1
|
Sherbet GV. Metastasis promoter S100A4 is a potentially valuable molecular target for cancer therapy. Cancer Lett 2008; 280:15-30. [PMID: 19059703 DOI: 10.1016/j.canlet.2008.10.037] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Revised: 09/30/2008] [Accepted: 10/27/2008] [Indexed: 11/25/2022]
Abstract
The growth, invasion and metastatic spread of cancer have been identified with the deregulation of cell proliferation, altered intercellular and cell-substratum adhesion and enhanced motility and the deposition of disseminated cancer cells at distant sites. The identification of therapeutic targets for cancer is crucial to human welfare. Drug development, molecular modelling and design of effective drugs greatly depend upon the identification of suitable therapeutic targets. Several genetic determinants relating to proliferation and growth, invasion and metastasis have been identified. S100A4 appears to be able to activate and integrate pathways to generate the phenotypic responses that are characteristic of cancer. S100A4 signalling can focus on factors associated with normal and aberrant proliferation, apoptosis and growth, and differentiation. It is able to activate signalling pathways leading to the remodelling of the cell membrane and the extracellular matrix; modulation of cytoskeletal dynamics, acquisition of invasiveness and induction of angiogenesis. Therefore S100A4 is arguably a molecular target of considerable potential possessing a wide ranging biological activity that can alter and regulate the major phenotypic features of cancer. The evolution of an appropriate strategy that permits the identification of therapeutic targets most likely to be effective in the disease process without unduly affecting normal biological processes and function is an incontrovertible imperative. By virtue of its ability to activate interacting and multi-functional signalling systems, S100A4 appears to offer suitable targets for developing new therapeutic procedures. Some effectors of the S100A4-activated pathways might also lend themselves as foci of therapeutic interest.
Collapse
Affiliation(s)
- G V Sherbet
- School of Electrical, Electronic and Computer Engineering, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
2
|
Wang X, Di K, Zhang X, Han HY, Wong YC, Leung SCL, Ling MT. Id-1 promotes chromosomal instability through modification of APC/C activity during mitosis in response to microtubule disruption. Oncogene 2008; 27:4456-66. [PMID: 18372912 DOI: 10.1038/onc.2008.87] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Id-1 (Inhibitor of DNA binding/differential-1) plays a positive role in tumorigenesis through regulation of multiple signaling pathways. Recently, it is suggested that upregulation of Id-1 in cancer cells promotes chromosomal instability. However, the underlying molecular mechanism is not known. In this study, we report a novel function of Id-1 in regulation of mitosis through physical interaction with Cdc20 (cell division cycle protein 20) and Cdh1 (Cdc20 homolog 1). During early mitosis, Id-1 interacts with Cdc20 and RASSF1A (Ras association domain family 1A), leading to enhanced APC(Cdc20) activity, which in turn promotes cyclin B1/securin degradation and premature mitosis. During late mitosis, Id-1 binds to Cdh1 and disrupts the interaction between Cdh1 and APC, resulting in suppression of APC(Cdh1) activity. On the other hand, overexpression of Cdh1 leads to Id-1 protein degradation, suggesting that Id-1 may also act as a substrate of APC(Cdh1). The negative effect of Id-1 on APC(Cdh1) results in suppression of APC(Cdh1)-induced Aurora A and Cdc20 degradation, leading to failure in cytokinesis. As a result, overexpression of Id-1 in human prostate epithelial cells leads to polyploidy in response to microtubule disruption, and this effect is abolished when Id-1 expression is suppressed using antisense technology. These results demonstrate a novel function of Id-1 in promoting chromosomal instability through modification of APC/C activity during mitosis and provide a novel molecular mechanism accounted for the function of Id-1 as an oncogene.
Collapse
Affiliation(s)
- X Wang
- Cancer Biology Group, Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | | | | | | | | | | | | |
Collapse
|
3
|
Mondal G, Baral R, Roychoudhury S. A new Mad2-interacting domain of Cdc20 is critical for the function of Mad2-Cdc20 complex in the spindle assembly checkpoint. Biochem J 2006; 396:243-53. [PMID: 16497171 PMCID: PMC1462725 DOI: 10.1042/bj20051914] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interaction between Mad2 and Cdc20 (cell division cycle 20) is a key event during spindle assembly checkpoint activation. In the past, an N-terminal peptide containing amino acid residues 111-150 of Cdc20 was shown to bind Mad2 much better than the full-length Cdc20 protein. Using co-localization, co-immunoprecipitation and peptide inhibition analysis with different deletion mutants of Cdc20, we identified another Mad2-binding domain on Cdc20 from amino acids 342-355 within the WD repeat region. An intervening region between these two domains interferes with its Mad2 binding when present individually with any of these two Mad2-binding sites. We suggest that these three domains together determine the overall strength of Mad2 binding with Cdc20. Functional analysis suggests that an optimum Mad2 binding efficiency of Cdc20 is required during checkpoint arrest and release. Further, we have identified a unique polyhistidine motif with metal binding property adjacent to this second binding domain that may be important for maintaining the overall conformation of Cdc20 for its binding to Mad2.
Collapse
Affiliation(s)
- Gourish Mondal
- *Human Genetics and Genomics Division, Indian Institute of Chemical Biology, Kolkata-700 032, India
| | - Rathindra N. Baral
- †Department of Immunoregulation, Chittaranjan National Cancer Institute, Kolkata-700 026, India
| | - Susanta Roychoudhury
- *Human Genetics and Genomics Division, Indian Institute of Chemical Biology, Kolkata-700 032, India
- To whom correspondence should be addressed (email or )
| |
Collapse
|
4
|
Shankar DB, Cheng JC, Kinjo K, Federman N, Moore TB, Gill A, Rao NP, Landaw EM, Sakamoto KM. The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. Cancer Cell 2005; 7:351-62. [PMID: 15837624 DOI: 10.1016/j.ccr.2005.02.018] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 11/24/2004] [Accepted: 02/24/2005] [Indexed: 11/21/2022]
Abstract
CREB is a transcription factor that functions in glucose homeostasis, growth factor-dependent cell survival, and memory. In this study, we describe a role of CREB in human cancer. CREB overexpression is associated with increased risk of relapse and decreased event-free survival. CREB levels are elevated in blast cells from patients with acute myeloid leukemia. To understand the role of CREB in leukemogenesis, we studied the biological consequences of CREB overexpression in primary human leukemia cells, leukemia cell lines, and transgenic mice. Our results demonstrate that CREB promotes abnormal proliferation and survival of myeloid cells in vitro and in vivo through upregulation of specific target genes. Thus, we report that CREB is implicated in myeloid cell transformation.
Collapse
Affiliation(s)
- Deepa B Shankar
- Division of Hematology/Oncology, Department of Pediatrics, Gwynne Hazen Cherry Memorial Laboratories and Mattel Children's Hospital, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Akerman GS, Rosenzweig BA, Domon OE, McGarrity LJ, Blankenship LR, Tsai CA, Culp SJ, MacGregor JT, Sistare FD, Chen JJ, Morris SM. Gene expression profiles and genetic damage in benzo(a)pyrene diol epoxide-exposed TK6 cells. Mutat Res 2004; 549:43-64. [PMID: 15120962 DOI: 10.1016/j.mrfmmm.2003.11.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Revised: 11/21/2003] [Accepted: 11/25/2003] [Indexed: 12/23/2022]
Abstract
Microarray analysis is a powerful tool to identify the biological effects of drugs or chemicals on cellular gene expression. In this study, we compare the relationships between traditional measures of genetic toxicology and mutagen-induced alterations in gene expression profiles. TK6 cells were incubated with 0.01, 0.1, or 1.0 microM +/-anti-benzo(a)pyrene-trans-7,8-dihydrodiol-9,10-epoxide (BPDE) for 4 h and then cultured for an additional 20 h. Aliquots of the exposed cells were removed at 4 and 24 h in order to quantify DNA adduct levels by 32P post-labeling and measure cell viability by cloning efficiency and flow cytometry. Gene expression profiles were developed by extracting total RNA from the control and exposed cells at 4 and 24 h, labeling with Cy3 or Cy5 and hybridizing to a human 350 gene array. Mutant frequencies in the Thymidine Kinase and Hypoxanthine Phosphoribosyl Transferase genes were also determined. The 10alpha-(deoxyguanosin-N(2)-yl)-7alpha,8beta,9beta-trihydroxy-7,8,9,10-tetrahydrobenzo(a)pyrene (dG-N(2)-BPDE) adduct increased as a function of dose and was the only adduct identified. A dose-related decrease in cell viability was evident at 24 h, but not at 4 h. Cell death occurred by apoptosis. At 4 h, analysis of the gene expression profiles revealed that Glutathione Peroxidase and Gadd45 were consistently upregulated (greater than 1.5-fold and significantly (P < 0.001) greater than the control in two experiments) in response to 1.0 microM BPDE exposure. Fifteen genes were consistently down-regulated (less than 0.67-fold and significantly (P < 0.001) lower than the control in two experiments) at 4 h in cultures exposed to 1.0 microM BPDE. Genes with altered expression at 4 h included genes important in the progression of the cell-cycle and those that inhibit apoptosis. At 24 h post-exposure, 16 genes, involved in cell-cycle control, detoxification, and apoptosis were consistently upregulated; 10 genes were repressed in cultures exposed to the high dose of BPDE. Real-time quantitative PCR confirmed the differential expression of selected genes. These data suggest that changes in gene expression will help to identify effects of drugs and chemicals on molecular pathways in cells, and will provide useful information about the molecular responses associated with DNA damage. Of the endpoints evaluated, DNA adduct formation was the most sensitive indicator of DNA damage. DNA adduct formation was clearly evident at low doses, but the number of genes with significantly altered expression (P < 0.001) was minimal. Alterations in gene expression were more robust at doses associated with cellular toxicity and induction of mutations.
Collapse
Affiliation(s)
- G S Akerman
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, US Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Messengers RNA (mRNA) are thought to be export from the nucleus as ribonucleoprotein complexes (mRNP), whose exact protein composition remains not completely determined. The Gle2/RAE1 protein, a highly conserved member of the WD40 repeat protein family, was first shown to be involved in mRNA export. More recently, a role in the cell cycle was also suggested. To get new insights into the functions of the metazoan protein, the Drosophila melanogaster rae1 (dmrae1) cDNA was first cloned, then the corresponding protein characterized and its function investigated by RNA interference. This paper shows that dmRae1 mainly localises to the nuclear membrane like its homologue in Saccharomyces cerevisiae. However, unlike its homologue and despite this particular sub-cellular distribution, its depletion does not impair the export of polyA+ RNAs. Interestingly, the presence of dmRae1 is important for normal proliferation and, more importantly, for the progression through the G1 phase of the cell cycle. Given that dmRae1 is closely related to the human form, results suggest that the human homologue, hsRAE1, may also play a similar role during the cell cycle.
Collapse
Affiliation(s)
- D Sitterlin
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| |
Collapse
|
7
|
Lin M, Chang JK, Shankar D, Sakamoto KM. The role of p55CDC in cell cycle control and mammalian cell proliferation, differentiation, and apoptosis. Exp Mol Pathol 2003; 74:123-8. [PMID: 12710943 DOI: 10.1016/s0014-4800(02)00021-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The p55CDC (cell division cycle) protein is a key regulator of the cell cycle. p55CDC is related to both the CDC20 and the CDH1 proteins in yeast. p55CDC has been shown to activate the ubiquitin ligase anaphase promoting complex (APC), which is involved in degradation of proteins that control mitosis. To define the role of p55CDC during the mammalian cell cycle, we overexpressed this protein in the murine myeloid cell line 32Dcl3. 32Dcl3 cells are an ideal model system because these cells can be induced to proliferate, differentiate, or activate cellular programs leading to apoptosis. Our work suggests that p55CDC participates in cell growth, maturation, and death. Thus, p55CDC may play a more diverse role in modulating cellular functions in addition to controlling the cell cycle.
Collapse
Affiliation(s)
- Michael Lin
- Department of Pediatrics, Mattel Children's Hospital at University of California at Los Angeles, Gwynne Hazen Cherry Memorial Laboratories, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, Los Angeles, CA 90095-1752, USA
| | | | | | | |
Collapse
|
8
|
Kim K, Khaled AR, Reynolds D, Young HA, Lee CK, Durum SK. Characterization of an interleukin-7-dependent thymic cell line derived from a p53(-/-) mouse. J Immunol Methods 2003; 274:177-84. [PMID: 12609543 DOI: 10.1016/s0022-1759(02)00513-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to study the response of T cells to IL-7, we aimed to generate an IL-7-dependent thymocyte line. CD4(-)CD8(-) thymocytes from a p53(-)/(-) mouse were continuously propagated in interleukin-7 (IL-7), and after 2 months there developed an immortal line termed "D1." The D1 line has retained a stable dependency on IL-7. Withdrawal of IL-7 from D1 cells induced arrest in G1 phase of the cell cycle, followed by apoptosis. In addition to IL-7, several other cytokines that employ gamma(c) as part of their receptor were also capable of stimulating D1 cell survival and proliferation. Gene induction by IL-7 was analyzed in D1 cells using RNase protection and array analysis and revealed a number of transcripts potentially involved in cell cycle, apoptosis and signaling.
Collapse
Affiliation(s)
- Kyungjae Kim
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
9
|
Sironen RK, Karjalainen HM, Elo MA, Kaarniranta K, Törrönen K, Takigawa M, Helminen HJ, Lammi MJ. cDNA array reveals mechanosensitive genes in chondrocytic cells under hydrostatic pressure. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1591:45-54. [PMID: 12183054 DOI: 10.1016/s0167-4889(02)00247-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hydrostatic pressure (HP) has a profound effect on cartilage metabolism in normal and pathological conditions, especially in weight-bearing areas of the skeletal system. As an important component of overall load, HP has been shown to affect the synthetic capacity and well-being of chondrocytes, depending on the mode, duration and magnitude of pressure. In this study we examined the effect of continuous HP on the gene expression profile of a chondrocytic cell line (HCS-2/8) using a cDNA array containing 588 well-characterized human genes under tight transcriptional control. A total of 51 affected genes were identified, many of them not previously associated with mechanical stimuli. Among the significantly up-regulated genes were immediate-early genes, and genes involved in heat-shock response (hsp70, hsp40, hsp27), and in growth arrest (GADD45, GADD153, p21(Cip1/Waf1), tob). Markedly down-regulated genes included members of the Id family genes (dominant negative regulators of basic helix-loop-helix transcription factors), and cytoplasmic dynein light chain and apoptosis-related gene NIP3. These alterations in the expression profile induce a transient heat-shock gene response and activation of genes involved in growth arrest and cellular adaptation and/or differentiation.
Collapse
Affiliation(s)
- Reijo K Sironen
- Department of Anatomy, University of Kuopio, P.O. Box 1627, 70211 Kuopio, Finland
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Mendoza MJ, Wang CX, Lin M, Braun J, Sakamoto KM. Fizzy-related RNA expression patterns in mammalian development and cell lines. Mol Genet Metab 2002; 76:363-6. [PMID: 12208143 DOI: 10.1016/s1096-7192(02)00102-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M J Mendoza
- Department of Pathology and Laboratory Medicine, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|