1
|
Abdulhasan M, Ruden X, Marben T, Harris S, Ruden DM, Awonuga AO, Puscheck EE, Rappolee DA. Using Live Imaging and Fluorescence Ubiquitinated Cell Cycle Indicator Embryonic Stem Cells to Distinguish G1 Cell Cycle Delays for General Stressors like Perfluoro-Octanoic Acid and Hyperosmotic Sorbitol or G2 Cell Cycle Delay for Mutagenic Stressors like Benzo(a)pyrene. Stem Cells Dev 2022; 31:296-310. [PMID: 35678645 PMCID: PMC9232235 DOI: 10.1089/scd.2021.0330] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/17/2022] [Indexed: 12/15/2022] Open
Abstract
Lowest observable adverse effects level (LOAEL) is a standard point-of-departure dose in toxicology. However, first observable adverse effects level (FOAEL) was recently reported and is used, in this study, as one criterion to detect a mutagenic stimulus in a live imager. Fluorescence ubiquitinated cell cycle indicator (FUCCI) embryonic stem cells (ESC) are green in the S-G2-M phase of the cell cycle and not green in G1-phase. Standard media change here is a mild stress that delays G1-phase and media change increases green 2.5- to 5-fold. Since stress is mild, media change rapidly increases green cell number, but higher stresses of environmental toxicants and positive control hyperosmotic stress suppress increased green after media change. Perfluoro-octanoic acid (PFOA) and diethyl phthalate (DEP) previously suppressed progression of nongreen to green cell cycle progression. Here, bisphenol A (BPA), cortisol, and positive control hyperosmotic sorbitol also suppress green fluorescence, but benzo(a)pyrene (BaP) at high doses (10 μM) increases green fluorescence throughout the 74-h exposure. Since any stress can affect many cell cycle phases, messenger RNA (mRNA) markers are best interpreted in ratios as dose-dependent mutagens increase in G2/G1 and nonmutagens increase G1/G2. After 74-h exposure, RNAseq detects G1 and G2 markers and increasing BaP doses increase G2/G1 ratios but increasing hyperosmotic sorbitol and PFOA doses increase G1/G2 marker ratios. BaP causes rapid green increase in FOAEL at 2 h of stimulus, whereas retinoic acid caused significant green fluorescence increases only late in culture. Using a live imager to establish FOAEL and G2 delay with FUCCI ESC is a new method to allow commercial and basic developmental biologists to detect drugs and environmental stimuli that are mutagenic. Furthermore, it can be used to test compounds that prevent mutations. In longitudinal studies, uniquely provided by this viable reporter and live imager protocol, follow-up can be done to test whether the preventative compound itself causes harm.
Collapse
Affiliation(s)
- Mohammed Abdulhasan
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
| | - Ximena Ruden
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Teya Marben
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, Detroit, Michigan, USA
| | - Sean Harris
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas M. Ruden
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Awoniyi O. Awonuga
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Elizabeth E. Puscheck
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
- Invia Fertility Clinics, Hoffman Estates, Illinois, USA
| | - Daniel A. Rappolee
- CS Mott Center for Human Growth and Development, Reproductive Endocrinology and Infertility, Department of Ob/Gyn, Wayne State University School of Medicine, Detroit, Michigan, USA
- Reproductive Stress 3M, Inc., Grosse Pointe Farms, Michigan, USA
- Program for Reproductive Sciences, Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biology, University of Windsor, Windsor, Canada
| |
Collapse
|
2
|
Muhseena N K, Mathukkada S, Das SP, Laha S. The repair gene BACH1 - a potential oncogene. Oncol Rev 2021; 15:519. [PMID: 34322202 PMCID: PMC8273628 DOI: 10.4081/oncol.2021.519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
BACH1 encodes for a protein that belongs to RecQ DEAH helicase family and interacts with the BRCT repeats of BRCA1. The N-terminus of BACH1 functions in DNA metabolism as DNA-dependent ATPase and helicase. The C-terminus consists of BRCT domain, which interacts with BRCA1 and this interaction is one of the major regulator of BACH1 function. BACH1 plays important roles both in phosphorylated as well as dephosphorylated state and functions in coordination with multiple signaling molecules. The active helicase property of BACH1 is maintained by its dephosphorylated state. Imbalance between these two states enhances the development and progression of the diseased condition. Currently BACH1 is known as a tumor suppressor gene based on the presence of its clinically relevant mutations in different cancers. Through this review we have justified it to be named as an oncogene. In this review, we have explained the mechanism of how BACH1 in collaboration with BRCA1 or independently regulates various pathways like cell cycle progression, DNA replication during both normal and stressed situation, recombination and repair of damaged DNA, chromatin remodeling and epigenetic modifications. Mutation and overexpression of BACH1 are significantly found in different cancer types. This review enlists the molecular players which interact with BACH1 to regulate DNA metabolic functions, thereby revealing its potential for cancer therapeutics. We have identified the most mutated functional domain of BACH1, the hot spot for tumorigenesis, justifying it as a target molecule in different cancer types for therapeutics. BACH1 has high potentials of transforming a normal cell into a tumor cell if compromised under certain circumstances. Thus, through this review, we justify BACH1 as an oncogene along with the existing role of being a tumor suppressant.
Collapse
Affiliation(s)
- Katheeja Muhseena N
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Sooraj Mathukkada
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Shankar Prasad Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| | - Suparna Laha
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
3
|
Tachon G, Cortes U, Guichet PO, Rivet P, Balbous A, Masliantsev K, Berger A, Boissonnade O, Wager M, Karayan-Tapon L. Cell Cycle Changes after Glioblastoma Stem Cell Irradiation: The Major Role of RAD51. Int J Mol Sci 2018; 19:ijms19103018. [PMID: 30282933 PMCID: PMC6213228 DOI: 10.3390/ijms19103018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
“Glioma Stem Cells” (GSCs) are known to play a role in glioblastoma (GBM) recurrence. Homologous recombination (HR) defects and cell cycle checkpoint abnormalities can contribute concurrently to the radioresistance of GSCs. DNA repair protein RAD51 homolog 1 (RAD51) is a crucial protein for HR and its inhibition has been shown to sensitize GSCs to irradiation. The aim of this study was to examine the consequences of ionizing radiation (IR) for cell cycle progression in GSCs. In addition, we intended to assess the potential effect of RAD51 inhibition on cell cycle progression. Five radiosensitive GSC lines and five GSC lines that were previously characterized as radioresistant were exposed to 4Gy IR, and cell cycle analysis was done by fluorescence-activated cell sorting (FACS) at 24, 48, 72, and 96 h with or without RAD51 inhibitor. Following 4Gy IR, all GSC lines presented a significant increase in G2 phase at 24 h, which was maintained over 72 h. In the presence of RAD51 inhibitor, radioresistant GSCs showed delayed G2 arrest post-irradiation for up to 48 h. This study demonstrates that all GSCs can promote G2 arrest in response to radiation-induced DNA damage. However, following RAD51 inhibition, the cell cycle checkpoint response differed. This study contributes to the characterization of the radioresistance mechanisms of GSCs, thereby supporting the rationale of targeting RAD51-dependent repair pathways in view of radiosensitizing GSCs.
Collapse
Affiliation(s)
- Gaelle Tachon
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| | - Ulrich Cortes
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Pierre-Olivier Guichet
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Pierre Rivet
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Anais Balbous
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Konstantin Masliantsev
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| | - Antoine Berger
- Département d'Oncologie Radiothérapie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Odile Boissonnade
- Département d'Oncologie Radiothérapie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Michel Wager
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
- Département de Neurochirurgie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Lucie Karayan-Tapon
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| |
Collapse
|
4
|
Smad inhibitor induces CSC differentiation for effective chemosensitization in cyclin D1- and TGF-β/Smad-regulated liver cancer stem cell-like cells. Oncotarget 2018; 8:38811-38824. [PMID: 28415588 PMCID: PMC5503574 DOI: 10.18632/oncotarget.16402] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding cancer stem cell (CSC) maintenance pathways is critical for the development of CSC-targeting therapy. Here, we investigated the functional role of the cyclin D1-dependent activation of Smad2/3 and Smad4 in hepatocellular carcinoma (HCC) CSCs and in HCC primary tumors. Cyclin D1 sphere-derived xenograft tumor models were employed to evaluate the therapeutic effects of a Smad inhibitor in combination with chemotherapy. Cyclin D1 overexpression confers stemness properties by enhancing single sphere formation, enhancing the CD90+ and EpCAM+ population, increasing stemness gene expression, and increasing chemoresistance. Cyclin D1 interacts with and activates Smad2/3 and Smad4 to result in cyclin D1-Smad2/3-Smad4 signaling-regulated liver CSC self-renewal. The cyclin D1-dependent activation of Smad2/3 and Smad4 is also found in HCC patients and predicts disease progression. A Smad inhibitor impaired cyclin D1-Smad-mediated self-renewal, resulting in the chemosensitization. Thus, pretreatment with a Smad inhibitor followed by chemotherapy not only successfully suppressed tumor growth but also eliminated 57% of the tumors in a cyclin D1 sphere-derived xenograft model. Together, The cyclin D1-mediated activation of Smad2/3 and Smad4 is an important regulatory mechanism in liver CSC self-renewal and stemness. Accordingly, a Smad inhibitor induced CSC differentiation and consequently significant chemosensitization, which could be an effective strategy to target CSCs.
Collapse
|
5
|
Park SJ, Cho W, Kim MS, Gu BK, Kang CM, Khang G, Kim C. Substance‐P and transforming growth factor‐β in chitosan microparticle‐pluronic hydrogel accelerates regenerative wound repair of skin injury by local ionizing radiation. J Tissue Eng Regen Med 2017; 12:890-896. [DOI: 10.1002/term.2445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/07/2017] [Accepted: 05/03/2017] [Indexed: 01/18/2023]
Affiliation(s)
- Sang Jun Park
- Laboratory of Tissue EngineeringKorea Institute of Radiological and Medical Sciences Seoul Korea
| | - Wheemoon Cho
- Laboratory of Tissue EngineeringKorea Institute of Radiological and Medical Sciences Seoul Korea
- Department of Genetic EngineeringKyung Hee University Yongin Korea
| | - Min Sup Kim
- Laboratory of Tissue EngineeringKorea Institute of Radiological and Medical Sciences Seoul Korea
| | - Bon Kang Gu
- Laboratory of Tissue EngineeringKorea Institute of Radiological and Medical Sciences Seoul Korea
| | - Chang Mo Kang
- Laboratory of Tissue EngineeringKorea Institute of Radiological and Medical Sciences Seoul Korea
| | - Gilson Khang
- Department of Polymer‐Nano Science and Technology, Polymer Fusion Research CenterChonbuk National University Jeonju Korea
| | - Chun‐Ho Kim
- Laboratory of Tissue EngineeringKorea Institute of Radiological and Medical Sciences Seoul Korea
| |
Collapse
|
6
|
Wang XQ, Lo CM, Chen L, Ngan ESW, Xu A, Poon RY. CDK1-PDK1-PI3K/Akt signaling pathway regulates embryonic and induced pluripotency. Cell Death Differ 2016; 24:38-48. [PMID: 27636107 PMCID: PMC5260505 DOI: 10.1038/cdd.2016.84] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 02/08/2023] Open
Abstract
The mechanisms of how signaling pathways are coordinated and integrated for the
maintenance of the self-renewal of human embryonic stem cells (hESCs) and the
acquisition of pluripotency in reprogramming are still only partly understood.
CDK1 is a key regulator of mitosis. Recently, CDK1 has been shown to be involved
in regulating self-renewal of stem cells, even though the mechanistic role of
how CDK1 regulates pluripotency is unknown. In this report, we aim to understand
how CDK1 can control pluripotency by reducing CDK1 activity to a level that has
no effect on cell cycle progression. We demonstrated that high levels of CDK1 is
associated with the pluripotency stage of hESCs; and decreased CDK1 activity to
a level without perturbing the cell cycle is sufficient to induce
differentiation. CDK1 specifically targets the phosphorylation of PDK1 and
consequently the activity of PI3K/Akt and its effectors ERK and
GSK3β. Evidence of the reversion of inactive CDK1-mediated
differentiation by the inhibition of Akt signaling effectors suggests that the
CDK1-PDK1-PI3K/Akt kinase cascade is a functional signaling pathway for the
pluripotency of hESCs. Moreover, cyclin B1-CDK1 complexes promote somatic
reprogramming efficiency, probably by regulating the maturation of induced
pluripotent stem cells (iPSCs), as cyclin B1 stimulates a higher cellular level
of LIN28A, suggesting that monitoring iPSC factors could be a new path for the
enhancement of reprogramming efficiency. Together, we demonstrate an essential
role for the CDK1-PDK1-PI3K/Akt kinase signaling pathway in the regulation
of self-renewal, differentiation, and somatic reprogramming, which provides a
novel kinase cascade mechanism for pluripotency control and acquisition.
Collapse
Affiliation(s)
- Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, Hong Kong, China.,State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Chung Mau Lo
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Lin Chen
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Elly S-W Ngan
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Randy Yc Poon
- Division of Life Science, Center for Cancer Research, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
7
|
Sharlow ER, Leimgruber S, Lira A, McConnell MJ, Norambuena A, Bloom GS, Epperly MW, Greenberger JS, Lazo JS. A Small Molecule Screen Exposes mTOR Signaling Pathway Involvement in Radiation-Induced Apoptosis. ACS Chem Biol 2016; 11:1428-37. [PMID: 26938669 DOI: 10.1021/acschembio.5b00909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Individuals are at risk of exposure to acute ionizing radiation (IR) from a nuclear accident or terrorism, but we lack effective therapies to mitigate the lethal IR effects. In the current study, we exploited an optimized, cell-based, high throughput screening assay to interrogate a small molecule library comprising 3437 known pharmacologically active compounds for mitigation against IR-induced apoptosis. Thirty-three library compounds significantly reduced apoptosis when administered 1 h after 4 Gy IR. Two- or three-dimensional computational structural analyses of the compounds indicated only one or two chemical clusters with most of the compounds being unique structures. The mechanistic target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, was the most potent compound, and it mitigated apoptosis by 50% at 200 ± 50 pM. Other mTOR inhibitors, namely everolimus, AZD8055, and torin 1, also suppressed apoptosis, providing additional pharmacological evidence for mTOR pathway involvement in regulating cell death after IR. Everolimus and torin 1 treatment after IR decreased the S phase population and enforced both G1 and G2 phase arrest. This prorogation of cell cycle progression was accompanied by decreased IR-induced DNA damage measured by γH2AX phosphorylation at Ser139. RNA interference-mediated knockdown of the respective mTORC1 and mTORC2 subunits, Raptor or Rictor, also mitigated IR-induced apoptosis. Collectively, this study suggests a central role for the mTOR signaling in the cytotoxic response to IR and offers a useful platform to probe for additional agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael W. Epperly
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S. Greenberger
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | |
Collapse
|
8
|
Tapia-Limonchi R, Cahuana GM, Caballano-Infantes E, Salguero-Aranda C, Beltran-Povea A, Hitos AB, Hmadcha A, Martin F, Soria B, Bedoya FJ, Tejedo JR. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation. J Cell Biochem 2016; 117:2078-88. [PMID: 26853909 DOI: 10.1002/jcb.25513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2016] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain
| | - Gladys M Cahuana
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carmen Salguero-Aranda
- Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Amparo Beltran-Povea
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain
| | - Ana B Hitos
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Abdelkrim Hmadcha
- RED-TERCEL, Seville, Spain.,Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Franz Martin
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Bernat Soria
- RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Andalusian Center for Molecular Biology and Regenerative Medicine, Fundación Progreso y Salud, Seville, Spain
| | - Francisco J Bedoya
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan R Tejedo
- Andalusian Center for Molecular Biology and Regenerative Medicine, University Pablo de Olavide, Seville, Spain.,RED-TERCEL, Seville, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Zeira E, Abramovitch R, Meir K, Ram SE, Gil Y, Bulvik B, Bromberg Z, Levkovitch O, Nahmansson N, Adar R, Reubinoff B, Galun E, Gropp M. The knockdown of H19lncRNA reveals its regulatory role in pluripotency and tumorigenesis of human embryonic carcinoma cells. Oncotarget 2015; 6:34691-703. [PMID: 26415227 PMCID: PMC4741483 DOI: 10.18632/oncotarget.5787] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 08/31/2015] [Indexed: 12/27/2022] Open
Abstract
The function of imprinted H19 long non-coding RNA is still controversial. It is highly expressed in early embryogenesis and decreases after birth and re-expressed in cancer. To study the role of H19 in oncogenesis and pluripotency, we down-regulated H19 expression in vitro and in vivo in pluripotent human embryonic carcinoma (hEC) and embryonic stem (hES) cells. H19 knockdown resulted in a decrease in the expression of the pluripotency markers Oct4, Nanog, TRA-1-60 and TRA-1-81, and in the up-regulation of SSEA1; it further attenuated cell proliferation, decreased cell-matrix attachment, and up-regulated E-Cadherin expression. SCID-Beige mice transplanted with H19 down-regulated hEC cells exhibited slower kinetics of tumor formation, resulting in an increased animal survival. Tumors derived from H19 down-regulated cells showed a decrease in the expression of pluripotency markers and up-regulation of SSEA-1 and E-cadherin. Our results suggest that H19 oncogenicity in hEC cells is mediated through the regulation of the pluripotency state.
Collapse
Affiliation(s)
- Evelyne Zeira
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Rinat Abramovitch
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Karen Meir
- The Department of Pathology, Hadassah University Hospital, Jerusalem, Israel
| | - Sharona Even Ram
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- The Sydney and Judy Swartz Human Embryonic Stem Cell Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yaniv Gil
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- The Sydney and Judy Swartz Human Embryonic Stem Cell Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Baruch Bulvik
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Zohar Bromberg
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Or Levkovitch
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Nathalie Nahmansson
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Revital Adar
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Benjamin Reubinoff
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- The Sydney and Judy Swartz Human Embryonic Stem Cell Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Michal Gropp
- The Goldyne Savad Institute of Gene Therapy, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- The Sydney and Judy Swartz Human Embryonic Stem Cell Research Center, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
10
|
Weber TJ, Magnaldo T, Xiong Y. ALDH1A1 Deficiency in Gorlin Syndrome Suggests a Central Role for Retinoic Acid and ATM Deficits in Radiation Carcinogenesis. Proteomes 2014; 2:451-467. [PMID: 28250390 PMCID: PMC5302750 DOI: 10.3390/proteomes2030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/11/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
We hypothesize that aldehyde dehydrogenase 1A1 (ALDH1A1) deficiency will result in impaired ataxia-telangiectasia mutated (ATM) activation in a retinoic acid-sensitive fashion. Data supporting this hypothesis include (1) reduced ATM activation in irradiated primary dermal fibroblasts from ALDH1A1-deficient Gorlin syndrome patients (GDFs), relative to ALDH1A1-positive normal human dermal fibroblasts (NHDFs) and (2) increased ATM activation by X-radiation in GDFs pretreated with retinoic acid, however, the impact of donor variability on ATM activation in fibroblasts was not assessed and is a prudent consideration in future studies. Clonogenic survival of irradiated cells showed differential responses to retinoic acid as a function of treatment time. Long-term (5 Day) retinoic acid treatment functioned as a radiosensitizer and was associated with downregulation of ATM protein levels. Short-term (7 h) retinoic acid treatment showed a trend toward increased survival of irradiated cells and did not downregulate ATM protein levels. Using a newly developed IncubATR technology, which defines changes in bulk chemical bond patterns in live cells, we can discriminate between the NHDF and GDF phenotypes, but treatment of GDFs with retinoic acid does not induce reversion of bulk chemical bond patterns associated with GDFs toward the NHDF phenotype. Collectively, our preliminary investigation of the Gorlin phenotype has identified deficient ALDH1A1 expression associated with deficient ATM activation as a possible susceptibility factor that is consistent with the high incidence of spontaneous and radiation-induced carcinogenesis in these patients. The IncubATR technology exhibits sufficient sensitivity to detect phenotypic differences in live cells that may be relevant to radiation health effects.
Collapse
Affiliation(s)
- Thomas J Weber
- Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Thierry Magnaldo
- Faculté de Médicine, 2ème étage, CNRS UMR 6267-INSERM U998-UNSA, Nice 06107 Cedex 2, France.
| | - Yijia Xiong
- College of Osteopathic Medicine of the Pacific-Northwest, Western University of Health Sciences, Lebanon, OR 97355, USA.
| |
Collapse
|
11
|
The checkpoint 1 kinase inhibitor LY2603618 induces cell cycle arrest, DNA damage response and autophagy in cancer cells. Apoptosis 2014; 19:1389-98. [DOI: 10.1007/s10495-014-1010-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
12
|
Wang XQ, Chan KK, Ming X, Lui VCH, Poon RYC, Lo CM, Norbury C, Poon RTP. G1 checkpoint establishment in vivo during embryonic liver development. BMC DEVELOPMENTAL BIOLOGY 2014; 14:23. [PMID: 24886500 PMCID: PMC4031160 DOI: 10.1186/1471-213x-14-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/09/2014] [Indexed: 11/13/2022]
Abstract
Background The DNA damage-mediated cell cycle checkpoint is an essential mechanism in the DNA damage response (DDR). During embryonic development, the characteristics of cell cycle and DNA damage checkpoint evolve from an extremely short G1 cell phase and lacking G1 checkpoint to lengthening G1 phase and the establishment of the G1 checkpoint. However, the regulatory mechanisms governing these transitions are not well understood. In this study, pregnant mice were exposed to ionizing radiation (IR) to induce DNA damage at different embryonic stages; the kinetics and mechanisms of the establishment of DNA damage-mediated G1 checkpoint in embryonic liver were investigated. Results We found that the G2 cell cycle arrest was the first response to DNA damage in early developmental stages. Starting at E13.5/E15.5, IR mediated inhibition of the G1 to S phase transition became evident. Concomitantly, IR induced the robust expression of p21 and suppressed Cdk2/cyclin E activity, which might involve in the initiation of G1 checkpoint. The established G1 cell cycle checkpoint, in combination with an enhanced DNA repair capacity at E15.5, displayed biologically protective effects of repairing DNA double-strand breaks (DSBs) and reducing apoptosis in the short term as well as reducing chromosome deletion and breakage in the long term. Conclusion Our study is the first to demonstrate the establishment of the DNA damage-mediated G1 cell cycle checkpoint in liver cells during embryogenesis and its in vivo biological effects during embryonic liver development.
Collapse
Affiliation(s)
- Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Wright AT, Magnaldo T, Sontag RL, Anderson LN, Sadler NC, Piehowski PD, Gache Y, Weber TJ. Deficient expression of aldehyde dehydrogenase 1A1 is consistent with increased sensitivity of Gorlin syndrome patients to radiation carcinogenesis. Mol Carcinog 2013; 54:473-84. [PMID: 24285572 DOI: 10.1002/mc.22115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/28/2013] [Accepted: 11/07/2013] [Indexed: 12/30/2022]
Abstract
Human phenotypes that are highly susceptible to radiation carcinogenesis have been identified. Sensitive phenotypes often display robust regulation of molecular features that modify biological response, which can facilitate identification of the pathways/networks that contribute to pathophysiological outcomes. Here we interrogate primary dermal fibroblasts isolated from Gorlin syndrome patients (GDFs), who display a pronounced inducible tumorigenic response to radiation, in comparison to normal human dermal fibroblasts (NHDFs). Our approach exploits newly developed thiol reactive probes to define changes in protein thiol profiles in live cell studies, which minimizes artifacts associated with cell lysis. Redox probes revealed deficient expression of an apparent 55 kDa protein thiol in GDFs from independent Gorlin syndrome patients, compared with NHDFs. Proteomics tentatively identified this protein as aldehyde dehydrogenase 1A1 (ALDH1A1), a key enzyme regulating retinoic acid synthesis, and ALDH1A1 protein deficiency in GDFs was confirmed by Western blot. A number of additional protein thiol differences in GDFs were identified, including radiation responsive annexin family members and lamin A/C. Collectively, candidates identified in our study have plausible implications for radiation health effects and cancer susceptibility.
Collapse
Affiliation(s)
- Aaron T Wright
- Omic Biological Applications, Pacific Northwest National Laboratory, Richland, Washington
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lazo JS, Sharlow ER, Epperly MW, Lira A, Leimgruber S, Skoda EM, Wipf P, Greenberger JS. Pharmacologic profiling of phosphoinositide 3-kinase inhibitors as mitigators of ionizing radiation-induced cell death. J Pharmacol Exp Ther 2013; 347:669-80. [PMID: 24068833 DOI: 10.1124/jpet.113.208421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ionizing radiation (IR) induces genotoxic stress that triggers adaptive cellular responses, such as activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade. Pluripotent cells are the most important population affected by IR because they are required for cellular replenishment. Despite the clear danger to large population centers, we still lack safe and effective therapies to abrogate the life-threatening effects of any accidental or intentional IR exposure. Therefore, we computationally analyzed the chemical structural similarity of previously published small molecules that, when given after IR, mitigate cell death and found a chemical cluster that was populated with PI3K inhibitors. Subsequently, we evaluated structurally diverse PI3K inhibitors. It is remarkable that 9 of 14 PI3K inhibitors mitigated γIR-induced death in pluripotent NCCIT cells as measured by caspase 3/7 activation. A single intraperitoneal dose of LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], administered to mice at 4 or 24 hours, or PX-867 [(4S,4aR,5R,6aS,9aR,Z)-11-hydroxy-4-(methoxymethyl)-4a,6a-dimethyl-2,7,10-trioxo-1-(pyrrolidin-1-ylmethylene)-1,2,4,4a,5,6,6a,7,8,9,9a,10-dodecahydroindeno[4,5-H]isochromen-5-yl acetate (CID24798773)], administered 4 hours after a lethal dose of γIR, statistically significantly (P < 0.02) enhanced in vivo survival. Because cell cycle checkpoints are important regulators of cell survival after IR, we examined cell cycle distribution in NCCIT cells after γIR and PI3K inhibitor treatment. LY294002 and PX-867 treatment of nonirradiated cells produced a marked decrease in S phase cells with a concomitant increase in the G1 population. In irradiated cells, LY294002 and PX-867 treatment also decreased S phase and increased the G1 and G2 populations. Treatment with LY294002 or PX-867 decreased γIR-induced DNA damage as measured by γH2AX, suggesting reduced DNA damage. These results indicate pharmacologic inhibition of PI3K after IR abrogated cell death.
Collapse
Affiliation(s)
- John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia (J.S.L., E.R.S., A.L., S.L.); Departments of Radiation Oncology (M.W.E., J.S.G.), Chemistry (E.M.S., P.W.), and Pharmaceutical Sciences (P.W.), University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Rocha CRR, Lerner LK, Okamoto OK, Marchetto MC, Menck CFM. The role of DNA repair in the pluripotency and differentiation of human stem cells. Mutat Res 2012; 752:25-35. [PMID: 23010441 DOI: 10.1016/j.mrrev.2012.09.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/13/2012] [Accepted: 09/14/2012] [Indexed: 12/13/2022]
Abstract
All living cells utilize intricate DNA repair mechanisms to address numerous types of DNA lesions and to preserve genomic integrity, and pluripotent stem cells have specific needs due to their remarkable ability of self-renewal and differentiation into different functional cell types. Not surprisingly, human stem cells possess a highly efficient DNA repair network that becomes less efficient upon differentiation. Moreover, these cells also have an anaerobic metabolism, which reduces the mitochondria number and the likelihood of oxidative stress, which is highly related to genomic instability. If DNA lesions are not repaired, human stem cells easily undergo senescence, cell death or differentiation, as part of their DNA damage response, avoiding the propagation of stem cells carrying mutations and genomic alterations. Interestingly, cancer stem cells and typical stem cells share not only the differentiation potential but also their capacity to respond to DNA damage, with important implications for cancer therapy using genotoxic agents. On the other hand, the preservation of the adult stem cell pool, and the ability of cells to deal with DNA damage, is essential for normal development, reducing processes of neurodegeneration and premature aging, as one can observe on clinical phenotypes of many human genetic diseases with defects in DNA repair processes. Finally, several recent findings suggest that DNA repair also plays a fundamental role in maintaining the pluripotency and differentiation potential of embryonic stem cells, as well as that of induced pluripotent stem (iPS) cells. DNA repair processes also seem to be necessary for the reprogramming of human cells when iPS cells are produced. Thus, the understanding of how cultured pluripotent stem cells ensure the genetic stability are highly relevant for their safe therapeutic application, at the same time that cellular therapy is a hope for DNA repair deficient patients.
Collapse
Affiliation(s)
- Clarissa Ribeiro Reily Rocha
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508 900, Brazil
| | - Leticia Koch Lerner
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508 900, Brazil
| | - Oswaldo Keith Okamoto
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Maria Carolina Marchetto
- Laboratory of Genetics (LOG-G), The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Carlos Frederico Martins Menck
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374, São Paulo, SP 05508 900, Brazil.
| |
Collapse
|
16
|
Lim YC, Roberts TL, Day BW, Harding A, Kozlov S, Kijas AW, Ensbey KS, Walker DG, Lavin MF. A role for homologous recombination and abnormal cell-cycle progression in radioresistance of glioma-initiating cells. Mol Cancer Ther 2012; 11:1863-72. [PMID: 22772423 DOI: 10.1158/1535-7163.mct-11-1044] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glioblastoma multiforme (GBM) is the most common form of brain tumor with a poor prognosis and resistance to radiotherapy. Recent evidence suggests that glioma-initiating cells play a central role in radioresistance through DNA damage checkpoint activation and enhanced DNA repair. To investigate this in more detail, we compared the DNA damage response in nontumor forming neural progenitor cells (NPC) and glioma-initiating cells isolated from GBM patient specimens. As observed for GBM tumors, initial characterization showed that glioma-initiating cells have long-term self-renewal capacity. They express markers identical to NPCs and have the ability to form tumors in an animal model. In addition, these cells are radioresistant to varying degrees, which could not be explained by enhanced nonhomologous end joining (NHEJ). Indeed, NHEJ in glioma-initiating cells was equivalent, or in some cases reduced, as compared with NPCs. However, there was evidence for more efficient homologous recombination repair in glioma-initiating cells. We did not observe a prolonged cell cycle nor enhanced basal activation of checkpoint proteins as reported previously. Rather, cell-cycle defects in the G(1)-S and S-phase checkpoints were observed by determining entry into S-phase and radioresistant DNA synthesis following irradiation. These data suggest that homologous recombination and cell-cycle checkpoint abnormalities may contribute to the radioresistance of glioma-initiating cells and that both processes may be suitable targets for therapy.
Collapse
Affiliation(s)
- Yi Chieh Lim
- Queensland Institute of Medical Research, University of Queensland Centre for Clinical Research, Royal Brisbane Hospital Campus, Herston, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Momčilović O, Navara C, Schatten G. Cell cycle adaptations and maintenance of genomic integrity in embryonic stem cells and induced pluripotent stem cells. Results Probl Cell Differ 2011; 53:415-458. [PMID: 21630155 DOI: 10.1007/978-3-642-19065-0_18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pluripotent stem cells have the capability to undergo unlimited self-renewal and differentiation into all somatic cell types. They have acquired specific adjustments in the cell cycle structure that allow them to rapidly proliferate, including cell cycle independent expression of cell cycle regulators and lax G(1) to S phase transition. However, due to the developmental role of embryonic stem cells (ES) it is essential to maintain genomic integrity and prevent acquisition of mutations that would be transmitted to multiple cell lineages. Several modifications in DNA damage response of ES cells accommodate dynamic cycling and preservation of genetic information. The absence of a G(1)/S cell cycle arrest promotes apoptotic response of damaged cells before DNA changes can be fixed in the form of mutation during the S phase, while G(2)/M cell cycle arrest allows repair of damaged DNA following replication. Furthermore, ES cells express higher level of DNA repair proteins, and exhibit enhanced repair of multiple types of DNA damage. Similarly to ES cells, induced pluripotent stem (iPS) cells are poised to proliferate and exhibit lack of G(1)/S cell cycle arrest, extreme sensitivity to DNA damage, and high level of expression of DNA repair genes. The fundamental mechanisms by which the cell cycle regulates genomic integrity in ES cells and iPS cells are similar, though not identical.
Collapse
Affiliation(s)
- Olga Momčilović
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
18
|
Bárta T, Vinarský V, Holubcová Z, Dolezalová D, Verner J, Pospísilová S, Dvorák P, Hampl A. Human embryonic stem cells are capable of executing G1/S checkpoint activation. Stem Cells 2010; 28:1143-52. [PMID: 20518019 DOI: 10.1002/stem.451] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Embryonic stem cells progress very rapidly through the cell cycle, allowing limited time for cell cycle regulatory circuits that typically function in somatic cells. Mechanisms that inhibit cell cycle progression upon DNA damage are of particular importance, as their malfunction may contribute to the genetic instability observed in human embryonic stem cells (hESCs). In this study, we exposed undifferentiated hESCs to DNA-damaging ultraviolet radiation-C range (UVC) light and examined their progression through the G1/S transition. We show that hESCs irradiated in G1 phase undergo cell cycle arrest before DNA synthesis and exhibit decreased cyclin-dependent kinase two (CDK2) activity. We also show that the phosphatase Cdc25A, which directly activates CDK2, is downregulated in irradiated hESCs through the action of the checkpoint kinases Chk1 and/or Chk2. Importantly, the classical effector of the p53-mediated pathway, protein p21, is not a regulator of G1/S progression in hESCs. Taken together, our data demonstrate that cultured undifferentiated hESCs are capable of preventing entry into S-phase by activating the G1/S checkpoint upon damage to their genetic complement.
Collapse
Affiliation(s)
- Tomás Bárta
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
19
|
The bright and the dark sides of DNA repair in stem cells. J Biomed Biotechnol 2010; 2010:845396. [PMID: 20396397 PMCID: PMC2852612 DOI: 10.1155/2010/845396] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/16/2009] [Accepted: 02/01/2010] [Indexed: 12/22/2022] Open
Abstract
DNA repair is a double-edged sword in stem cells. It protects normal stem cells in both embryonic and adult tissues from genetic damage, thus allowing perpetuation of intact genomes into new tissues. Fast and efficient DNA repair mechanisms have evolved in normal stem and progenitor cells. Upon differentiation, a certain degree of somatic mutations becomes more acceptable and, consequently, DNA repair dims. DNA repair turns into a problem when stem cells transform and become cancerous. Transformed stem cells drive growth of a number of tumours (e.g., high grade gliomas) and being particularly resistant to chemo- and radiotherapeutic agents often cause relapses. The contribution of DNA repair to resistance of these tumour-driving cells is the subject of intense research, in order to find novel agents that may sensitize them to chemotherapy and radiotherapy.
Collapse
|
20
|
Momcilović O, Choi S, Varum S, Bakkenist C, Schatten G, Navara C. Ionizing radiation induces ataxia telangiectasia mutated-dependent checkpoint signaling and G(2) but not G(1) cell cycle arrest in pluripotent human embryonic stem cells. Stem Cells 2010; 27:1822-35. [PMID: 19544417 DOI: 10.1002/stem.123] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Human embryonic stem (ES) cells are highly sensitive to environmental insults including DNA damaging agents, responding with high levels of apoptosis. To understand the response of human ES cells to DNA damage, we investigated the function of the ataxia telangiectasia mutated (ATM) DNA damage signaling pathway in response to gamma-irradiation. Here, we demonstrate for the first time in human ES cells that ATM kinase is phosphorylated and properly localized to the sites of DNA double-strand breaks within 15 minutes of irradiation. Activation of ATM kinase resulted in phosphorylation of its downstream targets: Chk2, p53, and Nbs1. In contrast to murine ES cells, Chk2 and p53 were localized to the nucleus of irradiated human ES cells. We further show that irradiation resulted in a temporary arrest of the cell cycle at the G(2), but not G(1), phase. Human ES cells resumed cycling approximately 16 hours after irradiation, but had a fourfold higher incidence of aberrant mitotic figures compared to nonirradiated cells. Finally, we demonstrate an essential role of ATM in establishing G(2) arrest since inhibition with the ATM-specific inhibitor KU55933 resulted in abolishment of G(2) arrest, evidenced by an increase in the number of cycling cells 2 hours after irradiation. In summary, these results indicate that human ES cells activate the DNA damage checkpoint, resulting in an ATM-dependent G(2) arrest. However, these cells re-enter the cell cycle with prominent mitotic spindle defects.
Collapse
Affiliation(s)
- Olga Momcilović
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|