.1016/j.biopha.2024.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/20/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
As the research on cancer-related treatment deepens, integrating traditional therapies with emerging interventions reveals new therapeutic possibilities. Melittin and phospholipase A2, the primary anti-cancer components of bee venom, are currently gaining increasing attention. This article reviews the various formulations of melittin in cancer therapy and its potential applications in clinical treatments. The reviewed formulations include melittin analogs, hydrogels, adenoviruses, fusion toxins, fusion peptides/proteins, conjugates, liposomes, and nanoparticles. The article also explored the collaborative therapeutic effects of melittin with natural products, synthetic drugs, radiotherapy, and gene expression regulatory strategies. Phospholipase A2 plays a key role in bee venom anti-cancer strategy due to its unique biological activity. Using an extensive literature review and the latest scientific results, this paper explores the current state and challenges of this field, with the aim to provide new perspectives that guide future research and potential clinical applications. This will further promote the application of bee venom in cancer therapy.
Collapse
Affiliation(s)
- Ziyan Cui
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Zegao Zhou
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Ziyan Sun
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Jiayue Duan
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Runtian Liu
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Cheng Qi
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China
| | - Changqing Yan
- Department of General Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
3
|
Meng JS, He Y, Yang HB, Zhou LP, Wang SY, Feng XL, Yahya Al-Shargi O, Yu XM, Zhu LQ, Ling CQ. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:72-82. [PMID: 38307819 DOI: 10.1016/j.joim.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/22/2023] [Indexed: 02/04/2024]
Abstract
OBJECTIVE Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.
Collapse
Affiliation(s)
- Jing-Shun Meng
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China; Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China; Department of Oncology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yun He
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Heng-Bin Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Li-Ping Zhou
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Si-Yuan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xi-Lin Feng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Yantai Fuheng Biological Technology Co., Ltd., Yantai 264006, Shandong Province, China
| | - Omar Yahya Al-Shargi
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Xiao-Min Yu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Li-Qing Zhu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China.
| | - Chang-Quan Ling
- Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China; Oncology Department of Traditional Chinese Medicine, Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
4
|
Sajid M, Liu L, Sun C. The Dynamic Role of NK Cells in Liver Cancers: Role in HCC and HBV Associated HCC and Its Therapeutic Implications. Front Immunol 2022; 13:887186. [PMID: 35669776 PMCID: PMC9165341 DOI: 10.3389/fimmu.2022.887186] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains an important complication of chronic liver disease, especially when cirrhosis occurs. Existing treatment strategies include surgery, loco-regional techniques, and chemotherapy. Natural killer cells are distinctive cytotoxic lymphocytes that play a vital role in fighting tumors and infections. As an important constituent of the innate immune system against cancer, phenotypic and functional deviations of NK cells have been demonstrated in HCC patients who also exhibit perturbation of the NK-activating receptor/ligand axis. The rate of recurrence of tumor-infiltrating and circulating NK cells are positively associated with survival benefits in HCC and have prognostic significance, suggesting that NK cell dysfunction is closely related to HCC progression. NK cells are the first-line effector cells of viral hepatitis and play a significant role by directly clearing virus-infected cells or by activating antigen-specific T cells by producing IFN-γ. In addition, chimeric antigen receptor (CAR) engineered NK cells suggest an exclusive opportunity to produce CAR-NKs with several specificities with fewer side effects. In the present review, we comprehensively discuss the innate immune landscape of the liver, particularly NK cells, and the impact of tumor immune microenvironment (TIME) on the function of NK cells and the biological function of HCC. Furthermore, the role of NK cells in HCC and HBV-induced HCC has also been comprehensively elaborated. We also elaborate on available NK cell-based immunotherapeutic approaches in HCC treatment and summarize current advancements in the treatment of HCC. This review will facilitate researchers to understand the importance of the innate immune landscape of NK cells and lead to devising innovative immunotherapeutic strategies for the systematic treatment of HCC.
Collapse
Affiliation(s)
- Muhammad Sajid
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
| | - Cheng Sun
- Department of Hepatobiliary Surgery, Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Heifei, China
- Transplant and Immunology Laboratory, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
5
|
Schoenberg MB, Li X, Li X, Han Y, Börner N, Koch D, Guba MO, Werner J, Bazhin AV. The interactions between major immune effector cells and Hepatocellular Carcinoma: A systematic review. Int Immunopharmacol 2021; 101:108220. [PMID: 34673334 DOI: 10.1016/j.intimp.2021.108220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/13/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common liver neoplasm with high morbidity and mortality. Tumor immunotherapy might be promising adjuvant therapy for HCC after surgery. To better develop HCC immunotherapy, comprehensive understanding of cell-cell interactions between immune effector cells and HCC cells remains crucial. AIM To review the existing studies to summarize the cell-cell interactions between major immune effector cells and HCC cells providing new data for HCC immunotherapy. METHODS A systematic review was conducted by searching PubMed database covering all papers published in recent five years up to January 2020. The guidelines of the preferred reporting items for systematic reviews were firmly followed. RESULTS There are 9 studies researching the interactions between CD8+ T lymphocytes and HCC cells and 22 studies researching that between natural killer (NK) cells and HCC cells. Among the 9 studies, 6 studies reported that CD8+ T lymphocytes showed cytotoxicity towards HCC cells while 3 studies found CD8+ T lymphocytes were impaired by HCC cells. Among the 22 studies, 20 studies presented that NK cells could inhibit HCC cells. Two studies were found to report NK cell dysfunction in HCC. CONCLUSION Based on the systematic analysis, we concluded that CD8+ T lymphocytes and NK cells can inhibit HCC cells. While in turn, HCC cells can also result in the dysfunction of those effector cells through various mechanisms. Organoids and direct contact cell co-culture with primary HCC cells and TILs should be the most innovative way to investigate the interactions and develop novel immunotherapy.
Collapse
Affiliation(s)
- Markus Bo Schoenberg
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Xiaokang Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Dermatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinyu Li
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yongsheng Han
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Nikolaus Börner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Dominik Koch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Otto Guba
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; Transplantation Center Munich, Hospital of the LMU, Campus Grosshadern, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
6
|
Giribaldi J, Smith JJ, Schroeder CI. Recent developments in animal venom peptide nanotherapeutics with improved selectivity for cancer cells. Biotechnol Adv 2021; 50:107769. [PMID: 33989705 DOI: 10.1016/j.biotechadv.2021.107769] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Animal venoms are a rich source of bioactive peptides that efficiently modulate key receptors and ion channels involved in cellular excitability to rapidly neutralize their prey or predators. As such, they have been a wellspring of highly useful pharmacological tools for decades. Besides targeting ion channels, some venom peptides exhibit strong cytotoxic activity and preferentially affect cancer over healthy cells. This is unlikely to be driven by an evolutionary impetus, and differences in tumor cells and the tumor microenvironment are probably behind the serendipitous selectivity shown by some venom peptides. However, strategies such as bioconjugation and nanotechnologies are showing potential to improve their selectivity and potency, thereby paving the way to efficiently harness new anticancer mechanisms offered by venom peptides. This review aims to highlight advances in nano- and chemotherapeutic tools and prospective anti-cancer drug leads derived from animal venom peptides.
Collapse
Affiliation(s)
- Julien Giribaldi
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Jennifer J Smith
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Christina I Schroeder
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA.
| |
Collapse
|
7
|
Dai Y, Shen JL, Zheng XY, Lin TY, Yu HT. Integrated analysis of hypoxia-induced miR-210 signature as a potential prognostic biomarker of hepatocellular carcinoma: a study based on The Cancer Genome Atlas. J Zhejiang Univ Sci B 2019; 20:928-932. [PMID: 31595729 PMCID: PMC6825812 DOI: 10.1631/jzus.b1900343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/12/2019] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common types of liver cancer and is the second leading cause of cancer mortality with an estimated 745 500 deaths annually (Jemal et al., 2011). Although new therapeutic modalities including novel chemotherapeutic interventions and targeted therapy have been applied, the prognosis of HCC patients remains unsatisfactory due to the high incidence of intrahepatic and distal metastases (Siegel et al., 2018).
Collapse
Affiliation(s)
- Yi Dai
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ji-liang Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Xue-yong Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Tian-yu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Hai-tao Yu
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
8
|
Juengpanich S, Shi L, Iranmanesh Y, Chen J, Cheng Z, Khoo AKJ, Pan L, Wang Y, Cai X. The role of natural killer cells in hepatocellular carcinoma development and treatment: A narrative review. Transl Oncol 2019; 12:1092-1107. [PMID: 31176993 PMCID: PMC6558093 DOI: 10.1016/j.tranon.2019.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
A major obstacle for treatment of HCC is the inadequate efficacy and limitation of the available therapeutic options. Despite the recent advances in developing novel treatment options, HCC still remains one of the major causes of cancer morbidity and mortality around the world. Achieving effective treatment and eradication of HCC is a challenging task, however recent studies have shown that targeting Natural Killer cells, as major regulators of immune system, can help with the complete treatment of HCC, restoration of normal liver function and subsequently higher survival rate of HCC patients. Studies have shown that decrease in the frequency of NK cells, their dysfunction due to several factors such as dysregulation of receptors and their ligands, and imbalance of different types of inhibitory and stimulating microRNA expression is associated with higher rate of HCC progression and development, and poor survival outcome. Here in our review, we mainly focused on the importance of NK cells in HCC development and treatment.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Liang Shi
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | | | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Zhenzhe Cheng
- School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Aaron Kah-Jin Khoo
- Faculty of Medicine, The University of Queensland, St Lucia, QLD, 4027, Australia.
| | - Long Pan
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China; School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | - Yifan Wang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou 310016, Zhejiang, Province, China.
| |
Collapse
|