1
|
Mausner-Fainberg K, Benhamou M, Golan M, Kimelman NB, Danon U, Marom E, Karni A. Specific Blockade of Bone Morphogenetic Protein-2/4 Induces Oligodendrogenesis and Remyelination in Demyelinating Disorders. Neurotherapeutics 2021; 18:1798-1814. [PMID: 34159538 PMCID: PMC8608985 DOI: 10.1007/s13311-021-01068-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) are present in demyelinated lesions of multiple sclerosis (MS) patients. However, their differentiation into functional oligodendrocytes is insufficient, and most lesions evolve into nonfunctional astroglial scars. Blockade of bone morphogenetic protein (BMP) signaling induces differentiation of OPCs into myelin-producing oligodendrocytes. We studied the effect of specific blockade of BMP-2/4 signaling, by intravenous (IV) treatment with anti-BMP-2/4 neutralizing mAb in both the inflammatory model of relapsing experimental autoimmune encephalomyelitis (R-EAE) and the cuprizone-toxic model of demyelination in mice. Administration of anti-BMP-2/4 to R-EAE-induced mice, on day 9 post-immunization (p.i.), ameliorated R-EAE signs, diminished the expression of phospho-SMAD1/5/8, primarily within the astrocytic lineage, increased the numbers of de novo immature and mature oligodendrocytes, and reduced the numbers of newly generated astrocytes within the spinal cord as early as day 18 p.i. This effect was accompanied with elevated remyelination, manifested by increased density of remyelinating axons (0.8 < g-ratios < 1), and reduced fully demyelinated and demyelinating axons, in the anti-BMP-2/4-treated R-EAE mice, studied by electron microscopy. No significant immunosuppressive effect was observed in the CNS and in the periphery, during the peak of the first attack, or at the end of the experiment. Moreover, IV treatment with anti-BMP-2/4 mAb in the cuprizone-challenged mice augmented the numbers of mature oligodendrocytes and remyelination in the corpus callosum during the recovery phase of the disease. Based on our findings, the specific blockade of BMP-2/4 has a therapeutic potential in demyelinating disorders such as MS, by inducing early oligodendrogenesis-mediated remyelination in the affected tissue.
Collapse
Affiliation(s)
- Karin Mausner-Fainberg
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | - Moshe Benhamou
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
- Sackler's Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Golan
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel
| | | | - Uri Danon
- Stem Cell Medicine Ltd, Jerusalem, Israel
| | - Ehud Marom
- Stem Cell Medicine Ltd, Jerusalem, Israel
| | - Arnon Karni
- Neuroimmunology Laboratory, Neuroimmunology and Multiple Sclerosis Unit, Neurology Division, Tel Aviv Sourasky Medical Center, 6 Weizmann Street, 6423906, Tel Aviv, Israel.
- Sackler's Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Osborn TM, Hallett PJ, Schumacher JM, Isacson O. Advantages and Recent Developments of Autologous Cell Therapy for Parkinson's Disease Patients. Front Cell Neurosci 2020; 14:58. [PMID: 32317934 PMCID: PMC7147334 DOI: 10.3389/fncel.2020.00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s Disease (PD) is a progressive degenerative disease characterized by tremor, bradykinesia, rigidity and postural instability. There are approximately 7–10 million PD patients worldwide. Currently, there are no biomarkers available or pharmaceuticals that can halt the dopaminergic neuron degeneration. At the time of diagnosis about 60% of the midbrain dopamine (mDA) neurons have already degenerated, resulting in a depletion of roughly 70% of striatal dopamine (DA) levels and synapses. Symptomatic treatment (e.g., with L-dopa) can initially restore DA levels and motor function, but with time often lead to side-effects like dyskinesia. Deep-brain-stimulation can alleviate these side-effects and some of the motor symptoms but requires repeat procedures and adds limitations for the patients. Restoration of dopaminergic synapses using neuronal cell replacement therapy has shown benefit in clinical studies using cells from fetal ventral midbrain. This approach, if done correctly, increases DA levels and restores synapses, allowing biofeedback regulation between the grafted cells and the host brain. Drawbacks are that it is not scalable for a large patient population and the patients require immunosuppression. Stem cells differentiated in vitro to mDA neurons or progenitors have shown promise in animal studies and is a scalable approach that allows for cryopreservation of transplantable cells and rigorous quality control prior to transplantation. However, all allogeneic grafts require immunosuppression. HLA-donor-matching, reduces, but does not completely eliminate, the need for immunosuppression, and is currently investigated in a clinical trial for PD in Japan. Since immune compatibility is very important in all areas of transplantation, these approaches may ultimately be of less benefit to the patients than an autologous approach. By using the patient’s own somatic cells, reprogrammed to induced pluripotent stem cells (iPSCs) and differentiated to mDA neurons immunosuppression is not required, and may also present with several biological and functional advantages in the patients, as described in this article. The proof-of-principle of autologous iPSC mDA restoration of function has been shown in parkinsonian non-human primates (NHPs), and this can now be investigated in clinical trials in addition to the allogeneic and HLA-matched approaches. In this review, we focus on the autologous approach of cell therapy for PD.
Collapse
Affiliation(s)
- Teresia M Osborn
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Penelope J Hallett
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - James M Schumacher
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| | - Ole Isacson
- Neuroregeneration Research Institute, McLean Hospital/Harvard Medical School, Belmont, MA, United States
| |
Collapse
|
3
|
Daadi MM. Differentiation of Neural Stem Cells Derived from Induced Pluripotent Stem Cells into Dopaminergic Neurons. Methods Mol Biol 2019; 1919:89-96. [PMID: 30656623 DOI: 10.1007/978-1-4939-9007-8_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dopaminergic (DA) neurons are involved in many critical functions within the central nervous system (CNS), and dopamine neurotransmission impairment underlies a wide range of disorders from motor control deficiencies, such as Parkinson's disease (PD), to psychiatric disorders, such as alcoholism, drug addictions, bipolar disorders, schizophrenia and depression. Neural stem cell-based technology has potential to play an important role in developing efficacious biological and small molecule therapeutic products for disorders with dopamine dysregulation. Various methods of differentiating DA neurons from pluripotent stem cells have been reported. In this chapter, we describe a simple technique using dopamine-inducing factors (DIFs) to differentiate neural stem cells (NSCs), isolated from induced pluripotent stem cells (iPSCs) into DA neurons.
Collapse
Affiliation(s)
- Marcel M Daadi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA.
- Department of Radiology, Research Imaging Institute, Cell Systems and Anatomy, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| |
Collapse
|
4
|
Chen S, Jia L, Zhang S, Zheng Y, Zhou Y. DEPTOR regulates osteogenic differentiation via inhibiting MEG3-mediated activation of BMP4 signaling and is involved in osteoporosis. Stem Cell Res Ther 2018; 9:185. [PMID: 29973283 PMCID: PMC6033203 DOI: 10.1186/s13287-018-0935-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background The mammalian target of rapamycin (mTOR) pathway plays a significant role in osteogenic differentiation and bone maintenance. As the only known endogenous inhibitor of mTOR function, DEP domain containing mTOR interacting protein (DEPTOR) is potentially involved in stem cell differentiation, although the pathophysiological significance and its molecular mechanisms remain unclear. The present study aimed to elucidate the effects of DEPTOR on the progress of osteoporosis and investigate the underlying molecular mechanisms of osteogenic regulation. Methods An ovariectomy mouse model with decreased bone formation and osteogenic induction with bone marrow mesenchymal stem cells (BMSCs) were used to investigate the relationship between DEPTOR and osteogenic events. A loss-of-function investigation was then performed to explore the role of DEPTOR in the osteogenic differentiation of BMSCs both in vitro and in vivo. Finally, long noncoding RNA (lncRNA) and mRNA sequences were investigated to reveal the underlying mechanisms of DEPTOR in osteogenic regulation. RNA interference, western blotting, and chromatin immunoprecipitation assays were performed for further mechanistic determination. Results The results indicated that DEPTOR contributes to the progress of osteoporosis, and higher expression of Deptor was observed in osteoporotic bones. The expression of DEPTOR was reduced during the osteogenic differentiation of BMSCs, and knockdown of DEPTOR promoted BMSC osteogenesis in vitro and in vivo. lncRNA and mRNA sequences indicated that knockdown of DEPTOR upregulated the expression of maternally expressed 3 (nonprotein coding) (MEG3), which subsequently activated bone morphogenetic protein 4 (BMP4) signaling. Furthermore, DEPTOR could bind to a specific region (− 1000 bp ~ 0) of the MEG3 promoter to regulate its transcription, and inhibition of MEG3 reduced BMP4 activation triggered by DEPTOR knockdown. Conclusions Taken together, our study revealed a novel function of DEPTOR in osteogenic differentiation by inhibiting MEG3-mediated activation of BMP4 signaling, which suggested that DEPTOR could be a therapeutic target for bone loss diseases and skeletal tissue regeneration. Electronic supplementary material The online version of this article (10.1186/s13287-018-0935-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Si Chen
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Lingfei Jia
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Shan Zhang
- Central Laboratory, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| |
Collapse
|
5
|
Li M, Rosser AE. Pluripotent stem cell-derived neurons for transplantation in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2017; 230:263-281. [PMID: 28552232 DOI: 10.1016/bs.pbr.2017.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pluripotent stem cells present a potentially unlimited source of cells for regenerative medicine, providing that they can be efficiently and accurately differentiated to the target cell type. The principle target cell for Huntington's disease is the striatal medium spiny neuron. In this chapter, we review strategies for directing medium spiny neuron differentiation, based on known developmental principles, and we discuss the remaining hurdles on the road to engineering such cells for therapeutic application in Huntington's disease.
Collapse
Affiliation(s)
- Meng Li
- Cardiff University Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff, United Kingdom; Cardiff University School of Biosciences, Cardiff, United Kingdom.
| | - Anne E Rosser
- Cardiff University Neuroscience and Mental Health Research Institute, School of Medicine, Cardiff, United Kingdom; Cardiff University School of Biosciences, Cardiff, United Kingdom.
| |
Collapse
|
6
|
Studer L. Strategies for bringing stem cell-derived dopamine neurons to the clinic—The NYSTEM trial. PROGRESS IN BRAIN RESEARCH 2017; 230:191-212. [DOI: 10.1016/bs.pbr.2017.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Benítez-Burraco A, Lattanzi W, Murphy E. Language Impairments in ASD Resulting from a Failed Domestication of the Human Brain. Front Neurosci 2016; 10:373. [PMID: 27621700 PMCID: PMC5002430 DOI: 10.3389/fnins.2016.00373] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022] Open
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders entailing social and cognitive deficits, including marked problems with language. Numerous genes have been associated with ASD, but it is unclear how language deficits arise from gene mutation or dysregulation. It is also unclear why ASD shows such high prevalence within human populations. Interestingly, the emergence of a modern faculty of language has been hypothesized to be linked to changes in the human brain/skull, but also to the process of self-domestication of the human species. It is our intention to show that people with ASD exhibit less marked domesticated traits at the morphological, physiological, and behavioral levels. We also discuss many ASD candidates represented among the genes known to be involved in the “domestication syndrome” (the constellation of traits exhibited by domesticated mammals, which seemingly results from the hypofunction of the neural crest) and among the set of genes involved in language function closely connected to them. Moreover, many of these genes show altered expression profiles in the brain of autists. In addition, some candidates for domestication and language-readiness show the same expression profile in people with ASD and chimps in different brain areas involved in language processing. Similarities regarding the brain oscillatory behavior of these areas can be expected too. We conclude that ASD may represent an abnormal ontogenetic itinerary for the human faculty of language resulting in part from changes in genes important for the “domestication syndrome” and, ultimately, from the normal functioning of the neural crest.
Collapse
Affiliation(s)
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elliot Murphy
- Division of Psychology and Language Sciences, University College London London, UK
| |
Collapse
|
8
|
Tavakol S, Musavi SMM, Tavakol B, Hoveizi E, Ai J, Rezayat SM. Noggin Along with a Self-Assembling Peptide Nanofiber Containing Long Motif of Laminin Induces Tyrosine Hydroxylase Gene Expression. Mol Neurobiol 2016; 54:4609-4616. [DOI: 10.1007/s12035-016-0006-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 06/14/2016] [Indexed: 12/13/2022]
|
9
|
Yang H, Qiu Y, Zeng X, Ding Y, Zeng J, Lu K, Li D. Effect of a feeder layer composed of mouse embryonic and human foreskin fibroblasts on the proliferation of human embryonic stem cells. Exp Ther Med 2016; 11:2321-2328. [PMID: 27313670 DOI: 10.3892/etm.2016.3204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 10/29/2015] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the effects of feeder layers composed of various ratios of mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (hFFs) on the growth of human embryonic stem cells (hESCs). In addition, the secretion levels of basic fibroblast growth factor (bFGF) by the feeder layers was detected. MEFs and hFFs were treated with mitomycin C and seeded onto gelatin-coated plates at a density of 1×108 cells/l. The hFFs and MEFs were combined and plated at the following ratios: 0:1, 1:2, 1:1, 2:1 and 1:0. The secretion of bFGF by the various hFF/MEF ratio feeder layers was detected using an enzyme-linked immunosorbent assay. Subsequently, hESCs were cultured on top of the various feeder layers. The differences in the cellular morphology of the hESCs were observed using microscopy, and the expression levels alkaline phosphatase (AKP) and octamer-binding transcription factor 4 (OCT-4) were detected using immunohistochemical analysis as indicators of differentiation status. The results showed that the hFFs secreted substantial quantities of bFGF, while no bFGF was secreted by the MEFs. The clones of hESC growing on the feeder layer containing MEF or hFF alone were flat. By contrast, hESC clones grown on a mixed feeder layer containing hFFs + MEFs at a ratio of 1:1 exhibited an accumulated growth with a clear edge, as compared with the other ratios. In addition, hESCs growing on the feeder layer were positive for the expression of AKP and OCT-4. In summary, feeder layer hFFs secreted bFGF, while MEFs did not, indicating that bFGF is not the only factor that supports the growth and differentiation of hESCs. The optimal growth of hESCs was achieved using a mixed feeder layer composed of hFFs + MEFs at a ratio of 1:1.
Collapse
Affiliation(s)
- Hua Yang
- Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Ying Qiu
- Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| | - Xianghui Zeng
- Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| | - Yan Ding
- Life Science Research Institute, Taihe Hospital, Shiyan, Hubei 442000, P.R. China
| | - Jianye Zeng
- Reproductive Medical Center of Nanning Second People's Hospital, Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530031, P.R. China
| | - Kehuan Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, P.R. China
| | - Dongsheng Li
- Life Science Research Institute, Taihe Hospital, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
10
|
Mahairaki V, Ryu J, Peters A, Chang Q, Li T, Park TS, Burridge PW, Talbot CC, Asnaghi L, Martin LJ, Zambidis ET, Koliatsos VE. Induced pluripotent stem cells from familial Alzheimer's disease patients differentiate into mature neurons with amyloidogenic properties. Stem Cells Dev 2015; 23:2996-3010. [PMID: 25027006 DOI: 10.1089/scd.2013.0511] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although the majority of Alzheimer's disease (AD) cases are sporadic, about 5% of cases are inherited in an autosomal dominant pattern as familial AD (FAD) and manifest at an early age. Mutations in the presenilin 1 (PSEN1) gene account for the majority of early-onset FAD. Here, we describe the generation of virus-free human induced pluripotent stem cells (hiPSCs) derived from fibroblasts of patients harboring the FAD PSEN1 mutation A246E and fibroblasts from healthy age-matched controls using nonintegrating episomal vectors. We have differentiated these hiPSC lines to the neuronal lineage and demonstrated that hiPSC-derived neurons have mature phenotypic and physiological properties. Neurons from mutant hiPSC lines express PSEN1-A246E mutations themselves and show AD-like biochemical features, that is, amyloidogenic processing of amyloid precursor protein (APP) indicated by an increase in β-amyloid (Aβ)42/Aβ40 ratio. FAD hiPSCs harboring disease properties can be used as humanized models to test novel diagnostic methods and therapies and explore novel hypotheses for AD pathogenesis.
Collapse
Affiliation(s)
- Vasiliki Mahairaki
- 1 Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Li W, Chen S, Li JY. Human induced pluripotent stem cells in Parkinson's disease: A novel cell source of cell therapy and disease modeling. Prog Neurobiol 2015; 134:161-77. [PMID: 26408505 DOI: 10.1016/j.pneurobio.2015.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/15/2015] [Accepted: 09/17/2015] [Indexed: 12/16/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs) are two novel cell sources for studying neurodegenerative diseases. Dopaminergic neurons derived from hiPSCs/hESCs have been implicated to be very useful in Parkinson's disease (PD) research, including cell replacement therapy, disease modeling and drug screening. Recently, great efforts have been made to improve the application of hiPSCs/hESCs in PD research. Considerable advances have been made in recent years, including advanced reprogramming strategies without the use of viruses or using fewer transcriptional factors, optimized methods for generating highly homogeneous neural progenitors with a larger proportion of mature dopaminergic neurons and better survival and integration after transplantation. Here we outline the progress that has been made in these aspects in recent years, particularly during the last year, and also discuss existing issues that need to be addressed.
Collapse
Affiliation(s)
- Wen Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Rui Jin Er Road, Shanghai 200025, China.
| | - Jia-Yi Li
- Institute of Neuroscience, College of Life and Health Sciences, Northeastern University, Shenyang, China; Neural Plasticity and Repair Unit, Wallenberg Neuroscience Center, Lund University, BMC A10, 221 84 Lund, Sweden.
| |
Collapse
|
12
|
Mulloy B, Rider CC. The Bone Morphogenetic Proteins and Their Antagonists. VITAMINS AND HORMONES 2015; 99:63-90. [PMID: 26279373 DOI: 10.1016/bs.vh.2015.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bone morphogenetic proteins (BMPs) and the growth and differentiation factors comprise a single family of some 20 homologous, dimeric cytokines which share the cystine-knot domain typical of the TGF-β superfamily. They control the differentiation and activity of a range of cell types, including many outside bone and cartilage. They serve as developmental morphogens, but are also important in chronic pathologies, including tissue fibrosis and cancer. One mechanism for enabling tight spatiotemporal control of their activities is through a number of antagonist proteins, including Noggin, Follistatin, Chordin, Twisted gastrulation (TSG), and the seven members of the Cerberus and Dan family. These antagonists are secreted proteins that bind selectively to particular BMPs with high affinity, thereby blocking receptor engagement and signaling. Most of these antagonists also possess a TGF-β cystine-knot domain. Here, we discuss current knowledge and understanding of the structures and activities of the BMPs and their antagonists, with a particular focus on the latter proteins. Recent advances in structural biology of BMP antagonists have begun the process of elucidating the molecular basis of their activity, displaying a surprising variety between the modes of action of these closely related proteins. We also discuss the interactions of the antagonists with the glycosaminoglycan heparan sulfate, which is found ubiquitously on cell surfaces and in the extracellular matrix.
Collapse
Affiliation(s)
- Barbara Mulloy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom
| | - Chris C Rider
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, United Kingdom.
| |
Collapse
|
13
|
Wakeman DR, Weiss S, Sladek JR, Elsworth JD, Bauereis B, Leranth C, Hurley PJ, Roth RH, Redmond DE. Survival and Integration of Neurons Derived from Human Embryonic Stem Cells in MPTP-Lesioned Primates. Cell Transplant 2014; 23:981-94. [DOI: 10.3727/096368913x664865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A human embryonic stem cell (HESC) line, H1, was studied after differentiation to a dopaminergic phenotype in vitro in order to carry out in vivo studies in Parkinsonian monkeys. To identify morphological characteristics of transplanted donor cells, HESCs were transfected with a GFP lentiviral vector. Gene expression studies were performed at each step of a neural rosette-based dopaminergic differentiation protocol by RT-PCR. In vitro immunofluorescence revealed that >90% of the differentiated cells exhibited a neuronal phenotype by β-III-tubulin immunocytochemistry, with 17% of the cells coexpressing tyrosine hydroxylase prior to implantation. Biochemical analyses demonstrated dopamine release in culture in response to potassium chloride-induced membrane depolarization, suggesting that the cells synthesized and released dopamine. These characterized, HESC-derived neurons were then implanted into the striatum and midbrain of MPTP (1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine)-exposed monkeys that were triple immunosuppressed. Here we demonstrate robust survival of transplanted HESC-derived neurons after 6 weeks, as well as morphological features consistent with polarization, organization, and extension of processes that integrated into the host striatum. Expression of the dopaminergic marker tyrosine hydroxylase was not maintained in HESC-derived neural grafts in either the striatum or substantia nigra, despite a neuronal morphology and expression of β-III-tubulin. These results suggest that dopamine neuronal cells derived from neuroectoderm in vitro will not maintain the correct midbrain phenotype in vivo in nonhuman primates, contrasted with recent studies showing dopamine neuronal survival using an alternative floorplate method.
Collapse
Affiliation(s)
- Dustin R. Wakeman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Stephanie Weiss
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John R. Sladek
- Department of Neurology, University of Colorado Health Sciences Center, Denver, CO, USA
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO, USA
| | - John D. Elsworth
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Brian Bauereis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Csaba Leranth
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick J. Hurley
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert H. Roth
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - D. Eugene Redmond
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
- St. Kitts Biomedical Research Foundation, St. Kitts-Nevis, West Indies
| |
Collapse
|
14
|
Nguyen HX, Nekanti U, Haus DL, Funes G, Moreno D, Kamei N, Cummings BJ, Anderson AJ. Induction of early neural precursors and derivation of tripotent neural stem cells from human pluripotent stem cells under xeno-free conditions. J Comp Neurol 2014; 522:2767-83. [DOI: 10.1002/cne.23604] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 04/04/2014] [Accepted: 04/04/2014] [Indexed: 02/06/2023]
Affiliation(s)
- Hal X. Nguyen
- Physical Medicine & Rehabilitation; University of California; Irvine California
- Anatomy and Neurobiology; University of California; Irvine California
- Sue and Bill Gross Stem Cell Research Center; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Usha Nekanti
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Daniel L. Haus
- Anatomy and Neurobiology; University of California; Irvine California
- Sue and Bill Gross Stem Cell Research Center; University of California; Irvine California
| | - Gabrielle Funes
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Denisse Moreno
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Noriko Kamei
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Brian J. Cummings
- Physical Medicine & Rehabilitation; University of California; Irvine California
- Anatomy and Neurobiology; University of California; Irvine California
- Sue and Bill Gross Stem Cell Research Center; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| | - Aileen J. Anderson
- Physical Medicine & Rehabilitation; University of California; Irvine California
- Anatomy and Neurobiology; University of California; Irvine California
- Sue and Bill Gross Stem Cell Research Center; University of California; Irvine California
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine California
| |
Collapse
|
15
|
The indirect role of fibroblast growth factor-8 in defining neurogenic niches of the olfactory/GnRH systems. J Neurosci 2014; 33:19620-34. [PMID: 24336726 DOI: 10.1523/jneurosci.3238-13.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bone morphogenic protein-4 (BMP4) and fibroblast growth factor-8 (FGF8) are thought to have opposite roles in defining epithelial versus neurogenic fate in the developing olfactory/vomeronasal system. In particular, FGF8 has been implicated in specification of olfactory and gonadotropin releasing hormone-1 (GnRH) neurons, as well as in controlling olfactory stem cell survival. Using different knock-in mouse lines and Cre-lox-mediated lineage tracing, Fgf8 expression and cell lineage was analyzed in the developing nose in relation to the expression of Bmp4 and its antagonist Noggin (Nog). FGF8 is expressed by cells that acquire an epidermal, respiratory cell fate and not by stem cells that acquire neuronal olfactory or vomeronasal cell fate. Ectodermal and mesenchymal sources of BMP4 control the expression of BMP/TGFβ antagonist Nog, whereas mesenchymal sources of Nog define the neurogenic borders of the olfactory pit. Fgf8 hypomorph mouse models, Fgf8(neo/neo) and Fgf8(neo/null), displayed severe craniofacial defects together with overlapping defects in the olfactory pit including (1) lack of neuronal formation ventrally, where GnRH neurons normally form, and (2) altered expression of Bmp4 and Nog, with Nog ectopically expressed in the nasal mesenchyme and no longer defining the GnRH and vomeronasal neurogenic border. Together our data show that (1) FGF8 is not sufficient to induce ectodermal progenitors of the olfactory pit to acquire neural fate and (2) altered neurogenesis and lack of GnRH neuron specification after chronically reduced Fgf8 expression reflected dysgenesis of the nasal region and loss of a specific neurogenic permissive milieu that was defined by mesenchymal signals.
Collapse
|
16
|
Kim J, Sachdev P, Sidhu K. Alginate microcapsule as a 3D platform for the efficient differentiation of human embryonic stem cells to dopamine neurons. Stem Cell Res 2013; 11:978-89. [PMID: 23900167 DOI: 10.1016/j.scr.2013.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 05/26/2013] [Accepted: 06/14/2013] [Indexed: 01/17/2023] Open
Abstract
Human embryonic stem cells (hESCs) are emerging as an attractive alternative source for cell replacement therapy since the cells can be expanded in culture indefinitely and differentiated into any cell types in the body. In order to optimize cell-to-cell interaction, cell proliferation and differentiation into specific lineages as well as tissue organization, it is important to provide a microenvironment for the hESCs which mimics the stem cell niche. One approach is to provide a three-dimensional (3D) environment such as encapsulation. We present an approach to culture and differentiate hESCs into midbrain dopamine (mdDA) neurons in a 3D microenvironment using alginate microcapsules for the first time. A detailed gene and protein expression analysis during neuronal differentiation showed an increased gene and protein expression of various specific DA neuronal markers, particularly tyrosine hydroxylase (TH) by >100 folds after 2 weeks and at least 50% higher expression after 4 weeks respectively, compared to cells differentiated under conventional two-dimensional (2D) platform. The encapsulated TH(+) cells co-expressed mdDA neuronal markers, forkhead box protein A-2 (FOXA2) and pituitary homeobox-3 (PITX3) after 4 weeks and secreted approximately 60pg/ml/10(6) cells higher DA level when induced. We propose that the 3D platform facilitated an early onset of DA neuronal generation compared to that with conventional 2D system which also secretes more DA under potassium-induction. It is a very useful model to study the proliferation and directed differentiation of hESCs to various lineages, particularly to mdDA neurons. This 3D system also allows the separation of feeder cells from hESCs during the process of differentiation and also has potential for immune-isolation during transplantation studies.
Collapse
Affiliation(s)
- Jaemin Kim
- Stem Cell Lab, Faculty of Medicine, School of Psychiatry, University of New South Wales, Australia.
| | | | | |
Collapse
|
17
|
Zeng X, Couture LA. Pluripotent stem cells for Parkinson's disease: progress and challenges. Stem Cell Res Ther 2013; 4:25. [PMID: 23672848 PMCID: PMC3707048 DOI: 10.1186/scrt173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) is a common debilitating neurodegenerative disease. The motor symptoms of PD are caused mainly by a progressive loss of dopaminergic neurons from the substania nigra, resulting in a loss of dopamine production. Current therapies are palliative and, in the long term, ineffective. In addition, some can result in significant clinical side effects. The relatively localized pathology of PD makes it an ideal candidate for cell replacement therapy. Initial efforts focused on fetal cell transplantation, and significant clinical benefit lasting more than 10 years has been reported in some cases. However, the approach is controversial and results have been inconsistent. Inherent limitations of this approach for widespread use are the limited availability and variability of transplant material. In contrast, the self-renewal and differentiation potential of human pluripotent stem cells (hPSCs) make them a promising alternative cell source for cell replacement therapy for PD. Efforts in the past decade have demonstrated that hPSCs can be induced to differentiate in culture to functional dopaminergic neurons. Studies in delivering these cells into PD animal models have demonstrated survival, engraftment, and behavioral deficit improvements. Several groups are developing these cells with clinical trials in mind. Here, we review the state of the technology and consider the suitability of current manufacturing processes, cell purity, and tumorgenicity for clinical testing.
Collapse
|
18
|
Shin E, Palmer MJ, Li M, Fricker RA. GABAergic neurons from mouse embryonic stem cells possess functional properties of striatal neurons in vitro, and develop into striatal neurons in vivo in a mouse model of Huntington's disease. Stem Cell Rev Rep 2012; 8:513-31. [PMID: 21720791 DOI: 10.1007/s12015-011-9290-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Huntington's disease (HD) is a neurodegenerative disease where GABAergic medium spiny neurons (MSNs) in the striatum degenerate. Embryonic stem cell-derived neural transplantation may provide an appropriate therapy for HD. Here we aimed to develop a suitable protocol to obtain a high percentage of functional GABAergic neurons from mouse embryonic stem cells (mESCs), and then tested their differentiation potential in vivo. The monolayer method was compared with the embryoid body and five stage method for its efficiency in generating GABAergic neurons from mESCs. All three methods yielded a similar percentage of GABAergic neurons from mESCs. Monolayer method-derived GABAergic neurons expressed the MSN marker dopamine- and cyclic AMP-regulated phosphoprotein (DARPP32). The pluripotent stem cell population could be eliminated in vitro by treating cells with puromycin and retinoic acid. Using patch-clamp recordings, the functional properties of GABAergic neurons derived from mESCs were compared to GABAergic neurons derived from primary lateral ganglionic eminence. Both types of neurons showed active membrane properties (voltage-gated Na(+) and K(+) currents, Na(+)-dependent action potentials, and spontaneous postsynaptic currents) and possessed functional glutamatergic receptors and transporters. mESC-derived neural progenitors were transplanted into a mouse model of HD. Grafted cells differentiated to mature neurons expressing glutamate decarboxylase, dopamine type 1 receptors, and DARPP32. Also, neural precursors and dividing populations were found in the grafts. In summary, mESCs are able to differentiate efficiently into functional GABAergic neurons using defined in vitro conditions, and these survive and differentiate following grafting to a mouse model of HD.
Collapse
Affiliation(s)
- Eunju Shin
- Institute for Science and Technology in Medicine, Keele University, Keele ST5 5BG, UK
| | | | | | | |
Collapse
|
19
|
Survival of transplanted human neural stem cell line (ReNcell VM) into the rat brain with and without immunosuppression. Ann Anat 2012; 194:429-35. [DOI: 10.1016/j.aanat.2012.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 04/30/2012] [Accepted: 05/04/2012] [Indexed: 12/17/2022]
|
20
|
Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep 2012; 1:703-14. [PMID: 22813745 DOI: 10.1016/j.celrep.2012.04.009] [Citation(s) in RCA: 488] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/08/2012] [Accepted: 04/23/2012] [Indexed: 12/12/2022] Open
Abstract
To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification of regionally defined neural progenitors ranging from telencephalic forebrain to posterior hindbrain fates. Ten days after initiation of differentiation, the progenitors could be transplanted to the adult rat striatum, where they formed neuron-rich and tumor-free grafts with maintained regional specification. Cells patterned toward a ventral midbrain (VM) identity generated a high proportion of authentic dopaminergic neurons after transplantation. The dopamine neurons showed morphology, projection pattern, and protein expression identical to that of human fetal VM cells grafted in parallel. VM-patterned but not forebrain-patterned neurons released dopamine and reversed motor deficits in an animal model of Parkinson's disease.
Collapse
|
21
|
Wang Y, Yang D, Song L, Li T, Yang J, Zhang X, Le W. Mifepristone-inducible caspase-1 expression in mouse embryonic stem cells eliminates tumor formation but spares differentiated cells in vitro and in vivo. Stem Cells 2012; 30:169-79. [PMID: 22131096 DOI: 10.1002/stem.1000] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Embryonic stem cell (ESC)-based therapy is a promising treatment for neurodegenerative diseases. But there is always a risk of tumor formation that is due to contamination of undifferentiated ESCs. To reduce the risk and improve ESC-based therapy, we have established a novel strategy by which we can selectively eliminate tumor cells derived from undifferentiated ESCs but spare differentiated cells. In this study, we generated a caspase-1-ESC line transfected with a mifepristone-regulated caspase-1 expression system. Mifepristone induced caspase-1 overexpression both in differentiated and undifferentiated caspase-1-ESCs. All the undifferentiated caspase-1-ESCs were induced to death after mifepristone treatment. Tumors derived from undifferentiated caspase-1-ESCs were eliminated following 3 weeks of mifepristone treatment in vivo. However, differentiated caspase-1-ESCs survived well under the condition of mifepristone-induced caspase-1 overexpression. To examine in vivo the impact of mifepristone-induced caspase-1 activation on grafted cells, we transplanted wild-type ESCs or caspase-1-ESCs into nude mice brains. After 8 weeks of mifepristone treatment, we could not detect any tumor cells in the caspase-1-ESC grafts in the brains of mice. However, we found that donor dopamine neurons survived in the recipient brains. These data demonstrate that mifepristone-induced caspase-1 overexpression in ESCs can eliminate the potential tumor formation meanwhile spares the differentiated cells in the host brains. These results suggest that this novel ESC-based therapy can be used in Parkinson's disease and other related disorders without the risk of tumor formation.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine & Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Torres J, Prieto J, Durupt FC, Broad S, Watt FM. Efficient differentiation of embryonic stem cells into mesodermal precursors by BMP, retinoic acid and Notch signalling. PLoS One 2012; 7:e36405. [PMID: 22558462 PMCID: PMC3340340 DOI: 10.1371/journal.pone.0036405] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/09/2012] [Indexed: 12/31/2022] Open
Abstract
The ability to direct differentiation of mouse embryonic stem (ES) cells into specific lineages not only provides new insights into the pathways that regulate lineage selection but also has translational applications, for example in drug discovery. We set out to develop a method of differentiating ES cells into mesodermal cells at high efficiency without first having to induce embryoid body formation. ES cells were plated on a feeder layer of PA6 cells, which have membrane-associated stromal-derived inducing activity (SDIA), the molecular basis of which is currently unknown. Stimulation of ES/PA6 co-cultures with Bone Morphogenetic Protein 4 (BMP4) both favoured self-renewal of ES cells and induced differentiation into a Desmin and Nestin double positive cell population. Combined stimulation with BMP4 and all-trans Retinoic Acid (RA) inhibited self-renewal and resulted in 90% of cells expressing Desmin and Nestin. Quantitative reverse transcription-polymerase chain reaction (qPCR) analysis confirmed that the cells were of mesodermal origin and expressed markers of mesenchymal and smooth muscle cells. BMP4 activation of a MAD-homolog (Smad)-dependent reporter in undifferentiated ES cells was attenuated by co-stimulation with RA and co-culture with PA6 cells. The Notch ligand Jag1 was expressed in PA6 cells and inhibition of Notch signalling blocked the differentiation inducing activity of PA6 cells. Our data suggest that mesodermal differentiation is regulated by the level of Smad activity as a result of inputs from BMP4, RA and the Notch pathway.
Collapse
Affiliation(s)
- Josema Torres
- Departamento de Biología Celular, Universidad de Valencia, Burjassot, Comunidad Valenciana, Spain
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JT); (FMW)
| | - Javier Prieto
- Departamento de Biología Celular, Universidad de Valencia, Burjassot, Comunidad Valenciana, Spain
| | - Fabrice C. Durupt
- Departamento de Biología Celular, Universidad de Valencia, Burjassot, Comunidad Valenciana, Spain
| | - Simon Broad
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
| | - Fiona M. Watt
- Wellcome Trust Centre for Stem Cell Research, University of Cambridge, Cambridge, United Kingdom
- * E-mail: (JT); (FMW)
| |
Collapse
|
23
|
Modulation of Dopaminergic Neuronal Differentiation from Sympathoadrenal Progenitors. J Mol Neurosci 2012; 48:420-6. [DOI: 10.1007/s12031-012-9746-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/05/2012] [Indexed: 12/25/2022]
|
24
|
Martinez Y, Dubois-Dauphin M, Krause KH. Generation and applications of human pluripotent stem cells induced into neural lineages and neural tissues. Front Physiol 2012; 3:47. [PMID: 22457650 PMCID: PMC3307166 DOI: 10.3389/fphys.2012.00047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 02/21/2012] [Indexed: 01/01/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a new and exciting field in modern medicine, now the focus of many researchers and media outlets. The hype is well-earned because of the potential of stem cells to contribute to disease modeling, drug screening, and even therapeutic approaches. In this review, we focus first on neural differentiation of these cells. In a second part we compare the various cell types available and their advantages for in vitro modeling. Then we provide a “state-of-the-art” report about two major biomedical applications: (1) the drug and toxicity screening and (2) the neural tissue replacement. Finally, we made an overview about current biomedical research using differentiated hPSCs.
Collapse
Affiliation(s)
- Y Martinez
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva Geneva, Switzerland
| | | | | |
Collapse
|
25
|
Grabel L. Prospects for pluripotent stem cell therapies: Into the clinic and back to the bench. J Cell Biochem 2012; 113:381-7. [DOI: 10.1002/jcb.23364] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Characterization and criteria of embryonic stem and induced pluripotent stem cells for a dopamine replacement therapy. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23195423 DOI: 10.1016/b978-0-444-59575-1.00012-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cells provide new choices for sources of A9-type dopaminergic (DA) neurons in clinical trials of neural transplantation for patients with Parkinson's disease (PD). For example, "self" and HLA-matched A9 DA neurons may improve the patient-to-patient variability observed in previous clinical trials using fetal DA neurons and obviate the need for long-term immunosuppression in the patient. Normal chromosomal structure and minimal somatic mutations in pluripotent stem cells are necessary criteria for assuring the safe and reproducible transplantation of differentiated DA neurons into patients with PD in clinical trials. However, with these new choices of cell source, the application of pluripotency assays as criteria to ensure pluripotent stem cell quality becomes less relevant. New more relevant standards of quality control, assurance, and function are required. We suggest that quality assurance measures for pluripotent stem cells need to focus upon readouts for authentic midbrain DA neurons, their integration and growth using in vivo assays, and their long-term functional stability.
Collapse
|
27
|
Wang J, Ye R, Wei Y, Wang H, Xu X, Zhang F, Qu J, Zuo B, Zhang H. The effects of electrospun TSF nanofiber diameter and alignment on neuronal differentiation of human embryonic stem cells. J Biomed Mater Res A 2011; 100:632-45. [PMID: 22213384 DOI: 10.1002/jbm.a.33291] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 09/11/2011] [Accepted: 10/03/2011] [Indexed: 12/17/2022]
Abstract
Although transplantation of human embryonic stem cells (hESCs)-derived neural precursors (NPs) has been demonstrated with some success for nervous repair in small animal model, control of the survival, and directional differentiation of these cells is still challenging. Meanwhile, the notion that using suitable scaffolding materials to control the growth and differentiation of grafted hESC-derived NPs raises the hope for better clinical nervous repair. In this study, we cultured hESC-derived NPs on Tussah silk fibroin (TSF)-scaffold of different diameter (i.e., 400 and 800 nm) and orientation (i.e., random and aligned) to analyze the effect of fiber diameter and alignment on the cell viability, neuronal differentiation, and neurite outgrowth of hESC-derived NPs. The results show that TSF-scaffold supports the survival, migration, and differentiation of hESC-derived NPs. Aligned TSF-scaffold significantly promotes the neuronal differentiation and neurite outgrowth of hESC-derived neurons compared with random TSF-scaffold. Moreover, on aligned 400 nm fibers cell viability, neuronal differentiation and neurite outgrowth are greater than that on aligned 800 nm fibers. Together, these results demonstrate that aligned 400 nm TSF-scaffold is more suitable for the development of hESC-derived NPs, which shed light on optimization of the therapeutic potential of hESCs to be employed for neural regeneration.
Collapse
Affiliation(s)
- Junxia Wang
- Department of Cell Biology, Medical College of Soochow University, Jiangsu Key Laboratory of Stem Cell Research, Ren Ai Road 199, Suzhou Industrial Park, Suzhou 215123, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
DA neurons derived from hES cells that express HLA-G1 are capable of immunosuppression. Brain Res 2011; 1437:134-42. [PMID: 22227454 DOI: 10.1016/j.brainres.2011.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/15/2011] [Accepted: 12/15/2011] [Indexed: 12/22/2022]
Abstract
Human embryonic stem (hES) cells have the capacity for self-renewal and exhibit multipotentiality. hES cells have promise for serving as an unlimited source of ideal seed cells for cell transplantation. However, the rejection that occurs between the transplant recipient and the transplanted cell poses a major challenge for therapeutic transplantation. This study was designed to devise methods to enhance immune tolerance in cell therapy. We established an hES cell line that could stably express human leukocyte antigen-G1 (HLA-G1). The established HLA-G1-H1 hES cells still retained all the characteristics of normal human embryonic stem cells. By using the SDIA method, we induced dopaminergic (DA) neurons by coculturing HLA-G1-H1 hES cells with the mouse stromal cell line PA6. Tyrosine hydroxylase (TH)+neurons were detected on the 10th day of differentiation, and 70% of the HLA-G1-H1 hES cells were TH+mature DA neurons because the differentiation time was only 3 weeks. Cells that had been differentiating for different periods of time still expressed HLA-G1, and these differentiated DA neurons released dopamine and other catecholamines in response to K+ depolarization as measured by HPLC. After careful study, we found that HLA-G1-H1 hES cells are capable of inhibiting the proliferation of mixed T-lymphocytes. DA neurons derived from HLA-G1-H1 hES attenuated the release of proinflammatory cytokines IL-1β and IFN-γ from lipopolysaccharide (LPS)-stimulated BV2 microglia. The efficiency of inhibition was significant and dose-dependent. This method might be used to treat Parkinson's patients via cell transplantation.
Collapse
|
29
|
Chiba S, Takada E, Tadokoro M, Taniguchi T, Kadoyama K, Takenokuchi M, Kato S, Suzuki N. Loss of dopaminoreceptive neuron causes L-dopa resistant parkinsonism in tauopathy. Neurobiol Aging 2011; 33:2491-505. [PMID: 22169201 DOI: 10.1016/j.neurobiolaging.2011.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 09/16/2011] [Accepted: 11/03/2011] [Indexed: 10/14/2022]
Abstract
Frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) is a family of inherited dementias caused by tauopathy. A mutation in exon 10 of the tau gene, N279K, causes a particular kindred of FTDP-17, which is predominant for parkinsonism. The disease initially presents as L-dopa resistant parkinsonism which then rapidly progresses. The final pathological features reveal disappearing dopamine (DA) neurons, but the causes remain poorly understood. We previously established a transgenic mouse with human N279K mutant tau as a model for FTDP-17, which showed cognitive dysfunctions caused by the mutant. Here we analyze L-dopa resistant parkinsonism by several behavioral tests, and focus on the distributions and accumulations of the mutant tau in the DA system by immunohistochemistry and Western blot. Interestingly, dopaminoreceptive (DAr) neurons in the striatum showed neurofibrils degeneration and apoptosis through caspase-3 activation by mutant tau accumulation. The DAr neuron loss in the caudoputamen, the target of the nigrostriatal system occurred before DA neuron loss in young symptomatic mice. Residual DA neurons in the mouse functioned in DA transportation, whereas dysregulation of intracellular DA compartmentalization implied an excess level of DA caused by DAr neuron loss. In the final stages, both DAr and DA neurons decreased equally, unlike Parkinson's disease. Therefore, DAr neurons were fundamentally vulnerable to the mutation indicating a critical role for the L-dopa resistant parkinsonism in tauopathy.
Collapse
Affiliation(s)
- Shunmei Chiba
- Department of Pathology and Cell Biology, University of the Ryukyus Graduate School of Medicine, Okinawa, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kyono K, Takashima T, Katayama Y, Kawasaki T, Zochi R, Gouda M, Kuwahara Y, Takahashi K, Wada Y, Onoe H, Watanabe Y. Use of [18F]FDOPA-PET for in vivo evaluation of dopaminergic dysfunction in unilaterally 6-OHDA-lesioned rats. EJNMMI Res 2011; 1:25. [PMID: 22214344 PMCID: PMC3251329 DOI: 10.1186/2191-219x-1-25] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/10/2011] [Indexed: 11/22/2022] Open
Abstract
Background We evaluated the utility of L-3,4-dihydroxy-6-[18F]fluoro-phenylalanine ([18F]FDOPA) positron emission tomography (PET) as a method for assessing the severity of dopaminergic dysfunction in unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats by comparing it with quantitative biochemical, immunohistochemical, and behavioral measurements. Methods Different doses of 6-OHDA (0, 7, 14, and 28 μg) were unilaterally injected into the right striatum of male Sprague-Dawley rats. Dopaminergic functional activity in the striatum was assessed by [18F]FDOPA-PET, measurement of striatal dopamine (DA) and DA metabolite levels, tyrosine hydroxylase (TH) immunostaining, and methamphetamine-induced rotational testing. Results Accumulation of [18F]FDOPA in the bilateral striatum was observed in rats pretreated with both aromatic L-amino acid decarboxylase and catechol-O-methyltransferase (COMT) inhibitors. Unilateral intrastriatal injection of 6-OHDA produced a significant site-specific reduction in [18F]FDOPA accumulation. The topological distribution pattern of [18F]FDOPA accumulation in the ipsilateral striatum agreed well with the pattern in TH-stained corresponding sections. A significant positive relationship was found between Patlak plot Ki values and striatal levels of DA and its metabolites (r = 0.958). A significant negative correlation was found between both Ki values (r = -0.639) and levels of DA and its metabolites (r = -0.719) and the number of methamphetamine-induced rotations. Conclusions Ki values determined using [18F]FDOPA-PET correlated significantly with the severity of dopaminergic dysfunction. [18F]FDOPA-PET makes it possible to perform longitudinal evaluation of dopaminergic function in 6-OHDA-lesioned rats, which is useful in the development of new drugs and therapies for Parkinson's disease (PD).
Collapse
Affiliation(s)
- Kiyoshi Kyono
- RIKEN Center for Molecular Imaging Science, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Freed CR, Zhou W, Breeze RE. Dopamine cell transplantation for Parkinson's disease: the importance of controlled clinical trials. Neurotherapeutics 2011; 8:549-61. [PMID: 21997523 PMCID: PMC3250289 DOI: 10.1007/s13311-011-0082-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transplantation of human fetal dopamine neurons into the brain of Parkinson's disease patients started in the late 1980s, less than 10 years after experiments in rats showed that embryonic dopamine neurons from a narrow window of development are suitable for transplantation. For human transplantation, the critical stage of development is 6 to 8 weeks after conception. Because putamen is the basal ganglia structure most depleted of dopamine in Parkinson's disease and because it is the structure most closely mapped to the motor cortex, it has been the primary target for neurotransplantation. The double blind trial conducted at the University of Colorado, Columbia University, and North Shore University is the first controlled surgical trial performed in the field of neurosurgery. Results have shown that transplants of fetal dopamine neurons can survive transplantation without immunosuppression and without regard to the age of the patients. Transplants improved objective signs of Parkinson's disease to the best effects of L-DOPA seen preoperatively. Placebo surgery produced no clinical changes. In subjects in whom transplants replaced the need for L-DOPA, the implants replicated the preoperative effects of L-DOPA, including dyskinesias in susceptible patients. Our trial has provided the first controlled evidence that dopamine cell transplants can improve the clinical state of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Curt R Freed
- University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
32
|
Cho EG, Zaremba JD, McKercher SR, Talantova M, Tu S, Masliah E, Chan SF, Nakanishi N, Terskikh A, Lipton SA. MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model. PLoS One 2011; 6:e24027. [PMID: 21901155 PMCID: PMC3162026 DOI: 10.1371/journal.pone.0024027] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 08/04/2011] [Indexed: 01/08/2023] Open
Abstract
Human embryonic stem cells (hESCs) can potentially differentiate into any cell type, including dopaminergic neurons to treat Parkinson's disease (PD), but hyperproliferation and tumor formation must be avoided. Accordingly, we use myocyte enhancer factor 2C (MEF2C) as a neurogenic and anti-apoptotic transcription factor to generate neurons from hESC-derived neural stem/progenitor cells (NPCs), thus avoiding hyperproliferation. Here, we report that forced expression of constitutively active MEF2C (MEF2CA) generates significantly greater numbers of neurons with dopaminergic properties in vitro. Conversely, RNAi knockdown of MEF2C in NPCs decreases neuronal differentiation and dendritic length. When we inject MEF2CA-programmed NPCs into 6-hydroxydopamine—lesioned Parkinsonian rats in vivo, the transplanted cells survive well, differentiate into tyrosine hydroxylase-positive neurons, and improve behavioral deficits to a significantly greater degree than non-programmed cells. The enriched generation of dopaminergic neuronal lineages from hESCs by forced expression of MEF2CA in the proper context may prove valuable in cell-based therapy for CNS disorders such as PD.
Collapse
Affiliation(s)
- Eun-Gyung Cho
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Jeffrey D. Zaremba
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Scott R. McKercher
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Maria Talantova
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Shichun Tu
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Eliezer Masliah
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Shing Fai Chan
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Nobuki Nakanishi
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Alexey Terskikh
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Stuart A. Lipton
- Del E. Webb Center for Neuroscience, Aging, and Stem Cell Research, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
33
|
Wu SM, Tan KS, Chen H, Beh TT, Yeo HC, Ng SKL, Wei S, Lee DY, Choo ABH, Chan KKK. Enhanced production of neuroprogenitors, dopaminergic neurons, and identification of target genes by overexpression of sonic hedgehog in human embryonic stem cells. Stem Cells Dev 2011; 21:729-41. [PMID: 21649559 DOI: 10.1089/scd.2011.0134] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Molecular and cellular signaling pathways are involved in the process of neural differentiation from human embryonic stem cells (hESC) to terminally differentiated neurons. The Sonic hedgehog (SHH) morphogen is required to direct the differentiation of hESC to several neural subtypes, for example, dopaminergic (DA) or motor neurons. However, the roles of SHH signaling and the pathway target genes that regulate the diversity of cellular responses arising from SHH activation during neurogenesis of hESC have yet to be elucidated. In this study, we report that overexpression of SHH in hESC promotes the derivation of neuroprogenitors (NP), increases proliferation of NP, and subsequently increases the yield of DA neurons. Next, gene expression changes resulting from the overexpression of SHH in hESC-derived NP were examined by genome-wide transcriptional profiling. Categorizing the differentially expressed genes according to the Gene Ontology biological processes showed that they are involved in numerous cellular processes, including neural development, NP proliferation, and neural specification. In silico GLI-binding sites analysis of the differentially expressed genes also identified a set of putative novel direct target genes of SHH in hESC-derived NP, which are involved in nervous system development. Electrophoretic mobility shift assays and promoter-luciferase assays confirmed that GLI1 binds to the promoter region and activates transcription of HEY2, a NOTCH signaling target gene. Taken together, our data provide evidence for the first time that there is cross-talk between the NOTCH and SHH signaling pathways in hESC-derived NP and also provide significant new insights into transcriptional targets in SHH-mediated neural differentiation of hESC.
Collapse
Affiliation(s)
- Selena Meiyun Wu
- Stem Cell Group, Bioprocessing Technology Institute, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore, Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.
Collapse
Affiliation(s)
- Chao Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | | |
Collapse
|
35
|
Wakeman DR, Dodiya HB, Kordower JH. Cell transplantation and gene therapy in Parkinson's disease. ACTA ACUST UNITED AC 2011; 78:126-58. [PMID: 21259269 DOI: 10.1002/msj.20233] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Parkinson's disease is a progressive neurodegenerative disorder affecting, in part, dopaminergic motor neurons of the ventral midbrain and their terminal projections that course to the striatum. Symptomatic strategies focused on dopamine replacement have proven effective at remediating some motor symptoms during the course of disease but ultimately fail to deliver long-term disease modification and lose effectiveness due to the emergence of side effects. Several strategies have been experimentally tested as alternatives for Parkinson's disease, including direct cell replacement and gene transfer through viral vectors. Cellular transplantation of dopamine-secreting cells was hypothesized as a substitute for pharmacotherapy to directly provide dopamine, whereas gene therapy has primarily focused on restoration of dopamine synthesis or neuroprotection and restoration of spared host dopaminergic circuitry through trophic factors as a means to enhance sustained controlled dopamine transmission. This seems now to have been verified in numerous studies in rodents and nonhuman primates, which have shown that grafts of fetal dopamine neurons or gene transfer through viral vector delivery can lead to improvements in biochemical and behavioral indices of dopamine deficiency. However, in clinical studies, the improvements in parkinsonism have been rather modest and variable and have been plagued by graft-induced dyskinesias. New developments in stem-cell transplantation and induced patient-derived cells have opened the doors for the advancement of cell-based therapeutics. In addition, viral-vector-derived therapies have been developed preclinically with excellent safety and efficacy profiles, showing promise in clinical trials thus far. Further progress and optimization of these therapies will be necessary to ensure safety and efficacy before widespread clinical use is deemed appropriate.
Collapse
|
36
|
Willerth SM. Neural tissue engineering using embryonic and induced pluripotent stem cells. Stem Cell Res Ther 2011; 2:17. [PMID: 21539726 PMCID: PMC3226288 DOI: 10.1186/scrt58] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With the recent start of the first clinical trial evaluating a human embryonic stem cell-derived therapy for the treatment of acute spinal cord injury, it is important to review the current literature examining the use of embryonic stem cells for neural tissue engineering applications with a focus on diseases and disorders that affect the central nervous system. Embryonic stem cells exhibit pluripotency and thus can differentiate into any cell type found in the body, including those found in the nervous system. A range of studies have investigated how to direct the differentiation of embryonic cells into specific neural phenotypes using a variety of cues to achieve the goal of replacing diseased or damaged neural tissue. Additionally, the recent development of induced pluripotent stem cells provides an intriguing alternative to the use of human embryonic stem cell lines for these applications. This review will discuss relevant studies that have used embryonic stem cells to replicate the tissue found in the central nervous system as well as evaluate the potential of induced pluripotent stem cells for the aforementioned applications.
Collapse
Affiliation(s)
- Stephanie M Willerth
- Department of Mechanical Engineering, University of Victoria, PO Box 3055, STN CSC, Victoria, British Columbia, V8W 3P6 Canada.
| |
Collapse
|
37
|
Belinsky GS, Moore AR, Short SM, Rich MT, Antic SD. Physiological properties of neurons derived from human embryonic stem cells using a dibutyryl cyclic AMP-based protocol. Stem Cells Dev 2011; 20:1733-46. [PMID: 21226567 DOI: 10.1089/scd.2010.0501] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neurons derived from human embryonic stem cells hold promise for the therapy of neurological diseases. Quality inspection of human embryonic stem cell-derived neurons has often been based on immunolabeling for neuronal markers. Here we put emphasis on their physiological properties. Electrophysiological measurements were carried out systematically at different stages of neuronal in vitro development, including the very early stage, neuroepithelial rosettes. Developing human neurons are able to generate action potentials (APs) as early as 10 days after the start of differentiation. Tyrosine hydroxylase (TH)-positive (putative dopaminergic, DA) neurons tend to aggregate into clumps, and their overall yield per coverslip is relatively low (8.3%) because of areas void of DA neurons. On the same in vitro day, neighboring neurons can be in very different stages of differentiation, including repetitive AP firing, single full-size AP, and abortive AP. Similarly, the basic electrophysiological parameters (resting membrane potential, input resistance, peak sodium, and peak potassium currents) are scattered in a wide range. Visual appearance of differentiating neurons, and number of primary and secondary dendrites cannot be used to predict the peak sodium current or AP firing properties of cultured neurons. Approximately 13% of neurons showed evidence of hyperpolarization-induced current (I(h)), a characteristic of DA neurons; however, no neurons with repetitive APs showed I(h). The electrophysiological measurements thus indicate that a standard DA differentiation (dibutyryl cyclic AMP-based) protocol, applied for 2-5 weeks, produces a heterogeneous ensemble of mostly immature neurons. The overall quality of human neurons under present conditions (survival factors were not used) begins to deteriorate after 12 days of differentiation.
Collapse
Affiliation(s)
- Glenn S Belinsky
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | |
Collapse
|
38
|
Lonardo E, Parish CL, Ponticelli S, Marasco D, Ribeiro D, Ruvo M, De Falco S, Arenas E, Minchiotti G. A small synthetic cripto blocking Peptide improves neural induction, dopaminergic differentiation, and functional integration of mouse embryonic stem cells in a rat model of Parkinson's disease. Stem Cells 2011; 28:1326-37. [PMID: 20641036 DOI: 10.1002/stem.458] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cripto is a glycosylphosphatidylinositol-anchored coreceptor that binds Nodal and the activin type I (ALK)-4 receptor, and is involved in cardiac differentiation of mouse embryonic stem cells (mESCs). Interestingly, genetic ablation of cripto results in increased neuralization and midbrain dopaminergic (DA) differentiation of mESCs, as well as improved DA cell replacement therapy (CRT) in a model of Parkinson's disease (PD). In this study, we developed a Cripto specific blocking tool that would mimic the deletion of cripto, but could be easily applied to embryonic stem cell (ESC) lines without the need of genetic manipulation. We thus screened a combinatorial peptide library and identified a tetrameric tripeptide, Cripto blocking peptide (BP), which prevents Cripto/ALK-4 receptor interaction and interferes with Cripto signaling. Cripto BP treatment favored neuroectoderm formation and promoted midbrain DA neuron differentiation of mESCs in vitro and in vivo. Remarkably, Cripto BP-treated ESCs, when transplanted into the striatum of PD rats, enhanced functional recovery and reduced tumor formation, mimicking the effect of genetic ablation of cripto. We therefore suggest that specific blockers such as Cripto BP may be used to improve the differentiation of ESC-derived DA neurons in vitro and their engraftment in vivo, bringing us closer towards an application of ESCs in CRT.
Collapse
Affiliation(s)
- Enza Lonardo
- Stem Cell Fate Laboratory, Institute of Genetics and Biophysics, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The great potential of induced pluripotent cells (iPS) cells is that it allows the possibility of deriving pluripotent stem cells from any human patient. Generation of patient-derived stem cells serves as a great source for developing cell replacement therapies and also for creating human cellular model systems of specific diseases or disorders. This is only of benefit if there are well-established differentiation assay systems to generate the cell types of interest. This chapter describes robust and well-characterized protocols for differentiating iPS cells to neural progenitors, neurons, glia and neural crest cells. These established assays can be applied to iPS cell lines derived from patients with neurodegenerative disorders to study cellular mechanisms associated with neurodegeneration as well as investigating the regenerative potential of patient derived stem cells.
Collapse
Affiliation(s)
- Mark Denham
- Centre for Neuroscience, Department of Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
40
|
Morizane A, Doi D, Kikuchi T, Nishimura K, Takahashi J. Small-molecule inhibitors of bone morphogenic protein and activin/nodal signals promote highly efficient neural induction from human pluripotent stem cells. J Neurosci Res 2010; 89:117-26. [PMID: 21162120 DOI: 10.1002/jnr.22547] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 09/10/2010] [Accepted: 10/10/2010] [Indexed: 12/16/2022]
Abstract
The balance of bone morphogenic protein (BMP), transforming growth factor-β (TGFβ)/activin/nodal, and Wnt signals regulates the early lineage segregation of human embryonic stem cells (ESCs). Here we demonstrate that a combination of small-molecule inhibitors of BMP (Dorsomorphin) and TGFβ/activin/nodal (SB431542) signals promotes highly efficient neural induction from both human ESCs and induced pluripotent stem cells (iPSCs). The combination of small molecules had effects on both cell survival and purity of neural differentiation, under conditions of stromal (PA6) cell coculture and feeder-free floating aggregation culture, for all seven pluripotent stem cell lines that we studied, including three ESC and four iPSC lines. Small molecule compounds are stable and cost effective, so our findings provide a promising strategy for controlled production of neurons in regenerative medicine.
Collapse
Affiliation(s)
- Asuka Morizane
- Department of Biological Repair, Institute for Frontier Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
41
|
Vazin T, Freed WJ. Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci 2010; 28:589-603. [PMID: 20714081 DOI: 10.3233/rnn-2010-0543] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The greatest therapeutic promise of human embryonic stem cells (hESC) is to generate specialized cells to replace damaged tissue in patients suffering from various degenerative diseases. However, the signaling mechanisms involved in lineage restriction of ESC to adopt various cellular phenotypes are still under investigation. Furthermore, for progression of hESC-based therapies towards clinical applications, appropriate culture conditions must be developed to generate genetically stable homogenous populations of cells, to hinder possible adverse effects following transplantation. Other critical challenges that must be addressed for successful cell implantation include problems related to survival and functional efficacy of the grafted cells. This review initially describes the derivation of hESC and focuses on recent advances in generation, characterization, and maintenance of these cells. We also give an overview of original and emerging differentiation strategies used to convert hESC to different cell types. Finally, we will discuss transplantation studies of hESC-derived cells with respect to safety and functional recovery.
Collapse
Affiliation(s)
- Tandis Vazin
- Development and Plasticity Section, Cellular Neurobiology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, USA.
| | | |
Collapse
|
42
|
Iyer S, Alsayegh K, Abraham S, Rao RR. Stem cell-based models and therapies for neurodegenerative diseases. Crit Rev Biomed Eng 2010; 37:321-53. [PMID: 20528730 DOI: 10.1615/critrevbiomedeng.v37.i4-5.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multiple neurodegenerative disorders typically result from irrevocable damage and improper functioning of specialized neuronal cells or populations of neuronal cells. These disorders have the potential to contribute to an already overburdened health care system unless the progression of neurodegeneration can be altered. Progress in understanding neurodegenerative cell biology has been hampered by a lack of predictive and, some would claim, relevant cellular models. Additionally, the research needed to develop new drugs and determine methods for repair or replacement of damaged neurons is severely hampered by the lack of an adequate in vitro human neuron cell-based model. In this context, pluripotent stem cells and neural progenitors and their properties including unlimited proliferation, plasticity to generate other cell types, and a readily available source of cells--pose an excellent alternative to ex vivo primary cultures or established immortalized cell lines in contributing to our understanding of neurodegenerative cell biology and our ability to analyze the therapeutic or cytotoxic effects of chemicals, drugs, and xenobiotics. Many questions that define the underlying "genesis" of the neuronal death in these disorders also remain unanswered, with evidence suggesting a key role for mitochondrial dysfunction. The assessment of stem cells, neural progenitors, and engineered adult cells can provide useful insights into neuronal development and neurodegenerative processes. Finally, the potential for a combination of cell- and gene-based therapeutics for neurodegenerative disorders is also discussed.
Collapse
Affiliation(s)
- Shilpa Iyer
- Department of Neurology, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | |
Collapse
|
43
|
Li M, Zhang SZ, Guo YW, Cai YQ, Yan ZJ, Zou Z, Jiang XD, Ke YQ, He XY, Jin ZL, Lu GH, Su DQ. Human umbilical vein-derived dopaminergic-like cell transplantation with nerve growth factor ameliorates motor dysfunction in a rat model of Parkinson's disease. Neurochem Res 2010; 35:1522-9. [PMID: 20658188 DOI: 10.1007/s11064-010-0211-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2010] [Indexed: 12/21/2022]
Abstract
Mesenchymal stem cells are capable of differentiating into dopaminergic-like cells, but currently no report has been available to describe the induction of human umbilical vein mesenchymal stem cells (HUVMSCs) into dopaminergic-like cells. In this study, we induced HUVMSCs in vitro into neurospheres constituted by neural stem-like cells, and further into cells bearing strong morphological, phenotypic and functional resemblances with dopaminergic-like cells. These HUVMSC-derived dopaminergic-like cells, after grafting into the brain of a rat model of Parkinson's disease (PD), showed a partial therapeutic effect in terms of the behavioral improvement. Nerve growth factor was reported to improve the local microenvironment of the grafted cells, and we therefore further tested the effect of dopaminergic-like cell grafting combined with nerve growth factor (NGF) administration at the site of cell transplantation. The results showed that NGF administration significantly promoted the survival of the grafted cells in the host brain and enhanced the content of dopaminergic in the local brain tissue. Behavioral test demonstrated a significant improvement of the motor function of the PD rats after dopaminergic-like cell grafting with NGF administration as compared with that of rats receiving the cell grafting only. These results suggest that transplantation of the dopaminergic-like cells combined with NGF administration may represent a new strategy of stem cell therapy for PD.
Collapse
Affiliation(s)
- Ming Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Cooper O, Hargus G, Deleidi M, Blak A, Osborn T, Marlow E, Lee K, Levy A, Perez-Torres E, Yow A, Isacson O. Differentiation of human ES and Parkinson's disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol Cell Neurosci 2010; 45:258-66. [PMID: 20603216 DOI: 10.1016/j.mcn.2010.06.017] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/23/2010] [Accepted: 06/25/2010] [Indexed: 12/16/2022] Open
Abstract
The cardinal motor symptoms of Parkinson's disease (PD) are caused by the vulnerability to dysfunction and degeneration of ventral midbrain (VM) dopaminergic (DA) neurons. A major limitation for experimental studies of current ES/iPS cell differentiation protocols is the lack of VM DA neurons with a stable phenotype as defined by an expression marker code of FOXA2/TH/β-tubulin. Here we demonstrate a combination of three modifications that were required to produce VM DA neurons. Firstly, early and specific exposure to 10(-)(8)M (low dose) retinoic acid improved the regional identity of neural progenitor cells derived from human ES cells, PD or healthy subject-specific iPS cells. Secondly, a high activity form of human sonic hedgehog established a sizeable FOXA2(+) neural progenitor cell population in vitro. Thirdly, early exposure to FGF8a, rather than Fgf8b, and WNT1 was required for robust differentiation of the FOXA2(+) floor plate-like human neural progenitor cells into FOXA2(+) DA neurons. FOXA2(+) DA neurons were also generated when this protocol was adapted to feeder-free conditions. In summary, this new human ES and iPS cell differentiation protocol using FGF8a, WNT1, low dose retinoic acid and a high activity form of SHH can generate human VM DA neurons that are required for relevant new bioassays, drug discovery and cell based therapies for PD.
Collapse
Affiliation(s)
- Oliver Cooper
- Neuroregeneration Laboratories, Harvard Medical School/McLean Hospital, NINDS Udall Parkinson's Disease Research Center of Excellence, 115 Mill Street, Belmont, MA 02478, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists. Biochem J 2010; 429:1-12. [PMID: 20545624 DOI: 10.1042/bj20100305] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The BMPs (bone morphogenetic proteins) and the GDFs (growth and differentiation factors) together form a single family of cystine-knot cytokines, sharing the characteristic fold of the TGFbeta (transforming growth factor-beta) superfamily. Besides the ability to induce bone formation, which gave the BMPs their name, the BMP/GDFs display morphogenetic activities in the development of a wide range of tissues. BMP/GDF homo- and hetero-dimers interact with combinations of type I and type II receptor dimers to produce multiple possible signalling complexes, leading to the activation of one of two competing sets of SMAD transcription factors. BMP/GDFs have highly specific and localized functions. These are regulated in a number of ways, including the developmental restriction of BMP/GDF expression and through the secretion of several specific BMP antagonist proteins that bind with high affinity to the cytokines. Curiously, a number of these antagonists are also members of the TGF-beta superfamily. Finally a number of both the BMP/GDFs and their antagonists interact with the heparan sulphate side chains of cell-surface and extracellular-matrix proteoglycans.
Collapse
|
46
|
Zhou W, Lee YM, Guy VC, Freed CR. Embryonic stem cells with GFP knocked into the dopamine transporter yield purified dopamine neurons in vitro and from knock-in mice. Stem Cells 2010; 27:2952-61. [PMID: 19750538 DOI: 10.1002/stem.216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Parkinson's disease (PD) is characterized by the selective loss of midbrain dopamine neurons. Neural transplantation with fetal dopamine neurons can be an effective therapy for patients with PD, but recovery of human fetal cells is difficult. Scarcity of tissue has limited clinical application to a small number of research subjects worldwide. Selective differentiation of embryonic stem cells (ESCs) to dopamine neurons could lead to an unlimited supply of cells for expanded clinical transplantation. To facilitate the differentiation and purification of dopamine neurons, the green fluorescent protein (GFP) gene was inserted into the dopamine transporter (DAT) locus in mouse ESCs using homologous recombination. From these DAT-GFP ESCs, dopamine neurons expressing GFP were successfully produced by in vitro differentiation. The DAT-GFP ESCs were used to generate DAT-GFP knock-in mice. We have found that GFP was colocalized with DAT, Pitx3, Engrailed-1, and tyrosine hydroxylase-positive cells in midbrain, hypothalamus, and olfactory bulb but not in noradrenergic cell regions or other ectopic sites. The GFP-positive dopamine neurons could be isolated from embryonic day-15 ventral midbrain by fluorescence activated cell sorting. These purified dopamine neurons survived reculture and expressed tyrosine hydroxylase and DAT when cocultured with mouse astrocytes or striatal cells. Animals homozygous for DAT-GFP were hyperactive because they had no functional DAT protein. These DAT-GFP knock-in ESCs and mice provide unique tools for purifying dopamine neurons to study their physiology, pharmacology, and genetic profiles.
Collapse
Affiliation(s)
- Wenbo Zhou
- Division of Clinical Pharmacology and Toxicology, Department of Medicine, Neuroscience Program, University of Colorado Denver, Aurora, Colorado 80045, USA.
| | | | | | | |
Collapse
|
47
|
Fricker-Gates RA, Gates MA. Stem cell-derived dopamine neurons for brain repair in Parkinson’s disease. Regen Med 2010; 5:267-78. [DOI: 10.2217/rme.10.3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One of the prospects for a curative treatment for Parkinson’s disease is to replace the lost dopaminergic neurons. Preclinical and clinical trials have demonstrated that dissected fetal dopaminergic neurons have the potential to markedly improve motor function in animal models and Parkinson’s disease patients. However, this source of cells will never be sufficient to use as a widespread therapy. Over the last 20 years, scientists have been searching for other reliable sources of midbrain dopamine neurons, and stem cells appear to be strong candidates. This article reviews the potential of different types of stem cells, from embryonic to adult to induced pluripotent stem cells, to see how well the cells can be differentiated into fully functional dopamine neurons, which cells might be the best candidates and how much more research is required before stem cell technology might be translated to a clinical therapy for Parkinson’s disease.
Collapse
|
48
|
Zhou W, Freed CR. Adenoviral Gene Delivery Can Reprogram Human Fibroblasts to Induced Pluripotent Stem Cells. Stem Cells 2009; 27:2667-74. [DOI: 10.1002/stem.201] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Future directions: use of interventional MRI for cell-based therapy of Parkinson disease. Neurosurg Clin N Am 2009; 20:211-8. [PMID: 19555884 DOI: 10.1016/j.nec.2009.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transplantation of neural cells for the treatment of neurologic disorders has garnered much attention and considerable enthusiasm from patients and physicians alike. Cell-based therapies have been proposed for a wide range of central nervous system pathologies ranging from stroke and trauma to demyelinating disorders and neurodegenerative diseases. Notably, cell transplantation for Parkinson disease (PD) has become even more attractive with the rapid advances in derivation of dopaminergic neurons from human embryonic stem cells. This article briefly reviews some of the relevant issues regarding the transplantation of cells for treatment of PD and hypothesizes how interventional MRI may be useful to optimize the surgical delivery of cells for PD and other central nervous system disorders.
Collapse
|
50
|
Kang HW, Walvick R, Bogdanov A. In vitro and In vivo imaging of antivasculogenesis induced by Noggin protein expression in human venous endothelial cells. FASEB J 2009; 23:4126-34. [PMID: 19692649 DOI: 10.1096/fj.08-127795] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Noggin protein is a potent bone morphogenetic protein (BMP) antagonist capable of inhibiting vasculogenesis even in the presence of provasculogenic VEGF and FGF-2. We found that human umbilical vein endothelial cells (HUVECs) do not express Noggin in culture and used these cells for modeling of antivasculogenesis. We hypothesized that high-efficiency transduction of HUVECs with bicistronic lentiviral vector encoding Noggin and enhanced green fluorescent protein (EGFP) enables direct visualization of Noggin effects in homogenous primary cell populations in vitro and in vivo. By comparing HUVECs transduced with a control GFP and GFP/Noggin expression cassettes, we showed that constitutive and orthotopic Noggin protein expression did not influence cell proliferation, down-regulated BMP-2 expression, and showed no effect on BMP receptor transcripts. We demonstrated that in contrast to GFP-only control, Noggin expression in endothelial cells abrogated endothelial migration in response to monolayer injury, blocked endothelial transmigration, and caused abrogation of cord formation in vitro. Adding exogenous BMP-4 restored the formation of cords. Imaging experiments in vivo investigated vessel formation in Matrigel implants in athymic mice by utilizing GFP imaging or magnetic resonance imaging of perfusion in the implants. Both approaches demonstrated the lack of functional vessel formation after the adoptive transfer of GFP/Noggin-expressing human endothelial cells in mice.
Collapse
Affiliation(s)
- Hye-Won Kang
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | |
Collapse
|