1
|
Huang D, Han Y, Tang T, Yang L, Jiang P, Qian W, Zhang Z, Qian X, Zeng X, Qian P. Dlk1 maintains adult mice long-term HSCs by activating Notch signaling to restrict mitochondrial metabolism. Exp Hematol Oncol 2023; 12:11. [PMID: 36653853 PMCID: PMC9850540 DOI: 10.1186/s40164-022-00369-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Adult hematopoietic stem cells (HSCs) homeostasis is critically important in maintaining lifelong hematopoiesis. However, how adult HSCs orchestrate its homeostasis remains not fully understood. Imprinted gene Dlk1 has been shown to play critical role in mouse embryonic hematopoiesis and in regulation of stem cells, but its physiological roles in adult HSCs are unknown. METHODS We performed gene expression analysis of Dlk1, and constructed conditional Dlk1 knockout (KO) mice by crossing Mx1 cre mice with Dlkflox/flox mice. Western blot and quantitative PCR were used to detect Dlk1 KO efficiency. Flow cytometry was performed to investigate the effects of Dlk1 KO on HSCs, progenitors and linage cells in primary mice. Competitive HSCs transplantation and secondary transplantation was used to examine the effects of Dlk1 KO on long-term hematopoietic repopulation potential of HSCs. RNA-Seq and cell metabolism assays was used to determine the underlying mechanisms. RESULTS Dlk1 was highly expressed in adult mice long-term HSCs (LT-HSCs) relative to progenitors and mature lineage cells. Dlk1 KO in adult mice HSCs drove HSCs enter active cell cycle, and expanded phenotypical LT-HSCs, but undermined its long-term hematopoietic repopulation potential. Dlk1 KO resulted in an increase in HSCs' metabolic activity, including glucose uptake, ribosomal translation, mitochondrial metabolism and ROS production, which impaired HSCs function. Further, Dlk1 KO in adult mice HSCs attenuated Notch signaling, and re-activation of Notch signaling under Dlk1 KO decreased the mitochondrial activity and ROS production, and rescued the changes in frequency and absolute number of HSCs. Scavenging ROS by antioxidant N-acetylcysteine could inhibit mitochondrial metabolic activity, and rescue the changes in HSCs caused by Dlk1 KO. CONCLUSION Our study showed that Dlk1 played an essential role in maintaining HSC homeostasis, which is realized by governing cell cycle and restricting mitochondrial metabolic activity.
Collapse
Affiliation(s)
- Deyu Huang
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012 Zhejiang People’s Republic of China
| | - Yingli Han
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China
| | - Tian Tang
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China ,grid.35030.350000 0004 1792 6846Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR China
| | - Lin Yang
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China
| | - Penglei Jiang
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China
| | - Wenchang Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China
| | - Zhaoru Zhang
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China
| | - Xinyue Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China
| | - Xin Zeng
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China
| | - Pengxu Qian
- grid.13402.340000 0004 1759 700XCenter of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XLiangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China ,grid.13402.340000 0004 1759 700XInstitute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058 China ,grid.13402.340000 0004 1759 700XDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310012 Zhejiang People’s Republic of China
| |
Collapse
|
2
|
Messerschmidt VL, Chintapula U, Kuriakose AE, Laboy S, Truong TTD, Kydd LA, Jaworski J, Pan Z, Sadek H, Nguyen KT, Lee J. Notch Intracellular Domain Plasmid Delivery via Poly(Lactic-Co-Glycolic Acid) Nanoparticles to Upregulate Notch Pathway Molecules. Front Cardiovasc Med 2021; 8:707897. [PMID: 34651022 PMCID: PMC8507495 DOI: 10.3389/fcvm.2021.707897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signaling and rescue cellular functions. In this study, we utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain-containing plasmid in nanoparticles. We show that primary human umbilical vein endothelial cells (HUVECs) readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles are non-toxic, stable over time, and compatible with blood. We further demonstrated that HUVECs could be successfully transfected with these nanoparticles in static and dynamic environments. Lastly, we elucidated that these nanoparticles could upregulate the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects.
Collapse
Affiliation(s)
- Victoria L Messerschmidt
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Aneetta E Kuriakose
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Samantha Laboy
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Thuy Thi Dang Truong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - LeNaiya A Kydd
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States
| | - Zui Pan
- College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States
| | - Hashem Sadek
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
3
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
4
|
Mikheil DM, Prabhakar K, Arshad A, Rodriguez CI, Newton MA, Setaluri V. Notch signaling activation induces cell death in MAPKi-resistant melanoma cells. Pigment Cell Melanoma Res 2019; 32:528-539. [PMID: 30614626 DOI: 10.1111/pcmr.12764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 01/12/2023]
Abstract
The role of Notch signaling in melanoma drug resistance is not well understood. In this study, we show that although NOTCH proteins are upregulated in metastatic melanoma cell lines, Notch signaling inhibition had no effect on cell survival, growth, migration or the sensitivity of BRAFV600E-melanoma cells to MAPK inhibition (MAPKi). We found that NOTCH1 is downregulated in melanoma cell lines with intrinsic and acquired resistance to MAPKi. Forced expression of NICD1, the active form of Notch1, caused apoptosis of the NOTCHlo , MAPKi-resistant cells, but not the NOTCHhi , MAPKi-sensitive melanoma cell lines. Whole transcriptome-sequencing analyses of NICD1-transduced MAPKi-sensitive and MAPKi-resistant cells revealed differential regulation of endothelin 1 (EDN1) by NICD1, that is, downregulation in MAPKi-resistant cells and upregulation in MAPKi-sensitive cells. Knockdown of EDN1 partially mimicked the effect of NICD1 on the survival of MAPKi-resistant cells. We show that the opposite regulation of EDN1 by Notch signaling is mediated by the differential regulation of c-JUN by NICD1. Our data show that MAPKi-resistant melanoma cells acquire vulnerability to Notch signaling activation and suggest that Notch-c-JUN-EDN1 axis is a potential therapeutic target in MAPKi-resistant melanoma.
Collapse
Affiliation(s)
- Dareen M Mikheil
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| | | | - Ayyan Arshad
- Department of Dermatology, University of Wisconsin, Madison, Wisconsin
| | | | - Michael A Newton
- Department of Biostatistics & Medical Informatics, University of Wisconsin, Madison, Wisconsin
| | - Vijayasaradhi Setaluri
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin, Madison, Wisconsin.,Department of Dermatology, University of Wisconsin, Madison, Wisconsin.,William S. Middleton Veterans Hospital, Madison, Wisconsin
| |
Collapse
|
5
|
Sadaf N, Kumar N, Ali M, Ali V, Bimal S, Haque R. Arsenic trioxide induces apoptosis and inhibits the growth of human liver cancer cells. Life Sci 2018; 205:9-17. [DOI: 10.1016/j.lfs.2018.05.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/24/2018] [Accepted: 05/03/2018] [Indexed: 01/07/2023]
|
6
|
Cheng Y, Gu W, Zhang G, Li X, Guo X. Activation of Notch1 signaling alleviates dysfunction of bone marrow-derived mesenchymal stem cells induced by cigarette smoke extract. Int J Chron Obstruct Pulmon Dis 2017; 12:3133-3147. [PMID: 29138545 PMCID: PMC5667796 DOI: 10.2147/copd.s146201] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) are considered attractive therapeutic agents for the treatment of COPD. However, little is known about the impact of Notch on the proliferation, migration, and survival of MSCs in a cigarette smoke (CS) microenvironment. Here, we used CS extract to mimic the CS microenvironment in vitro, with the intention to investigate the effect of Notch in regulating proliferation, migration, and survival of BM-MSCs. Rat bone marrow mesenchymal stem cells were infected with lentivirus vector containing the intracellular domain of Notch1 (N1ICD) and challenged with CS extract. Cell proliferation was detected by Ki67 staining and expression of cell cycle-related proteins. A transwell assay was used to measure cell migration and the expression of apoptotic proteins was examined. The proliferation of BM-MSCs overexpressing N1ICD significantly increased. Consistently, levels of cyclin D1, p-Rb, and E2F-1 increased in N1ICD overexpressing cells. N1ICD overexpression also increased cell migration compared with the control group. N1ICD overexpression equilibrated the expression of Bax and Bcl-2, and blocked caspase-3 cleavage, contributing to the inhibition of apoptosis. Moreover, blockade of the PI3K/Akt pathway suppressed the aforementioned cytoprotective effects of N1ICD. In conclusion, activation of Notch signaling improved proliferation, migration, and survival of BM-MSCs in a CS microenvironment partly through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Yi Cheng
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Gu
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guorui Zhang
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Li
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuejun Guo
- Department of Respiratory Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Delgado-Calle J, Anderson J, Cregor MD, Hiasa M, Chirgwin JM, Carlesso N, Yoneda T, Mohammad KS, Plotkin LI, Roodman GD, Bellido T. Bidirectional Notch Signaling and Osteocyte-Derived Factors in the Bone Marrow Microenvironment Promote Tumor Cell Proliferation and Bone Destruction in Multiple Myeloma. Cancer Res 2016; 76:1089-100. [PMID: 26833121 DOI: 10.1158/0008-5472.can-15-1703] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/14/2015] [Indexed: 01/24/2023]
Abstract
In multiple myeloma, an overabundance of monoclonal plasma cells in the bone marrow induces localized osteolytic lesions that rarely heal due to increased bone resorption and suppressed bone formation. Matrix-embedded osteocytes comprise more than 95% of bone cells and are major regulators of osteoclast and osteoblast activity, but their contribution to multiple myeloma growth and bone disease is unknown. Here, we report that osteocytes in a mouse model of human MM physically interact with multiple myeloma cells in vivo, undergo caspase-3-dependent apoptosis, and express higher RANKL (TNFSF11) and sclerostin levels than osteocytes in control mice. Mechanistic studies revealed that osteocyte apoptosis was initiated by multiple myeloma cell-mediated activation of Notch signaling and was further amplified by multiple myeloma cell-secreted TNF. The induction of apoptosis increased osteocytic Rankl expression, the osteocytic Rankl/Opg (TNFRSF11B) ratio, and the ability of osteocytes to attract osteoclast precursors to induce local bone resorption. Furthermore, osteocytes in contact with multiple myeloma cells expressed high levels of Sost/sclerostin, leading to a reduction in Wnt signaling and subsequent inhibition of osteoblast differentiation. Importantly, direct contact between osteocytes and multiple myeloma cells reciprocally activated Notch signaling and increased Notch receptor expression, particularly Notch3 and 4, stimulating multiple myeloma cell growth. These studies reveal a previously unknown role for bidirectional Notch signaling that enhances MM growth and bone disease, suggesting that targeting osteocyte-multiple myeloma cell interactions through specific Notch receptor blockade may represent a promising treatment strategy in multiple myeloma.
Collapse
Affiliation(s)
- Jesus Delgado-Calle
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - Judith Anderson
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Meloney D Cregor
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Masahiro Hiasa
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - John M Chirgwin
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana. Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Nadia Carlesso
- Department of Pediatrics Indiana, University School of Medicine, Indianapolis, Indiana
| | - Toshiyuki Yoneda
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Khalid S Mohammad
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana. Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| | - G David Roodman
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana. Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Teresita Bellido
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana. Division of Endocrinology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
8
|
Tian C, Jia Y, Hu D, Li C, Qu F, Zhang Y. [Inhibitory effects of Hes1 on acute myeloid leukemia cells]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2015; 36:485-8. [PMID: 26134013 PMCID: PMC7343078 DOI: 10.3760/cma.j.issn.0253-2727.2015.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
目的 阐明Hes1与急性髓系白血病(AML)细胞增殖和凋亡的关系。 方法 通过实时定量PCR检测AML原代细胞和HL-60、U937、KG1a细胞中Hes1和p21的表达情况;通过在AML细胞中转染逆转录病毒载体使Hes1高表达,通过MTT及流式细胞术检测高表达Hes1的AML细胞增殖和细胞周期、凋亡的改变;并通过成瘤实验检测Hes1+ AML细胞在NOD/SCID小鼠体内的增殖情况。 结果 Hes1和p21在AML患者原代细胞和HL-60、U937、KG1a细胞中的表达分别为0.67±0.24和0.59±0.43、0.42±0.03和0.32±0.26、0.54±0.01和0.44±0.12、0.36±0.12和0.59±0.43,均较正常对照组水平降低(P值均<0.05);通过逆转录病毒载体诱导后HL-60、U937、KG1a细胞中Hes1的表达分别为4.9±0.2、5.2±0.4、5.8±0.5,均较未转染诱导前上调(P值均<0.05);感染Hes1后AML细胞与感染空载体的AML细胞比较,增殖受到抑制,细胞凋亡增加。与对照组比较,3种细胞系高表达Hes1后在NOD/SCID小鼠体内的成瘤性均降低(P值均<0.05)。 结论 Hes1过表达可抑制AML细胞的增殖,诱导AML细胞凋亡,从而提示Hes1为AML的抑制基因,可能成为治疗AML的新靶点。
Collapse
Affiliation(s)
- Chen Tian
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital. Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yongsheng Jia
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital. Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Dongzhi Hu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital. Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Chanjuan Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital. Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Fulian Qu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital. Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yizhuo Zhang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital. Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| |
Collapse
|
9
|
HES1 activation suppresses proliferation of leukemia cells in acute myeloid leukemia. Ann Hematol 2015; 94:1477-83. [PMID: 26092281 DOI: 10.1007/s00277-015-2413-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
Although aberrant Notch activation contributes to leukemogenesis in T cells, the role of Notch pathway in acute myeloid leukemia (AML) remains controversial. To address this issue, we compared the expression levels of its downstream effector HES1 and p21 in bone marrow mononuclear cells (BMNCs) from 30 newly diagnosed AML patients and three AML cell lines to normal BMNCs. The results showed that both of them were downregulated in AML cells. In vitro, induced activation of HES1 by retrovirus in AML cell lines consistently led to AML cell growth arrest and apoptosis induction, which was associated with enhanced p21 expression. Furthermore, overexpression of HES1 in primary AML cells inhibited growth of AML in a xenograft mice model. In conclusion, we demonstrated the tumor suppressor role of HES1 in AML.
Collapse
|
10
|
Potential role of Notch signalling in CD34+ chronic myeloid leukaemia cells: cross-talk between Notch and BCR-ABL. PLoS One 2015; 10:e0123016. [PMID: 25849484 PMCID: PMC4388554 DOI: 10.1371/journal.pone.0123016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022] Open
Abstract
Notch signalling is critical for haemopoietic stem cell (HSC) self-renewal and survival. The role of Notch signalling has been reported recently in chronic myeloid leukaemia (CML) – a stem cell disease characterized by BCR-ABL tyrosine kinase activation. Therefore, we studied the relationship between BCR-ABL and Notch signalling and assessed the expression patterns of Notch and its downstream target Hes1 in CD34+ stem and progenitor cells from chronic-phase CML patients and bone marrow (BM) from normal subjects (NBM). We found significant upregulation (p<0.05) of Notch1, Notch2 and Hes1 on the most primitive CD34+Thy+ subset of CML CD34+ cells suggesting that active Notch signalling in CML primitive progenitors. In addition, Notch1 was also expressed in distinct lymphoid and myeloid progenitors within the CD34+ population of primary CML cells. To further delineate the possible role and interactions of Notch with BCR-ABL in CD34+ primary cells from chronic-phase CML, we used P-crkl detection as a surrogate assay of BCR-ABL tyrosine kinase activity. Our data revealed that Imatinib (IM) induced BCR-ABL inhibition results in significant (p<0.05) upregulation of Notch activity, assessed by Hes1 expression. Similarly, inhibition of Notch leads to hyperactivation of BCR-ABL. This antagonistic relationship between Notch and BCR-ABL signalling was confirmed in K562 and ALL-SIL cell lines. In K562, we further validated this antagonistic relationship by inhibiting histone deacetylase (HDAC) - an effector pathway of Hes1, using valproic acid (VPA) - a HDAC inhibitor. Finally, we also confirmed the potential antagonism between Notch and BCR/ABL in In Vivo, using publically available GSE-database, by analysing gene expression profile of paired samples from chronic-phase CML patients pre- and post-Imatinib therapy. Thus, we have demonstrated an antagonistic relationship between Notch and BCR-ABL in CML. A combined inhibition of Notch and BCR-ABL may therefore provide superior clinical response over tyrosine-kinase inhibitor monotherapy by targeting both quiescent leukaemic stem cells and differentiated leukaemic cells and hence must be explored.
Collapse
|
11
|
Kushwah R, Guezguez B, Lee JB, Hopkins CI, Bhatia M. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human. EMBO Rep 2014; 15:1128-38. [PMID: 25252682 DOI: 10.15252/embr.201438842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation.
Collapse
Affiliation(s)
- Rahul Kushwah
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Borhane Guezguez
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jung Bok Lee
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Claudia I Hopkins
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Azizidoost S, Bavarsad MS, Bavarsad MS, Shahrabi S, Jaseb K, Rahim F, Shahjahani M, Saba F, Ghorbani M, Saki N. The role of notch signaling in bone marrow niche. Hematology 2014; 20:93-103. [DOI: 10.1179/1607845414y.0000000167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shirin Azizidoost
- Health Research InstituteResearch Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahsa Shanaki Bavarsad
- Health Research InstituteResearch Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and HematologyFaculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Kaveh Jaseb
- Health Research InstituteResearch Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fakher Rahim
- Health Research InstituteHearing Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Shahjahani
- Department of HematologySchool of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fakhredin Saba
- Department of HematologySchool of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Ghorbani
- Department of Laboratory ScienceParamedical Faculty, AJA University of Medical Sciences, Tehran, Iran
| | - Najmaldin Saki
- Health Research InstituteResearch Center of Thalassemia and Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
13
|
Portillo V, Chadwick N, Lloyd R, Jackson D, Buckle AM. Cell-surface Notch1 expression identifies a primitive phenotype within CD34+ CD38- haematopoietic cells. Eur J Haematol 2013; 92:26-34. [PMID: 24010734 DOI: 10.1111/ejh.12200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2013] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Notch signalling has been implicated in haematopoietic stem cell self-renewal. Although several studies have tested the effect of activating or inhibiting the Notch signalling pathway in stem cells, no study has yet determined the functional differences associated with expressing Notch1. The aims of this study were to characterise the expression of human cell-surface Notch1 in cord blood (CB) CD34(+) cells and to study the function of Notch in CD34(+) cells in vitro. METHODS A monoclonal antibody against the extracellular domain of Notch1 was developed, and Notch1 expression in CB CD34(+) cells was assessed by flow cytometry. CB CD34(+) cells were sorted on the basis of their Notch1 expression and cultured in serum-free media. Single sorted CD34(+) CD38(-) Notch1(+) /(-) cells were cultured for 8 wks on murine stroma monolayers and assayed for stem cell activity and lineage potential using a cobblestone area-forming cell (CAFC) assay. RESULTS Cell-surface Notch1 expression was characterised in various primitive CD34(+) cell compartments including a small subpopulation of CD34(+) CD38(-) cells. We found the CD34(+) CD38(-) Notch1(+) population to be enriched for stem cell activity. Moreover, CD34(+) CD38(-) Notch1(+) , but not Notch1(-) cells, demonstrated multilineage potential. CONCLUSIONS These data show that Notch1 is expressed on a functionally distinct subpopulation of CD34(+) cells that is highly enriched for stem cell activity and multilineage potential and could suggest that Notch1 could be used as a novel stem cell marker.
Collapse
|
14
|
Kannan S, Sutphin RM, Hall MG, Golfman LS, Fang W, Nolo RM, Akers LJ, Hammitt RA, McMurray JS, Kornblau SM, Melnick AM, Figueroa ME, Zweidler-McKay PA. Notch activation inhibits AML growth and survival: a potential therapeutic approach. ACTA ACUST UNITED AC 2013; 210:321-37. [PMID: 23359069 PMCID: PMC3570106 DOI: 10.1084/jem.20121527] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Activating Notch with a Notch agonist peptide induces apoptosis in AML patient samples. Although aberrant Notch activation contributes to leukemogenesis in T cells, its role in acute myelogenous leukemia (AML) remains unclear. Here, we report that human AML samples have robust expression of Notch receptors; however, Notch receptor activation and expression of downstream Notch targets are remarkably low, suggesting that Notch is present but not constitutively activated in human AML. The functional role of these Notch receptors in AML is not known. Induced activation through any of the Notch receptors (Notch1–4), or through the Notch target Hairy/Enhancer of Split 1 (HES1), consistently leads to AML growth arrest and caspase-dependent apoptosis, which are associated with B cell lymphoma 2 (BCL2) loss and enhanced p53/p21 expression. These effects were dependent on the HES1 repressor domain and were rescued through reexpression of BCL2. Importantly, activated Notch1, Notch2, and HES1 all led to inhibited AML growth in vivo, and Notch inhibition via dnMAML enhanced proliferation in vivo, thus revealing the physiological inhibition of AML growth in vivo in response to Notch signaling. As a novel therapeutic approach, we used a Notch agonist peptide that led to significant apoptosis in AML patient samples. In conclusion, we report consistent Notch-mediated growth arrest and apoptosis in human AML, and propose the development of Notch agonists as a potential therapeutic approach in AML.
Collapse
Affiliation(s)
- Sankaranarayanan Kannan
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Osteosclerosis and inhibition of human hematopoiesis in NOG mice expressing human Delta-like 1 in osteoblasts. Exp Hematol 2012; 40:953-963.e3. [DOI: 10.1016/j.exphem.2012.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 05/31/2012] [Accepted: 06/19/2012] [Indexed: 02/06/2023]
|
16
|
Divergent effects of supraphysiologic Notch signals on leukemia stem cells and hematopoietic stem cells. Blood 2012; 121:905-17. [PMID: 23115273 DOI: 10.1182/blood-2012-03-416503] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The leukemia stem cell (LSC) hypothesis proposes that a subset of cells in the bulk leukemia population propagates the leukemia.We tested the LSC hypothesis in a mouse model of Notch-induced T-cell acute lymphoblastic leukemia (T-ALL) in which the tumor cells were largely CD4+ CD8+ T cells. LSC activity was enriched but rare in the CD8+ CD4 HSA(hi) immature single-positive T-cell subset. Although our murine T-ALL model relies on transduction of HSCs, we were unable to isolate Notch-activated HSCs to test for LSC activity. Further analysis showed that Notch activation in HSCs caused an initial expansion of hematopoietic and T-cell progenitors and loss of stem cell quiescence, which was followed by progressive loss of long-term HSCs and T-cell production over several weeks. Similar results were obtained in a conditional transgenic model in which Notch activation is induced in HSCs by Cre recombinase. We conclude that although supraphysiologic Notch signaling in HSCs promotes LSC activity in T-cell progenitors, it extinguishes self-renewal of LT-HSCs. These results provide further evidence for therapeutically targeting T-cell progenitors in T-ALL while also underscoring the need to tightly regulate Notch signaling to expand normal HSC populations for clinical applications.
Collapse
|
17
|
Suárez-Álvarez B, López-Vázquez A, López-Larrea C. Mobilization and homing of hematopoietic stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 741:152-70. [PMID: 22457109 DOI: 10.1007/978-1-4614-2098-9_11] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSC) are a population of precursor cells that posses the capacity for self-renewal and multilineage differentiation. In the bone marrow (BM), HSCs warrant blood cell homeostasis, but at the same time a stable pool of functional cells must be constantly maintained. For this, HSCs constitute a model in which subpopulations of quiescent and active adult stem cells co-exist in the same tissue, in specific microenvironment called stem-cell "niches." These microenvironments keep the stem cells at quiescent (osteoblastic niche) for its self-renewal and activate the stem cells (vascular niche) for proliferation and/or injury repair, maintaining a dynamic balance between self-renewal and differentiation. HSC reside in the bone marrow but can be forces into the blood, a process termed mobilization used clinically to harvest large number of cells for transplantation. At the same time, homing to the BM is necessary to optimize cell engraftment. Here, we summarize current understanding of HSC niche characteristics, and the physiological and pathological mechanisms that guide HSC mobilization both within the BM and to distant niches in the periphery. Mobilization and Homing are mirror process depending on an interplay between chemokines, chemokine receptors, intracellular signaling, adhesion moleculas and proteases. The interaction between SDF-1/CXCL12 and its receptor CXCR4 is critical to retain HSCs within the bone marrow. Current mobilization strategies used in clinic, mainly G-CSF cytokine, are well tolerated but often produce suboptimal number of collected HSCs. Novel agents (AMD3100, stem cell factor, GROßT.) are being developed to enhance the mobilization to modify the signaling into the niche and boost the stem cell harvest, increasing the number of HSCs available for the transplant.
Collapse
|
18
|
Pistollato F, Rampazzo E, Persano L, Abbadi S, Frasson C, Denaro L, D'Avella D, Panchision DM, Della Puppa A, Scienza R, Basso G. Interaction of hypoxia-inducible factor-1α and Notch signaling regulates medulloblastoma precursor proliferation and fate. Stem Cells 2011; 28:1918-29. [PMID: 20827750 DOI: 10.1002/stem.518] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MDB) is the most common brain malignancy of childhood. It is currently thought that MDB arises from aberrantly functioning stem cells in the cerebellum that fail to maintain proper control of self-renewal. Additionally, it has been reported that MDB cells display higher endogenous Notch signaling activation, known to promote the survival and proliferation of neoplastic neural stem cells and to inhibit their differentiation. Although interaction between hypoxia-inducible factor-1α (HIF-1α) and Notch signaling is required to maintain normal neural precursors in an undifferentiated state, an interaction has not been identified in MDB. Here, we investigate whether hypoxia, through HIF-1α stabilization, modulates Notch1 signaling in primary MDB-derived cells. Our results indicate that MDB-derived precursor cells require hypoxic conditions for in vitro expansion, whereas acute exposure to 20% oxygen induces tumor cell differentiation and death through inhibition of Notch signaling. Importantly, stimulating Notch1 activation with its ligand Dll4 under hypoxic conditions leads to expansion of MDB-derived CD133(+) and nestin(+) precursors, suggesting a regulatory effect on stem cells. In contrast, MDB cells undergo neuronal differentiation when treated with γ-secretase inhibitor, which prevents Notch activation. These results suggest that hypoxia, by maintaining Notch1 in its active form, preserves MDB stem cell viability and expansion.
Collapse
Affiliation(s)
- Francesca Pistollato
- SSD Clinical and Experimental Hematology, Department of Paediatrics, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schwarz K, Romanski A, Puccetti E, Wietbrauk S, Vogel A, Keller M, Scott JW, Serve H, Bug G. The deacetylase inhibitor LAQ824 induces notch signalling in haematopoietic progenitor cells. Leuk Res 2011; 35:119-25. [DOI: 10.1016/j.leukres.2010.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/08/2010] [Accepted: 06/28/2010] [Indexed: 01/31/2023]
|
20
|
Notch protection against apoptosis in T-ALL cells mediated by GIMAP5. Blood Cells Mol Dis 2010; 45:201-9. [PMID: 20817506 DOI: 10.1016/j.bcmd.2010.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/14/2010] [Accepted: 06/21/2010] [Indexed: 12/16/2022]
Abstract
Recent studies have highlighted the role of Notch signalling in the development of T cell acute lymphoblasic leukaemia (T-ALL). Over-expression of Notch3 and gain of function mutations in the Notch1 gene have been reported. The aims of this study were to determine the effect of Notch signalling on apoptosis in human T-ALL cell lines and to identify targets of Notch signalling that may mediate this effect. Functional studies showed that inhibition of Notch signalling using gamma secretase inhibitors promoted glucocorticoid-induced apoptosis in cells carrying gain of function mutations in Notch1. Moreover, ectopic expression of constitutively activated Notch provided protection against glucocorticoid-induced apoptosis, indicating that signalling via Notch may also contribute to the development of T-ALL by conferring resistance to apoptosis. Microarray analysis revealed that GIMAP5, a gene coding for an anti-apoptotic intracellular protein, is upregulated by Notch in T-ALL cell lines. Knockdown of GIMAP5 expression using siRNA promoted glucocorticoid-induced apoptosis in T-ALL cells carrying gain of function mutations in Notch1 and in T-ALL cells engineered to express ectopic constitutively activated Notch indicating that Notch signalling protects T-ALL cells from apoptosis by upregulating the expression of GIMAP5.
Collapse
|
21
|
Abstract
Notch signaling is an important molecular pathway involved in the determination of cell fate. In recent years, this signaling has been frequently reported to play a critical role in maintaining progenitor/stem cell population as well as a balance between cell proliferation, differentiation and apoptosis. Thus, Notch signaling may be mechanistically involved carcinogenesis. Indeed, many studies have showed that Notch signaling is overexpressed or constitutively activated in many cancers including colorectal cancer (CRC). Consequently, inactivation of Notch signaling may constitute a novel molecular therapy for cancer. CRC is one of the most common malignancies but the current therapeutic approaches for advanced CRC are less efficient. Thus, novel therapeutic approaches are badly needed. In this review article, the authors reviewed the current understanding and research findings of the role of Notch signaling in CRC and discussed the possible Notch-targeting approaches in CRC.
Collapse
Affiliation(s)
- Liang Qiao
- Department of Medicine and Centre for Cancer Research, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | | |
Collapse
|
22
|
Abstract
Stem cells are rare and unique precursor cells that participate in the building and rebuilding of tissues and organs during embryogenesis, postnatal growth, and injury repair. Stem cells are distinctively endowed with the ability to both self-renew and differentiate, such that they can replenish the stem cell pool while continuing to produce the differentiated daughter cells that are essential for tissue function. Stem cell self-renewal/differentiation decisions must be carefully controlled during organogenesis, tissue homeostasis, and regeneration, as failure in stem cell maintenance or activation can lead to progressive tissue wasting, while unchecked self-renewal is a hallmark of many cancers. Here, we review evidence implicating the Notch signaling pathway, an evolutionarily conserved cell fate determinant with widespread roles in a variety of tissues and organisms, as a crucial regulator of stem cell behavior. As discussed below, this pathway plays varied and critical roles at multiple stages of organismal development, in lineage-specific differentiation of pluripotent embryonic stem cells, and in controlling stem cell numbers and activity in the context of age-related tissue degeneration, injury-induced tissue repair, and malignancy.
Collapse
|
23
|
Abstract
Because of its multiple effects in tissue homeostasis and cancer, Notch signaling is gaining increasing attention as a potential therapeutic target. Notch proteins belong to a family of highly conserved cell surface receptors. Ligand binding leads to proteolytic cleavage of Notch receptors by the gamma-secretase complex, followed by translocation of the active intracellular Notch domain into the nucleus and transcriptional activation. Multiple genetic and pharmacological methods are available to inhibit or activate the Notch pathway, some of which are entering human clinical trials. In this review, we discuss our current understanding of Notch signaling in the hematopoietic system. Canonical Notch signaling is essential for the generation of definitive embryonic hematopoietic stem cells, but dispensable for their maintenance during adult life. Notch controls several early steps of T cell development, as well as specific cell fate and differentiation decisions in other hematopoietic lineages. In addition, emerging evidence indicates that Notch is a potent, context-specific regulator of T cell immune responses, including in several disease models relevant to patients. This knowledge will constitute a framework to explore Notch modulation as a therapeutic strategy and to understand potential hematopoietic side effects of systemic Notch inhibition.
Collapse
Affiliation(s)
- Ashley R Sandy
- University of Michigan, Center for Stem Cell Biology, Life Sciences Institute, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
24
|
Induction of notch signaling by immobilization of jagged-1 on self-assembled monolayers. Biomaterials 2009; 30:6879-87. [PMID: 19783294 DOI: 10.1016/j.biomaterials.2009.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 09/04/2009] [Indexed: 02/07/2023]
Abstract
Notch signaling is a key mechanism during mammal development and stem cell regulation. This study aims to target and control Notch signaling by ligands immobilization using self-assembled monolayers (SAMs) as model surfaces. Non-fouling substrates were prepared by immersion of gold substrates in (1-Mercapto-11-undecyl)tetra(ethylene glycol) thiol solutions. These surfaces were activated with N,N'-carbonyldiimidazole (CDI) at different concentrations (0, 0.03, 0.3, 3 and 30 mg/ml) and an anti-human IgG, Fc specific fragment antibody (Ab) was covalently bound to EG4-SAMs to guarantee the correct exposure of the Notch ligand Jagged-1/Fc chimera (Jag-1). The presence of Ab and Jag-1 was confirmed by radiolabeling, X-ray photoelectron spectroscopy (XPS), ellipsometry and ELISA. The biological activity of Jag-1-Ab-SAMs was assessed by real-time PCR for Hes-1 family gene expression, a Notch pathway target gene, in HL-60 cell line. Results have shown an increase of the amount of immobilized Ab with increasing surface activator concentrations. Jag-1 concentration also increases with Ab concentration. Interestingly, a higher Jagged-1 exposure and fold increase in Hes-1 expression were obtained for surfaces activated with the lowest concentration of CDI (0.03 mg/ml). These results illustrate the great importance of ligands orientation and exposure, when compared with density. This investigation brings new insights into Notch signaling mechanisms. In particular, Jag-1-Ab-SAMs have shown to be adequate model surfaces to study Notch pathway activation and may provide a basis to develop new interfaces in biomaterials to control Notch mechanism in different cell systems.
Collapse
|
25
|
Abstract
Mind bomb 1 (Mib1) is a multidomain E3 ligase that directs ubiquitination of the Notch ligands Delta and Jagged to promote their endocytosis. Here we examine Notch-independent functions of Mib1 and find that its activities are linked to the initiation of the extrinsic cell death pathway. Expression of Mib1 induces a spontaneous, caspase-dependent cell death. Consistent with this, depletion of endogenous Mib1 decreases tumor-necrosis factor (TNF)-induced cell death. Mib1 was found to bind to cellular Fas-associated death domain (FADD)-like IL-1b converting enzyme (FLICE)-like inhibitory proteins (cFLIP-L and cFLIP-S), whereas only cFLIP-s can inhibit Mib1-induced cell death. The interaction between Mib1 and cFLIP decreases the association of caspase-8 with cFLIP, which activates caspase-8 and induces cell death. Collectively, these results suggest that in addition to a central role in Notch signaling, Mib1 has an important role in regulating the extrinsic cell death pathway.
Collapse
Affiliation(s)
- Liguo Zhang
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120, USA
| | | |
Collapse
|
26
|
Alenzi FQ, Alenazi BQ, Ahmad SY, Salem ML, Al-Jabri AA, Wyse RKH. The haemopoietic stem cell: between apoptosis and self renewal. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2009; 82:7-18. [PMID: 19325941 PMCID: PMC2660591 DOI: pmid/19325941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Self renewal and apoptosis of haemopoietic stem cells (HSC) represent major factors that determine the size of the haemopoietic cell mass. Changes in self renewal above or below the steady state value of 0.5 will result in either bone marrow expansion or aplasia, respectively. Despite the growing body of research that describes the potential role of HSC, there is still very little information on the mechanisms that govern HSC self renewal and apoptosis. Considerable insight into the role of HSC in many diseases has been gained in recent years. In light of their crucial importance, this article reviews recent developments in the understanding of the molecular, biological, and physiological characteristics of haemopoietic stem cells.
Collapse
Affiliation(s)
- Faris Q Alenzi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia.
| | | | | | | | | | | |
Collapse
|
27
|
Maximal STAT5-induced proliferation and self-renewal at intermediate STAT5 activity levels. Mol Cell Biol 2008; 28:6668-80. [PMID: 18779318 DOI: 10.1128/mcb.01025-08] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34(+) cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34(+) cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.
Collapse
|
28
|
Chadwick N, Fennessy C, Nostro MC, Baron M, Brady G, Buckle AM. Notch induces cell cycle arrest and apoptosis in human erythroleukaemic TF-1 cells. Blood Cells Mol Dis 2008; 41:270-7. [PMID: 18693120 DOI: 10.1016/j.bcmd.2008.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/13/2008] [Accepted: 06/17/2008] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Notch signalling is known to promote hematopoietic stem cell self-renewal and to influence the lineage commitment decisions of progenitor cells. The purpose of this study was to investigate the mechanism of Notch-induced apoptosis in the erythroleukaemic cell line TF-1, and in primary cord blood CD34+ cells. METHODS Retroviral constructs containing constitutively active forms of Notch as well as components of the Notch signalling pathway were used to transduce cells and their effect on cell cycle kinetics and apoptosis assayed by immunostaining for the S-phase marker Ki67 and Annexin V. RESULTS We found that TF-1 cells undergo cell cycle arrest followed by apoptosis in a cytokine-independent manner in response to active Notch. Transduction of TF-1 cells with known targets of Notch signalling, Deltex1, HES1 and HERP2, showed that Notch-induced cell cycle arrest was not mediated by these proteins. However, analysis of cell cycle gene expression revealed that Notch signalling was associated with an up-regulation of IFI16 expression in TF-1 cells and in primary cord blood CD34+ cells. CONCLUSION These data demonstrate that, in the context of TF-1 cells, Notch signalling can induce cell cycle arrest and apoptosis.
Collapse
Affiliation(s)
- Nicholas Chadwick
- Faculty of Life Sciences, Manchester Interdisciplinary Biocenter, University of Manchester, Manchester M1 7DN, UK
| | | | | | | | | | | |
Collapse
|
29
|
Signal control of hematopoietic stem cell fate: Wnt, Notch, and Hedgehog as the usual suspects. Curr Opin Hematol 2008; 15:319-25. [DOI: 10.1097/moh.0b013e328303b9df] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
30
|
Nikopoulos GN, Duarte M, Kubu CJ, Bellum S, Friesel R, Maciag T, Prudovsky I, Verdi JM. Soluble Jagged1 Attenuates Lateral Inhibition, Allowing for the Clonal Expansion of Neural Crest Stem Cells. Stem Cells 2007; 25:3133-42. [PMID: 17761753 DOI: 10.1634/stemcells.2007-0327] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The activation of Notch signaling in neural crest stem cells (NCSCs) results in the rapid loss of neurogenic potential and differentiation into glia. We now show that the attenuation of endogenous Notch signaling within expanding NCSC clones by the Notch ligand soluble Jagged1 (sJ1), maintains NCSCs in a clonal self-renewing state in vitro without affecting their sensitivity to instructive differentiation signals observed previously during NCSC self-renewal. sJ1 functions as a competitive inhibitor of Notch signaling to modulate endogenous cell-cell communication to levels sufficient to inhibit neural differentiation but insufficient to instruct gliogenic differentiation. Attenuated Notch signaling promotes the induction and nonclassic release of fibroblast growth factor 1 (FGF1). The functions of sJ1 and FGF1 signaling are complementary, as abrogation of FGF signaling diminishes the ability of sJ1 to promote NCSC expansion, yet the secondary NCSCs maintain the dosage sensitivity of the founder. These results validate and build upon previous studies on the role of Notch signaling in stem cell self-renewal and suggest that the differentiation bias or self-renewal potential of NCSCs is intrinsically linked to the level of endogenous Notch signaling. This should provide a unique opportunity for the expansion of NCSCs ex vivo without altering their differentiation bias for clinical cell replacement or transplant strategies in tissue repair. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- George N Nikopoulos
- Interdisciplinary Program in Molecular Genetics and Cell Biology, University of Maine, Orono, Maine, USA
| | | | | | | | | | | | | | | |
Collapse
|