1
|
Hong SG, Yada RC, Choi K, Carpentier A, Liang TJ, Merling RK, Sweeney CL, Malech HL, Jung M, Corat MAF, AlJanahi AA, Lin Y, Liu H, Tunc I, Wang X, Palisoc M, Pittaluga S, Boehm M, Winkler T, Zou J, Dunbar CE. Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers. Mol Ther 2017; 25:44-53. [PMID: 28129126 DOI: 10.1016/j.ymthe.2016.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Nonhuman primate (NHP) induced pluripotent stem cells (iPSCs) offer the opportunity to investigate the safety, feasibility, and efficacy of proposed iPSC-derived cellular delivery in clinically relevant in vivo models. However, there is need for stable, robust, and safe labeling methods for NHP iPSCs and their differentiated lineages to study survival, proliferation, tissue integration, and biodistribution following transplantation. Here we investigate the utility of the adeno-associated virus integration site 1 (AAVS1) as a safe harbor for the addition of transgenes in our rhesus macaque iPSC (RhiPSC) model. A clinically relevant marker gene, human truncated CD19 (hΔCD19), or GFP was inserted into the AAVS1 site in RhiPSCs using the CRISPR/Cas9 system. Genetically modified RhiPSCs maintained normal karyotype and pluripotency, and these clones were able to further differentiate into all three germ layers in vitro and in vivo. In contrast to transgene delivery using randomly integrating viral vectors, AAVS1 targeting allowed stable transgene expression following differentiation. Off-target mutations were observed in some edited clones, highlighting the importance of careful characterization of these cells prior to downstream applications. Genetically marked RhiPSCs will be useful to further advance clinically relevant models for iPSC-based cell therapies.
Collapse
Affiliation(s)
- So Gun Hong
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA.
| | - Ravi Chandra Yada
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Kyujoo Choi
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Arnaud Carpentier
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - T Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Randall K Merling
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Colin L Sweeney
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Moonjung Jung
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Marcus A F Corat
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; Multidisciplinar Center for Biological Research, University of Campinas, Campinas, SP 13083-877, Brazil
| | - Aisha A AlJanahi
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA; Department of Chemistry and Molecular & Cellular Biology, Georgetown University, Washington, D.C. 20057, USA
| | - Yongshun Lin
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Huimin Liu
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Systems Biology Core, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Xujing Wang
- Systems Biology Core, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Maryknoll Palisoc
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Manfred Boehm
- Laboratory of Cardiovascular Regenerative Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Thomas Winkler
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| | - Jizhong Zou
- iPSC Core, Center for Molecular Medicine, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Thoma EC, Heckel T, Keller D, Giroud N, Leonard B, Christensen K, Roth A, Bertinetti-Lapatki C, Graf M, Patsch C. Establishment of a translational endothelial cell model using directed differentiation of induced pluripotent stem cells from Cynomolgus monkey. Sci Rep 2016; 6:35830. [PMID: 27779219 PMCID: PMC5078800 DOI: 10.1038/srep35830] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here, we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs, we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover, we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions, such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.
Collapse
Affiliation(s)
- Eva C Thoma
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Tobias Heckel
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - David Keller
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Nicolas Giroud
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Brian Leonard
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Klaus Christensen
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Adrian Roth
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Cristina Bertinetti-Lapatki
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Martin Graf
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Christoph Patsch
- Roche pRED (Pharmaceutical Research and Early Development), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
3
|
D'Souza SS, Maufort J, Kumar A, Zhang J, Smuga-Otto K, Thomson JA, Slukvin II. GSK3β Inhibition Promotes Efficient Myeloid and Lymphoid Hematopoiesis from Non-human Primate-Induced Pluripotent Stem Cells. Stem Cell Reports 2016; 6:243-56. [PMID: 26805448 PMCID: PMC4750098 DOI: 10.1016/j.stemcr.2015.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/18/2015] [Accepted: 12/20/2015] [Indexed: 01/01/2023] Open
Abstract
Advances in the scalable production of blood cells from induced pluripotent stem cells (iPSCs) open prospects for the clinical translation of de novo generated blood products, and evoke the need for preclinical evaluation of their efficacy, safety, and immunogenicity in large animal models. Due to substantial similarities with humans, the outcomes of cellular therapies in non-human primate (NHP) models can be readily extrapolated to a clinical setting. However, the use of this model is hampered by relatively low efficiency of blood generation and lack of lymphoid potential in NHP-iPSC differentiation cultures. Here, we generated transgene-free iPSCs from different NHP species and showed the efficient induction of mesoderm, myeloid, and lymphoid cells from these iPSCs using a GSK3β inhibitor. Overall, our studies enable scalable production of hematopoietic progenitors from NHP-iPSCs, and lay the foundation for preclinical testing of iPSC-based therapies for blood and immune system diseases in an NHP model. Generation of transgene-free iPSCs from various non-human primate (NHP) species GSK3β inhibition is essential for induction of mesoderm and blood from NHP-iPSCs Efficient generation of CD34+CD45+CD90+CD38−CD45RA− progenitors from NHP-iPSCs Efficient T and NK cell production from NHP-iPSCs
Collapse
Affiliation(s)
- Saritha S D'Souza
- National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA
| | - John Maufort
- National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA
| | - Akhilesh Kumar
- National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA
| | - Jiuchun Zhang
- Morgridge Institute for Research, 309 North Orchard Street, Madison, WI 53715, USA
| | - Kimberley Smuga-Otto
- Morgridge Institute for Research, 309 North Orchard Street, Madison, WI 53715, USA
| | - James A Thomson
- Morgridge Institute for Research, 309 North Orchard Street, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53707, USA; Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Igor I Slukvin
- National Primate Research Center, University of Wisconsin, 1220 Capitol Court, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53707, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin, 1685 Highland Avenue, Madison WI 53705, USA.
| |
Collapse
|
4
|
Yadav NK, Shukla P, Omer A, Singh P, Singh RK. Alternative methods in toxicology: CFU assays application, limitation and future prospective. Drug Chem Toxicol 2015; 39:1-12. [PMID: 25678196 DOI: 10.3109/01480545.2014.994217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Blood is a fluid connective tissue which plays a vital role for normal body function. It consist different type of blood cells which is continuously reproduce inside the bone marrow from hematopoietic system. Xenobiotics could be specifically toxic to the hematopoietic system and they can cause hematological disorders by disturbing the normal functions. In vitro hematopoietic colony-forming cell assays play a crucial role to evaluate potential toxic effects of new xenobiotics and also helpful in bridging the gap between preclinical toxicology studies in animal models and clinical investigations. Use of these assays in conjunction with, high-throughput screening reduces the cost and time associated with these assays. This article provides a critical view over in vitro hematopoietic colony-forming cell assays in assessment of hematotoxicity.
Collapse
Affiliation(s)
- Navneet Kumar Yadav
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and
| | - Pooja Shukla
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and.,b Academy of Scientific and Innovative Research , New Delhi , India
| | - Ankur Omer
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and.,b Academy of Scientific and Innovative Research , New Delhi , India
| | - Poonam Singh
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and.,b Academy of Scientific and Innovative Research , New Delhi , India
| | - R K Singh
- a Hematological Facility, Division of Toxicology , CSIR-Central Drug Research Institute , Lucknow , Uttar Pradesh , India and.,b Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
5
|
Byrnes C, Terry Lee Y, Donahue RE, Miller JL. Identification of a cross-reacting, monoclonal anti-human CD233 antibody for identification and sorting of rhesus macaque erythrocytes. Cytometry A 2011; 81:165-8. [PMID: 22170815 DOI: 10.1002/cyto.a.22005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 11/07/2022]
Abstract
Erythroid biology research involving rhesus macaques has been applied to several topics including malaria, hemoglobinopathy and gene therapy research. However, analyses of the rhesus red blood cells are limited by the inability to identify and sort those cells in research blood samples using flow cytometry. Here it is reported that the BRIC 6 hybridoma clone raised to the human erythroid surface molecule (referred to as CD233, Band 3, AE1, or SLC4A1) produces cross-reactive and erythroid-specific antibodies for flow cytometric detection and sorting of rhesus macaque erythrocytes.
Collapse
Affiliation(s)
- Colleen Byrnes
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
6
|
Simerly C, McFarland D, Castro C, Lin CC, Redinger C, Jacoby E, Mich-Basso J, Orwig K, Mills P, Ahrens E, Navara C, Schatten G. Interspecies chimera between primate embryonic stem cells and mouse embryos: monkey ESCs engraft into mouse embryos, but not post-implantation fetuses. Stem Cell Res 2011; 7:28-40. [PMID: 21543277 DOI: 10.1016/j.scr.2011.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 10/18/2022] Open
Abstract
Unequivocal evidence for pluripotency in which embryonic stem cells contribute to chimeric offspring has yet to be demonstrated in human or nonhuman primates (NHPs). Here, rhesus and baboons ESCs were investigated in interspecific mouse chimera generated by aggregation or blastocyst injection. Aggregation chimera produced mouse blastocysts with GFP-nhpESCs at the inner cell mass (ICM), and embryo transfers (ETs) generated dimly-fluorescencing abnormal fetuses. Direct injection of GFP-nhpESCs into blastocysts produced normal non-GFP-fluorescencing fetuses. Injected chimera showed >70% loss of GFP-nhpESCs after 21 h culture. Outgrowths of all chimeric blastocysts established distinct but separate mouse- and NHP-ESC colonies. Extensive endogenous autofluorescence compromised anti-GFP detection and PCR analysis did not detect nhpESCs in fetuses. NhpESCs localize to the ICM in chimera and generate pregnancies. Because primate ESCs do not engraft post-implantation, and also because endogenous autofluorescence results in misleading positive signals, interspecific chimera assays for pluripotency with primate stem cells is unreliable with the currently available ESCs. Testing primate ESCs reprogrammed into even more naïve states in these inter-specific chimera assays will be an important future endeavor.
Collapse
Affiliation(s)
- Calvin Simerly
- Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh Development Center, Magee-Womens Research Institute and Foundation, 204 Craft Avenue, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Simerly CR, Castro CA, Jacoby E, Grund K, Turpin J, McFarland D, Champagne J, Jimenez JB, Frost P, Bauer C, Hewitson L, Schatten G. Assisted Reproductive Technologies (ART) with baboons generate live offspring: a nonhuman primate model for ART and reproductive sciences. Reprod Sci 2010; 17:917-30. [PMID: 20631291 DOI: 10.1177/1933719110374114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human reproduction has benefited significantly by investigating nonhuman primate (NHP) models, especially rhesus macaques. To expand the Old World monkey species available for human reproductive studies, we present protocols in baboons, our closest Old World primate relatives, for assisted reproductive technologies (ART) leading to live born offspring. Baboons complement rhesus by confirming or modifying observations generated in humans often obtained by the study of clinically discarded specimens donated by anonymous infertility patient couples. Here, baboon ART protocols, including oocyte collection, in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), preimplantation development to blastocyst stage, and embryo transfer techniques are described. With baboon ART methodologies in place, motility during baboon fertilization was investigated by time-lapse video microscopy (TLVM). The first ART baboons produced by ICSI, a pair of male twins, were delivered naturally at 165 days postgestation. Genetic testing of these twins confirmed their ART parental origins and demonstrated that they are unrelated fraternal twins not identicals. These results have implications for ART outcomes, embryonic stem cell (ESC) derivation, and reproductive sciences.
Collapse
Affiliation(s)
- Calvin R Simerly
- Division of Developmental and Regenerative Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, Pittsburgh Development Center; Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lepus CM, Gibson TF, Gerber SA, Kawikova I, Szczepanik M, Hossain J, Ablamunits V, Kirkiles-Smith N, Herold KC, Donis RO, Bothwell AL, Pober JS, Harding MJ. Comparison of human fetal liver, umbilical cord blood, and adult blood hematopoietic stem cell engraftment in NOD-scid/gammac-/-, Balb/c-Rag1-/-gammac-/-, and C.B-17-scid/bg immunodeficient mice. Hum Immunol 2009; 70:790-802. [PMID: 19524633 DOI: 10.1016/j.humimm.2009.06.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 05/30/2009] [Accepted: 06/03/2009] [Indexed: 10/20/2022]
Abstract
Immunodeficient mice bearing components of a human immune system present a novel approach for studying human immune responses. We investigated the number, phenotype, developmental kinetics, and function of developing human immune cells following transfer of CD34(+) hematopoietic stem cell (HSC) preparations originating from second trimester human fetal liver (HFL), umbilical cord blood (UCB), or granulocyte colony-stimulating factor-mobilized adult blood (G-CSF-AB) delivered via intrahepatic injection into sublethally irradiated neonatal NOD-scid/gammac(-/-), Balb/c-Rag1(-/-)gammac(-/-), and C.B-17-scid/bg mice. HFL and UCB HSC provided the greatest number and breadth of developing cells. NOD-scid/gammac(-/-) and Balb/c-Rag1(-/-)gammac(-/-) harbored human B and dendritic cells as well as human platelets in peripheral blood, whereas NOD-scid/gammac(-/-) mice harbored higher levels of human T cells. NOD-scid/gammac(-/-) mice engrafted with HFL CD34(+) HSC demonstrated human immunological competence evidenced by white pulp expansion and increases in total human immunoglobulin following immunization with T-dependent antigens and delayed-type hypersensitivity-infiltrating leukocytes in response to antigenic challenge. In conclusion, we describe an encouraging base system for studying human hematopoietic lineage development and function utilizing human HFL or UCB HSC-engrafted NOD-scid/gammac(-/-) mice that is well suited for future studies toward the development of a fully competent humanized mouse model.
Collapse
Affiliation(s)
- Christin M Lepus
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06509, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Establishment and characterization of baboon embryonic stem cell lines: an Old World Primate model for regeneration and transplantation research. Stem Cell Res 2009; 2:178-87. [PMID: 19393591 DOI: 10.1016/j.scr.2009.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 01/23/2009] [Accepted: 02/06/2009] [Indexed: 11/22/2022] Open
Abstract
Here we have developed protocols using the baboon as a complementary alternative Old World Primate to rhesus and other macaques which have severe limitations in their availability. Baboons are not limited as research resources, they are evolutionarily closer to humans, and the multiple generations of pedigreed colonies which display complex human disease phenotypes all support their further optimization as an invaluable primate model. Since neither baboon-assisted reproductive technologies nor baboon embryonic stem cells (ESCs) have been reported, here we describe the first derivations and characterization of baboon ESC lines from IVF-generated blastocysts. Two ESCs lines (BabESC-4 and BabESC-15) display ESC morphology, express pluripotency markers (Oct-4, hTert, Nanog, Sox-2, Rex-1, TRA1-60, TRA1-81), and maintain stable euploid female karyotypes with parentage confirmed independently. They have been grown continuously for >430 and 290 days, respectively. Teratomas from both lines have all three germ layers. Availabilities of these BabESCs represent another important resource for stem cell biologists.
Collapse
|
10
|
Chang KH, Nelson AM, Fields PA, Hesson JL, Ulyanova T, Cao H, Nakamoto B, Ware CB, Papayannopoulou T. Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp Cell Res 2008; 314:2930-40. [PMID: 18692044 DOI: 10.1016/j.yexcr.2008.07.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 01/02/2023]
Abstract
Despite a growing body of literature concerning the hematopoietic differentiation of human embryonic stem cells (hESCs), the full hematopoietic potential of the majority of existing hESC lines remains unknown. In this study, the hematopoietic response of five NIH-approved hESC lines (H1, hSF6, BG01, BG02, and BG03) was compared. Our data show that despite expressing similar hESC markers under self-renewing conditions and initiating mesodermal differentiation under spontaneous differentiation conditions, marked differences in subsequent hematopoietic differentiation potential among these lines existed. A high degree of hematopoietic differentiation was attained only by H1 and BG02, whereas this process appeared to be abortive in nature for hSF6, BG01, and BG03. This difference in hematopoietic differentiation predisposition was readily apparent during spontaneous differentiation, and further augmented under hematopoietic-inducing conditions. This predisposition appeared to be intrinsic to the specific hESC line and independent of passage number or gender karyotype. Interestingly, H1 and BG02 displayed remarkable similarities in their kinetics of hematopoietic marker expression, hematopoietic colony formation, erythroid differentiation, and globin expression, suggesting that a similar, predetermined differentiation sequence is followed. The identification of intrinsic and extrinsic factors governing the hematopoietic differentiation potential of hESCs will be of great importance for the putative clinical utility of hESC lines.
Collapse
Affiliation(s)
- Kai-Hsin Chang
- Department of Medicine, Hematology Division, University of Washington, 1705 NE Pacific Street, Box 357710, Seattle, WA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Joannides A, Chandran S. Human embryonic stem cells: An experimental and therapeutic resource for neurological disease. J Neurol Sci 2008; 265:84-8. [DOI: 10.1016/j.jns.2007.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 08/30/2007] [Accepted: 09/04/2007] [Indexed: 12/13/2022]
|