1
|
Bonilla X, Lara AM, Llano-León M, López-González DA, Hernández-Mejía DG, Bustos RH, Camacho-Rodríguez B, Perdomo-Arciniegas AM. Mesenchymal Stromal Cells from Perinatal Tissues as an Alternative for Ex Vivo Expansion of Hematopoietic Progenitor and Stem Cells from Umbilical Cord Blood. Int J Mol Sci 2023; 24:15544. [PMID: 37958529 PMCID: PMC10648510 DOI: 10.3390/ijms242115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/15/2023] Open
Abstract
Umbilical cord blood (UCB) serves as a source of hematopoietic stem and progenitor cells (HSPCs) utilized in the regeneration of hematopoietic and immune systems, forming a crucial part of the treatment for various benign and malignant hematological diseases. UCB has been utilized as an alternative HSPC source to bone marrow (BM). Although the use of UCB has extended transplantation access to many individuals, it still encounters significant challenges in selecting a histocompatible UCB unit with an adequate cell dose for a substantial proportion of adults with malignant hematological diseases. Consequently, recent research has focused on developing ex vivo expansion strategies for UCB HSPCs. Our results demonstrate that co-cultures with the investigated mesenchymal stromal cells (MSCs) enable a 10- to 15-fold increase in the cellular dose of UCB HSPCs while partially regulating the proliferation capacity when compared to HSPCs expanded with early acting cytokines. Furthermore, the secretory profile of UCB-derived MSCs closely resembles that of BM-derived MSCs. Moreover, both co-cultures exhibit alterations in cytokine secretion, which could potentially impact HSPC proliferation during the expansion process. This study underscores the fact that UCB-derived MSCs possess a remarkably similar supportive capacity to BM-derived MSCs, implying their potential use as feeder layers in the ex vivo expansion process of HSPCs.
Collapse
Affiliation(s)
- Ximena Bonilla
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - Ana Milena Lara
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - Manuela Llano-León
- Advanced Therapies Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (M.L.-L.); (D.G.H.-M.)
| | - David A. López-González
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | - David G. Hernández-Mejía
- Advanced Therapies Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (M.L.-L.); (D.G.H.-M.)
| | - Rosa Helena Bustos
- Therapeutic Evidence Group, Clinical Pharmacology, Universidad de La Sabana and Clínica Universidad de La Sabana, Chía 140013, Colombia;
| | - Bernardo Camacho-Rodríguez
- Pharmaceutical Biotechnology Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá 111611, Colombia; (A.M.L.); (D.A.L.-G.); (B.C.-R.)
| | | |
Collapse
|
2
|
Khaseb S, Atashi A, Kaviani S, Rezai Rad M, Ajami M, Ajami M. Expression analysis of genes involved in the expansion of hematopoietic stem cells (SCF, Flt3-L, TPO, IL-3, and IL-6) in unrestricted somatic stem cells cultured on fibrin. Biochimie 2023; 212:135-142. [PMID: 37116684 DOI: 10.1016/j.biochi.2023.04.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Umbilical cord blood (UCB) transplantation is a promising therapeutic approach for patients lacking HLA-matched donors. A main limitation to the use of UCB-derived HSCs (UCB-HSCs) is the low number of transplantable cells. Novel culture strategies are being developed to increase the number of HSCs. Unrestricted somatic stem cells (USSCs) have been identified as promising stromal cells for supporting HSC expansion. The current study aimed to explore the effect of fibrin on the expression of hematopoiesis-related genes (SCF, Flt3-L, TPO, IL-3, and IL-6) in USSCs. USSCs were isolated from UCB and characterized by flow cytometry and in vitro multilineage differentiation ability. DAPI staining and the MTT assay were used to assess the effect of fibrin on USSC viability. The cell attachment was evaluated using SEM. qRT-PCR was performed to evaluate the expression of SCF, Flt3-L, TPO, IL-3, and IL-6 in USSCs cultured on 3D fibrin scaffolds. USSCs were positive for CD73, CD105, and CD166 and negative for CD45. Alizarin red and Oil red O stains confirmed calcium deposition and lipid vacuoles in USSCs. Results obtained from DAPI and MTT assays revealed a positive effect of fibrin on USSC viability. Cells cultured on fibrin express significantly higher levels of SCF and TPO compared to those grown in a 2D environment. The positive effect of fibrin on IL-6 levels was reversed. Fibrin did not affect Flt3-L expression and IL-3 mRNA expression was not detected in either group. The results of this study provide the basis for developing further research on the ex vivo expansion of HSCs with USSCs.
Collapse
Affiliation(s)
- Sanaz Khaseb
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Saeid Kaviani
- Department of Hematology and Cell Therapy, Faculty of Medical Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Maryam Rezai Rad
- Research Institute for Dental Sciences, Dental Research Center, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Monireh Ajami
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Mansoureh Ajami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
3
|
Zarei-Behjani Z, Soleimani M, Atashi A, Ebrahimi-Barough S, Ai J, Hamidieh AA. Tracking of GFP-labeled unrestricted somatic stem cells transplanted in the sepsis mouse model. Tissue Cell 2019; 60:33-37. [PMID: 31582016 DOI: 10.1016/j.tice.2019.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/15/2019] [Accepted: 07/30/2019] [Indexed: 01/25/2023]
Abstract
Cell-based therapy provides a promising approach for the treatment of sepsis and related disorders. Fate determination of transplanted cells is the most essential issue for cell therapist. Optical imaging is the reliable, time and cost-effective system for cell tracking. The present study was aimed to apply an optical imaging system for monitoring of GFP-labeled unrestricted somatic stem cells in the sepsis animal model. In vivo imaging showed the most accumulation of intravenously injected cells into the lungs and liver of septic mice. Thereafter, the imaging data were more approved by flow cytometry and immunohistochemistry staining. Cellular localization in septic lungs and liver that observed by optical imaging technique may offer beneficial evidence for designing of sepsis clinical trials.
Collapse
Affiliation(s)
- Zeinab Zarei-Behjani
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Hematology and Cell therapy department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Stem Cell Technology Research Center, Tehran, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Hamidieh
- Pediatric Stem Cell Transplant Department, Children's Medical center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Matsumoto T, Mugishima H. Non-hematopoietic stem cells in umbilical cord blood. Int J Stem Cells 2014; 2:83-9. [PMID: 24855525 DOI: 10.15283/ijsc.2009.2.2.83] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2009] [Indexed: 01/27/2023] Open
Abstract
Allogeneic umbilical cord blood (UCB) transplantation has been used to treat a variety of malignant and non-malignant diseases. Recent studies show convincing evidence that UCB contains not only hematopoietic progenitors, but also several types of stem and progenitor cells providing a high proliferative capacity and a variety of differentiation potentials. UCB-derived cells offer multiple advantages over adult stem cells from other sources like bone marrow (BM), because UCB can be collected without painful procedure, easily available in virtually unlimited supply, and has not been exposed to immunologic challenge. In addition, cord blood transplantation is now an established field with great potential and no serious ethical issue by establishment of public UCB banks throughout the world. Therefore UCB-derived non-hematopoietic stem cells may provide an attractive cell source for tissue repair and regeneration. It is generally accepted that UCB contains endothelial progenitor cells (EPC), mesenchymal stromal cells (MSC), unrestricted somatic stem cells (USSC), very small embryonic-like stem cells (VSEL), multilineage progenitor cells (MLPC), and neuronal progenitor cells. This review focuses on biological properties of these non-hematopoietic stem/progenitor cells derived from human UCB and their potential use in cell based therapies.
Collapse
Affiliation(s)
- Taro Matsumoto
- Division of Cell Regeneration and Transplantation, School of Medicine, Advanced Medical Research Center, Nihon University, Tokyo, Japan
| | - Hideo Mugishima
- Department of Pediatrics, School of Medicine, Nihon University, Tokyo, Japan
| |
Collapse
|
5
|
Fortin A, Benabdallah B, Palacio L, Carbonneau CL, Le ON, Haddad E, Beauséjour CM. A soluble granulocyte colony stimulating factor decoy receptor as a novel tool to increase hematopoietic cell homing and reconstitution in mice. Stem Cells Dev 2013. [PMID: 23205715 DOI: 10.1089/scd.2012.0438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The relative ineffectiveness of hematopoietic stem cells in reaching the bone marrow upon transplantation combined with the limited number of these cells available is a major reason for graft failure and delayed hematopoietic recovery. Hence, the development of strategies that could enhance homing is of high interest. Here, we provide evidence that homing is severely impaired postexposure to ionizing radiation (IR) in mice, an effect we found was time dependent and could be partially rescued using mesenchymal stromal cell (MSC) therapy. In an attempt to further increase homing, we took advantage of our observation that the granulocyte colony stimulating factor (G-CSF), a cytokine known to induce cell mobilization, is increased in the marrow of mice shortly after their exposure to IR. As such, we developed a truncated, yet functional, soluble G-CSF receptor (solG-CSFR), which we hypothesized could act as a decoy and foster homing. Using MSCs or conditioned media as delivery vehicles, we show that an engineered solG-CSFR has the potential to increase homing and hematopoietic reconstitution in mice. Altogether, our results provide novel findings at the interplay of IR and stromal cell therapy and present the regulation of endogenous G-CSF as an innovative proof-of-concept strategy to manipulate hematopoietic cell homing.
Collapse
Affiliation(s)
- Audrey Fortin
- Centre de recherche du CHU Ste-Justine, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
6
|
Schipper LF, Brand A, Fibbe WE, Van Hensbergen Y. Functional characterization of TPO-expanded CD34+ cord blood cells identifies CD34- CD61- cells as platelet-producing cells early after transplantation in NOD/SCID mice and rCD34+ cells as CAFC colony-forming cells. Stem Cells 2012; 30:988-96. [PMID: 22378601 DOI: 10.1002/stem.1071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transplantation of thrombopoietin (TPO)-expanded cord blood CD34(+) cells accelerates human platelet recovery in NOD/SCID mice. It is unknown which subpopulations of the TPO-expanded cells mediate accelerated platelet recovery and bone marrow (BM) engraftment. In this study, the contribution of these subpopulations to human platelet appearance in the blood and BM engraftment was studied in NOD/SCID mice. Following transplantation of CD34(-) /CD61(-)/lineage(-) cells (Lin(-)), human platelets were detected in the blood of recipient mice from day 4. Both time to platelet recovery and blood platelet counts at 6 weeks after transplantation showed Lin(-) dose dependence. The Lin(-) population was virtually negative for lineage marker expression and lacked CD42b expression but was heterogeneous with regard to CD36 and CD38 expression, reflecting a population in transit but not fully committed toward the megakaryocyte (MK) lineage. Although no definitive phenotype could be established of the cells generating prompt platelet production and cells generating platelets 6 weeks after transplantation, this relatively heterogeneous Lin(-) population is prerequisite to accelerate platelet recovery in vivo. The interval to platelet recovery after transplantation of the CD34(+) cells remaining after expansion (rCD34(+)) was similar to mice transplanted with nonexpanded CD34(+) cells, although the total platelet counts and the engraftment levels in the BM were lower. Cobblestone area-forming cell colony-forming cells resided mostly in the rCD34(+) population. The pro-MK CD61(+) cells did not contribute to human platelet recovery or engraftment in the BM. Our study shows that not all expanded cells appear critical for transplantation. These data support that functional characterization of the expanded cell populations is warranted to make future expansion protocols suitable for clinical application.
Collapse
Affiliation(s)
- Laurus F Schipper
- Sanquin Blood Supply Foundation, Division of Research, Department of Transfusion Medicine, Leiden, The Netherlands
| | | | | | | |
Collapse
|
7
|
van den Berk LCJ, Jansen BJH, Siebers-Vermeulen KGC, Netea MG, Latuhihin T, Bergevoet S, Raymakers RA, Kögler G, Figdor CC, Adema GJ, Torensma R. Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med 2011; 13:3415-26. [PMID: 20196781 PMCID: PMC4516497 DOI: 10.1111/j.1582-4934.2009.00653.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Recently, the antagonizing effect on the differentiation of mesenchymal stem cells (MSCs) by toll-like receptor (TLR) ligands, was described. Our study shows that on more primitive cord blood derived MSCs, the expression of TLRs and ligand-induced triggering differs from that of bone marrow derived MSCs. At the RNA level, cord blood MSCs (unrestricted somatic stem cells; USSCs) express low levels of TLR1,3,5,9 and high levels of TLR4 and TLR6. At the protein level expression of TLR5 and very low expression of TLR4 was observed. NF-κB translocation studies revealed that both TLR4 and TLR5 are functional, although signalling kinetics induced by the individual ligands differed. Stimulation of USSCs with either lipopolysaccharide (LPS) or flagellin resulted in a marked increase of interleukin (IL)-6 and/or IL-8 production although levels differed significantly between both stimuli. Interestingly, tumour necrosis factor (TNF)-α was undetectable after TLR stimulation, which appeared to be due to an inactivated TNF-α promoter in USSCs. Moreover, osteoblastic differentiation was enhanced after triggering USSCs with LPS and flagellin. In summary, TLR4 and 5 signalling in USSCs is slow and results in the up-regulation of a restricted number of pro-inflammatory cytokines and enhanced osteoblastic differentiation. Apparently, the outcome of TLR signalling depends on the cell type that expresses them.
Collapse
Affiliation(s)
- Lieke C J van den Berk
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Geert Grooteplein, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Umbilical cord blood transplantation is becoming an acceptable alternative source of hematopoietic stem cells for patients with malignant diseases. Cord blood differs from bone marrow and peripheral blood progenitors in its immune tolerance and kinetics of engraftment. In this article, we will review the biology of cord blood stem cells and clinical studies of cord blood transplants in pediatric and adult populations. We will also discuss potential uses of cord blood stem cells in regenerative medicine and novel methods for ex vivo expansion of hematopoietic stem cells. As we learn more about cord blood transplants, there is the potential to overcome the limitations of cord blood transplants so that they can become more widely available.
Collapse
Affiliation(s)
- Phuong L Doan
- Division of Cellular Therapy, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
9
|
Jeltsch KS, Radke TF, Laufs S, Giordano FA, Allgayer H, Wenz F, Zeller WJ, Kögler G, Fruehauf S, Maier P. Unrestricted somatic stem cells: interaction with CD34+ cells in vitro and in vivo, expression of homing genes and exclusion of tumorigenic potential. Cytotherapy 2011; 13:357-65. [DOI: 10.3109/14653249.2010.523076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Cord blood transplantation and stem cell regenerative potential. Exp Hematol 2011; 39:393-412. [PMID: 21238533 DOI: 10.1016/j.exphem.2011.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 01/06/2011] [Accepted: 01/08/2011] [Indexed: 02/06/2023]
Abstract
The past 20 years of experience with umbilical cord blood transplantation have demonstrated that cord blood is effective in the treatment of a spectrum of diseases, including hematological malignancies, bone marrow failure, hemoglobinopathies, and inborn errors of metabolism. Cord blood can be obtained with ease and then safely cryopreserved for either public or private use without loss of viability. As compared to other unrelated donor cell sources, cord blood transplantation allows for greater human leukocyte antigen disparity without a corresponding increase in graft-vs.-host disease. Moreover, cord blood has a lower risk of transmitting infections by latent viruses and is less likely to carry somatic mutations than other adult cells. Recently, multiple populations of stem cells with primitive stem cell properties have been identified from cord blood. Meanwhile, there is an increasing interest in applying cord blood mononuclear cells or enriched stem cell populations to regenerative therapies. Accumulating evidence has suggested functional improvements after cord blood transplantation in various animal models for treatments of cardiac infarction, diabetes, neurological diseases, etc. In this review, we will summarize the most recent updates on clinical applications of cord blood transplantation and the promises and limitations of cell-based therapies for tissue repair and regeneration.
Collapse
|
11
|
Bieback K, Brinkmann I. Mesenchymal stromal cells from human perinatal tissues: From biology to cell therapy. World J Stem Cells 2010; 2:81-92. [PMID: 21607124 PMCID: PMC3097927 DOI: 10.4252/wjsc.v2.i4.81] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 08/11/2010] [Accepted: 08/16/2010] [Indexed: 02/06/2023] Open
Abstract
Cell-based regenerative medicine is of growing interest in biomedical research. The role of stem cells in this context is under intense scrutiny and may help to define principles of organ regeneration and develop innovative therapeutics for organ failure. Utilizing stem and progenitor cells for organ replacement has been conducted for many years when performing hematopoietic stem cell transplantation. Since the first successful transplantation of umbilical cord blood to treat hematological malignancies, non-hematopoietic stem and progenitor cell populations have recently been identified within umbilical cord blood and other perinatal and fetal tissues. A cell population entitled mesenchymal stromal cells (MSCs) emerged as one of the most intensely studied as it subsumes a variety of capacities: MSCs can differentiate into various subtypes of the mesodermal lineage, they secrete a large array of trophic factors suitable of recruiting endogenous repair processes and they are immunomodulatory.Focusing on perinatal tissues to isolate MSCs, we will discuss some of the challenges associated with these cell types concentrating on concepts of isolation and expansion, the comparison with cells derived from other tissue sources, regarding phenotype and differentiation capacity and finally their therapeutic potential.
Collapse
Affiliation(s)
- Karen Bieback
- Karen Bieback, Irena Brinkmann, Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, DRK-Blutspendedienst Baden-Württemberg - Hessen gGmbH, Ludolf-Krehl-Str. 13-17, D-68167 Mannheim, Germany
| | | |
Collapse
|
12
|
Aktas M, Buchheiser A, Houben A, Reimann V, Radke T, Jeltsch K, Maier P, Zeller WJ, Kogler G. Good manufacturing practice-grade production of unrestricted somatic stem cell from fresh cord blood. Cytotherapy 2010; 12:338-48. [PMID: 20370349 DOI: 10.3109/14653241003695034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND AIMS The discovery of unrestricted somatic stem cells (USSC), a non-hematopoietic stem cell population, brought cord blood (CB) to the attention of regenerative medicine for defining more protocols for non-hematopoietic indications. We demonstrate that a reliable and reproducible method for good manufacturing practice (GMP)-conforming generation of USSC is possible that fulfils safety requirements as well as criteria for clinical applications, such as adherence of strict regulations on cell isolation and expansion. METHODS In order to maintain GMP conformity, the automated cell processing system Sepax (Biosafe) was implemented for mononucleated cell (MNC) separation from fresh CB. After USSC generation, clinical-scale expansion was achieved by multi-layered CellSTACKs (Costar/Corning). Infectious disease markers, pyrogen and endotoxin levels, immunophenotype, potency, genetic stability and sterility of the cell product were evaluated. RESULTS The MNC isolation and cell cultivation methods used led to safe and reproducible GMP-conforming USSC production while maintaining somatic stem cell character. CONCLUSIONS Together with implemented in-process controls guaranteeing contamination-free products with adult stem cell character, USSC produced as suggested here may serve as a universal allogeneic stem cell source for future cell treatment and clinical settings.
Collapse
Affiliation(s)
- Murat Aktas
- Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liedtke S, Buchheiser A, Bosch J, Bosse F, Kruse F, Zhao X, Santourlidis S, Kögler G. The HOX Code as a “biological fingerprint” to distinguish functionally distinct stem cell populations derived from cord blood. Stem Cell Res 2010; 5:40-50. [DOI: 10.1016/j.scr.2010.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 03/03/2010] [Accepted: 03/18/2010] [Indexed: 12/20/2022] Open
|
14
|
van den Berk LCJ, Roelofs H, Huijs T, Siebers-Vermeulen KGC, Raymakers RA, Kögler G, Figdor CG, Torensma R. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells. Immunology 2010; 128:564-72. [PMID: 19930046 DOI: 10.1111/j.1365-2567.2009.03142.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co-cultured with USSC, as evidenced by the up-regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin-12 production. So, USSCs mature iDCs, thereby redirecting the antigen-uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes.
Collapse
Affiliation(s)
- Lieke C J van den Berk
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Berk LCVD, Jansen BJ, Siebers-Vermeulen KG, Netea MG, Latuhihin T, Bergevoet S, Raymakers RA, Kögler G, Figdor CC, Adema GJ, Torensma R. Toll-like receptor triggering in cord blood mesenchymal stem cells. J Cell Mol Med 2010. [DOI: 10.1111/j.1582-4934.2008.00653.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Unrestricted somatic stem cells from human umbilical cord blood grow in serum-free medium as spheres. BMC Biotechnol 2009; 9:101. [PMID: 20003538 PMCID: PMC2805630 DOI: 10.1186/1472-6750-9-101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 12/15/2009] [Indexed: 12/03/2022] Open
Abstract
Background Human umbilical cord blood-derived unrestricted somatic stem cells (USSCs), which are capable of multilineage differentiation, are currently under investigation for a number of therapeutic applications. A major obstacle to their clinical use is the fact that in vitro expansion is still dependent upon fetal calf serum, which could be a source of pathogens. In this study, we investigate the capacity of three different stem cell culture media to support USSCs in serum-free conditions; HEScGRO™, PSM and USSC growth mediumACF. Our findings demonstrate that USSCs do not grow in HEScGRO™ or PSM, but we were able to isolate, proliferate and maintain multipotency of three USSC lines in USSC growth mediumACF. Results For the first one to three passages, cells grown in USSC growth mediumACF proliferate and maintain their morphology, but with continued passaging the cells form spherical cell aggregates. Upon dissociation of spheres, cells continue to grow in suspension and form new spheres. Dissociated cells can also revert to monolayer growth when cultured on extracellular matrix support (fibronectin or gelatin), or in medium containing fetal calf serum. Analysis of markers associated with pluripotency (Oct4 and Sox2) and differentiation (FoxA2, Brachyury, Goosecoid, Nestin, Pax6, Gata6 and Cytokeratin 8) confirms that cells in the spheres maintain their gene expression profile. The cells in the spheres also retain the ability to differentiate in vitro to form cells representative of the three germline layers after five passages. Conclusions These data suggest that USSC growth mediumACF maintains USSCs in an undifferentiated state and supports growth in suspension. This is the first demonstration that USSCs can grow in a serum- and animal component-free medium and that USSCs can form spheres.
Collapse
|
17
|
Kögler G, Critser P, Trapp T, Yoder M. Future of cord blood for non-oncology uses. Bone Marrow Transplant 2009; 44:683-97. [PMID: 19802027 DOI: 10.1038/bmt.2009.287] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
For the last 5 years cord blood (CB) has been under intense experimental investigation in in vitro differentiation models and in preclinical animal models ranging from bone to muscle regeneration, cardiovascular diseases including myocardial and peripheral arterial disease, stroke and Parkinson's disease. On the basis of its biological advantages, CB can be an ideal source for tissue regeneration. However, in the hype of the so-called 'plasticity', many cell types have been characterized either on cell surface Ag expression alone or by RNA expression only, and without detailed characterization of genetic pathways; frequently, cells are defined without analysis of cellular function in vitro and in vivo, and the definition of the lineage of origin and cells have not been defined in preclinical studies. Here, we explore not only the most consistent data with regard to differentiation of CB cells in vitro and in vivo, but also show technical limitations, such as why in contrast to cell populations isolated from fresh CB, cryopreserved CB is not the ideal source for tissue regeneration. By taking advantage of numerous CB units discarded due to lack of sufficient hematopoietic cells for clinical transplantation, new concepts to produce off-the-shelf products are presented as well.
Collapse
Affiliation(s)
- G Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, University of Duesseldorf Medical School, Duesseldorf, Germany.
| | | | | | | |
Collapse
|
18
|
Briquet A, Dubois S, Bekaert S, Dolhet M, Beguin Y, Gothot A. Prolonged ex vivo culture of human bone marrow mesenchymal stem cells influences their supportive activity toward NOD/SCID-repopulating cells and committed progenitor cells of B lymphoid and myeloid lineages. Haematologica 2009; 95:47-56. [PMID: 19713224 DOI: 10.3324/haematol.2009.008524] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Bone marrow mesenchymal stem cells support proliferation and differentiation of hematopoietic progenitor cells in vitro. Since these cells constitute a rare subset of bone marrow cells, mesenchymal stem cell preparations for clinical purposes require a preparative step of ex vivo multiplication. The aim of our study was to analyze the influence of culture duration on mesenchymal stem cell supportive activity. DESIGN AND METHODS Mesenchymal stem cells were expanded for up to ten passages. These cells and CD34+ cells were seeded in cytokine-free co-cultures after which the phenotype, clonogenic capacity and in vivo repopulating activity of harvested hematopoietic cells were assessed. RESULTS Early passage mesenchymal stem cells supported hematopoietic progenitor cell expansion and differentiation toward both B lymphoid and myeloid lineages. Late passage mesenchymal stem cells did not support hematopoietic progenitor cell and myeloid cell outgrowth but maintained B-cell supportive ability. In vitro maintenance of NOD/SCID mouse repopulating cells cultured for 1 week in contact with mesenchymal stem cells was effective until the fourth passage of the mesenchymal cells and declined thereafter. The levels of engraftment of CD34(+) cells in NOD/SCID mice was higher when these cells were co-injected with early passage mesenchymal stem cells; however mesenchymal cells expanded beyond nine passages were ineffective in promoting CD34(+) cell engraftment. Non-contact cultures indicated that mesenchymal stem cell supportive activity involved diffusible factors. Among these, interleukins 6 and 8 contributed to the supportive activity of early passage mesenchymal stem cells but not to those of late passage cells. The phenotype, as well as fat, bone and cartilage differentiation capacity, of mesenchymal stem cells did not change during their culture. Conclusions Extended culture of mesenchymal stem cells alters the ability of these cells to support hematopoietic progenitor cells without causing concomitant changes in their phenotype or differentiation capacity.
Collapse
|
19
|
Jäger M, Zilkens C, Bittersohl B, Krauspe R. Cord blood--an alternative source for bone regeneration. Stem Cell Rev Rep 2009; 5:266-77. [PMID: 19652969 DOI: 10.1007/s12015-009-9083-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Accepted: 07/20/2009] [Indexed: 12/12/2022]
Abstract
Bone regeneration is one of the best investigated pathways in mesenchymal stromal cell (MSC) biology. Therefore strong efforts have been made to introduce tissue engineering and cell therapeutics as an alternative treatment option for patients with bone defects. This review of the literature gives an overview of MSC biology aiming for clinical application including advantages but also specific challenges and problems which are associated with cord blood derived stromal cell (CB-MSC) as a source for bone regeneration. The use of postnatal CB-MSC is ethically uncomplicated and requires no invasive harvesting procedure. Moreover, most data document a high osteogenic potential of CB-MCS and also low immunoreactivity compared with other MSC types. The expression profile of CB-MSC during osteogenic differentiation shows similarities to that of other MSC types. Within the umbilical cord different MSC types have been characterized which are potent to differentiate into osteoblasts. In contrast to a large number of in vitro investigations there are only few in vivo studies available so far.
Collapse
Affiliation(s)
- Marcus Jäger
- Department of Orthopaedics, Heinrich-Heine University Medical School, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | | | | | | |
Collapse
|
20
|
Zaibak F, Kozlovski J, Vadolas J, Sarsero JP, Williamson R, Howden SE. Integration of functional bacterial artificial chromosomes into human cord blood-derived multipotent stem cells. Gene Ther 2009; 16:404-14. [PMID: 19177134 DOI: 10.1038/gt.2008.187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 01/14/2023]
Abstract
Stem cells from a patient with a genetic disease could be used for cell therapy if it were possible to insert a functional copy of the defective gene. In this study, we investigate the transfection and subsequent integration of large genomic fragments into human cord blood-derived multipotent stem cells. We describe for the first time the creation of clonal stem cells carrying a human bacterial artificial chromosome (BAC) containing the Friedreich ataxia locus with an enhanced green fluorescent protein (EGFP) reporter gene fused to exon 5a of the frataxin (FXN) gene. Integration of the BAC into the host cell genome was confirmed by PCR, Southern blot and fluorescent in situ hybridization analysis. Reverse transcription-PCR and flow cytometry confirmed expression of FXN-EGFP. Correct mitochondrial localization of the protein was confirmed using fluorescent microscopy. The transfected stem cells also retained the ability to differentiate into cells from all three germline layers, as demonstrated by the capacity to form neuron-specific beta-tubulin-expressing cells, Alizarin Red S-positive bone-like cells, and epithelial-like cells expressing surfactant protein C. This is the first study to demonstrate that cord blood-derived multipotent stem cells may be useful targets for gene therapy applications using large genomic loci.
Collapse
Affiliation(s)
- F Zaibak
- Department of Paediatrics, The University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Winter M, Wang XN, Däubener W, Eyking A, Rae M, Dickinson AM, Wernet P, Kögler G, Sorg RV. Suppression of cellular immunity by cord blood-derived unrestricted somatic stem cells is cytokine-dependent. J Cell Mol Med 2008; 13:2465-2475. [PMID: 19175687 DOI: 10.1111/j.1582-4934.2008.00566.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Unrestricted somatic stem cells (USSC) have the potential to differentiate into tissues derived from all three germinal layers and therefore hold promise for use in regenerative therapies. Furthermore, they have haematopoietic stromal activity, a characteristic that may be exploited to enhance haematopoietic engraftment. Both applications may require USSC to be used in an allogeneic, HLA-mismatched setting. We have therefore studied their in vitro interaction with cellular immunity. USSC showed no allostimulatory activity and caused only minimal inhibition of allogeneic T-cell responses. However, following pre-stimulation with IFNgamma and TNFalpha, they inhibited T-cell proliferation in an indoleamine 2, 3-dioxygenase-dependent manner and suppressed graft-versus-host type reactions. In addition, USSC inhibited DC maturation and function. This inhibition was overridden by stronger DC maturation signals provided by IL-1beta, IL-6, PGE(2) and TNFalpha compared to TNFalpha alone. Pre-stimulation of USSC with IFNgamma and TNFalpha had a similar effect: Inhibition of DC maturation was no longer observed. Thus, USSC are conditionally immunosuppressive, and IFNgamma and TNFalpha constitute a switch, which regulates their immunological properties. They either suppress T-cell responses in the presence of both cytokines or in their absence block DC differentiation and function. These activities may contribute to fine-tuning the immune system especially at sites of tissue damage in order to ensure appropriate differentiation of USSC and subsequent tissue repair. Therapeutically, they may help to protect USSC and possibly their progeny from immune rejection.
Collapse
Affiliation(s)
- Meike Winter
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Xiao-Nong Wang
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Walter Däubener
- Institute for Medical Microbiology and Hospital Hygiene, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Annette Eyking
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Michelle Rae
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anne M Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Wernet
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Gesine Kögler
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Medical Center, Düsseldorf, Germany
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW To review the available clinical and biological advances of umbilical cord blood allogeneic stem cell transplantation in pediatric and adult patients. RECENT FINDINGS Recent large international studies suggested that allogeneic umbilical cord blood transplantation may potentially emerge as the frontline stem cell source for pediatric patients with hematopoietic malignancies because of its ability to confer superior overall and relapse-free survival compared with matched marrow stem cells. In adults, umbilical cord blood transplantation, double umbilical cord blood units and nonmyeloablative engraftment strategies have attracted further attention in clinical practice with the advantages of possible stronger graft-versus-leukemia effect and expanding transplantation indications. Additional advances in the basic biology of umbilical cord blood also appear very promising in development of enhanced engraftment approaches for limiting hematopoietic stem cell numbers or expansion of repopulating cells. SUMMARY Umbilical cord blood is a valuable alternative source of hematopoietic stem cells for patients that require allogeneic transplantation in the absence of readily available human leukocyte antigen matched marrow or blood hematopoietic stem cells. The current advances in clinical and biological research will further expand its application in pediatric and adult hematopoietic stem cells transplantation for treating hematologic disorders.
Collapse
|
23
|
Guillot PV, Cook HT, Pusey CD, Fisk NM, Harten S, Moss J, Shore I, Bou-Gharios G. Transplantation of human fetal mesenchymal stem cells improves glomerulopathy in a collagen type I alpha 2-deficient mouse. J Pathol 2008; 214:627-36. [PMID: 18266309 DOI: 10.1002/path.2325] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fetal mesenchymal stem cell (fetal MSC) therapy has potential to treat genetic diseases with early onset, including those affecting the kidney and urinary tract. A collagen type I alpha 2-deficient mouse has a deletion in the alpha2 chain of the procollagen type I gene, resulting in the synthesis of abnormal alpha1(I)(3) homotrimers, which replace normal alpha 1(I)2 alpha 2(I)1 heterotrimers and a glomerulopathy. We first confirmed that col1 alpha 2-deficient homozygous mice show abnormal collagen deposition in the glomeruli, which increases in frequency and severity with postnatal age. Intrauterine transplantation of human MSCs from first trimester fetal blood led postnatally to a reduction of abnormal homotrimeric collagen type I deposition in the glomeruli of 4-12 week-old col1 alpha 2-deficient mice. Using bioluminescence imaging, in situ hybridization and immunohistochemistry in transplanted col1 alpha 2-deficient mice, we showed that the damaged kidneys preferentially recruited donor cells in glomeruli, around mesangial cells. Real-time RT-PCR demonstrated that this effect was seen at an engraftment level of 1% of total cells in the kidney, albeit higher in glomeruli. We conclude that intrauterine transplantation of human fetal MSCs improves renal glomerulopathy in a collagen type I-deficient mouse model. These data support the feasibility of prenatal treatment for hereditary renal diseases.
Collapse
Affiliation(s)
- P V Guillot
- Experimental Fetal Medicine Group, Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Campus, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 2008; 111:1717-25. [DOI: 10.1182/blood-2007-08-105809] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Abstract
The inherited skeletal dysplasia osteogenesis imperfecta (OI) results in multiple fractures and is currently treated empirically. We transplanted human first-trimester fetal blood mesenchymal stem cells (MSCs) into homozygous oim mice in utero. This resulted in a two-thirds reduction in long bone fractures (P < .01), with fewer fractures per mouse (median 1, range 0-2 in mice that received transplants vs median 3, range 1-5 in mice that did not receive transplants by 12 weeks, P < .01). Nearly all mice that did not receive transplants had fractures (47 [97.9%] of 48), in contrast to 17 (58.6%) of 29 4- to 12-week-old mice that received transplants (P < .01). Transplantation was associated with increased bone strength (P < .01), thickness (P < .01), and length (P < .01), and normalization/reduction of growth plate height in 4- to 12-week-old oim was reduced in mice that underwent transplantion (P < .001). More donor cells were found in bone tissues compared with other organs (P < .001), with cells clustered in areas of active bone formation and remodeling, and at sites of fracture healing. Donor cells found in the bone expressed osteoblast lineage genes, and produced the extracellular bone structural protein osteopontin. Finally, MSC transplantation decreased bone hydroxyproline content. In conclusion, intrauterine transplantation of fetal MSCs markedly reduced fracture rates and skeletal abnormalities in a mouse model of the intermediate severity type III OI, suggesting a scientific basis for MSC treatment of affected human fetuses.
Collapse
|
25
|
Abstract
There is a growing need for effective animal models to carry out experimental studies on human hematopoietic and immune systems without putting individuals at risk. Progress in development of small animal models for the in vivo investigation of human hematopoiesis and immunity has seen three major breakthroughs over the last three decades. First, CB 17-Prkdc(scid) (abbreviated CB 17-scid) mice were discovered in 1983, and engraftment of these mice with human fetal tissues (SCID-Hu model) and peripheral blood mononuclear cells (Hu-PBL-SCID model) was reported in 1988. Second, NOD-scid mice were developed and their enhanced ability to engraft with human hematolymphoid tissues as compared with CB17-scid mice was reported in 1995. NOD-scid mice have been the "gold standard" for studies of human hematolymphoid engraftment in small animal models over the last 10 years. Third, immunodeficient mice bearing a targeted mutation in the IL-2 receptor common gamma chain (IL2rgamma(null)) were developed independently by four groups between 2002 and 2005, and a major increase in the engraftment and function of human hematolymphoid cells as compared with NOD-scid mice has been reported. These new strains of immunodeficient IL2rgamma(null) mice are now being used for studies in human hematopoiesis, innate and adaptive immunity, autoimmunity, infectious diseases, cancer biology, and regenerative medicine. In this chapter, we discuss the current state of development of these strains of mice, the remaining deficiencies, and how approaches used to increase the engraftment and function of human hematolymphoid cells in CB 17-scid mice and in previous models based on NOD-scid mice may enhance human hematolymphoid engraftment and function in NOD-scid IL2rgamma(null) mice.
Collapse
|