1
|
Wang C, Liu J, Li W. 'Off the shelf' immunotherapies: Generation and application of pluripotent stem cell-derived immune cells. Cell Prolif 2023; 56:e13425. [PMID: 36855955 PMCID: PMC10068955 DOI: 10.1111/cpr.13425] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/02/2023] Open
Abstract
In recent years, great strides have been made toward the development of immune cell-based therapies in the treatment of refractory malignancies. Primary T cells and NK cells armed with chimeric antigen receptors have achieved tremendous clinical success especially in patients with leukaemia and lymphoma. However, the autologous origin of these effector cells means that a single batch of laboriously engineered cells treats only a certain patient, leading to high cost, ununiform product quality, and risk of delay in treatment, and therefore results in restricted accessibility of these therapies to the overwhelming majority of the patients. Addressing these tricky obstacles calls for the development of universal immune cell products that can be provided 'off the shelf' in a large amount. Pluripotent stem cells (PSCs), owing to their unique capacity of self-renewal and the potential of multi-lineage differentiation, offer an unlimited cell source to generate uniform and scalable engineered immune cells. This review discusses the major advances in the development of PSC-derived immune cell differentiation approaches and their therapeutic potential in treating both hematologic malignancies and solid tumours. We also consider the potency of PSC-derived immune cells as an alternative therapeutic strategy for other diseases, such as autoimmune diseases, fibrosis, infections, et al.
Collapse
Affiliation(s)
- Chenxin Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jingjing Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, China
- Bejing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Kim K, Gil M, Dayem AA, Choi S, Kang GH, Yang GM, Cho S, Jeong Y, Kim SJ, Seok J, Kwak HJ, Kumar Saha S, Kim A, Cho SG. Improved Isolation and Culture of Urine-Derived Stem Cells (USCs) and Enhanced Production of Immune Cells from the USC-Derived Induced Pluripotent Stem Cells. J Clin Med 2020; 9:E827. [PMID: 32197458 PMCID: PMC7141314 DOI: 10.3390/jcm9030827] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022] Open
Abstract
The availability of autologous adult stem cells is one of the essential prerequisites for human stem cell therapy. Urine-derived stem cells (USCs) are considered as desirable cell sources for cell therapy because donor-specific USCs are easily and non-invasively obtained from urine. Efficient isolation, expansion, and differentiation methods of USCs are necessary to increase their availability. Here, we developed a method for efficient isolation and expansion of USCs using Matrigel, and the rho-associated protein kinase (ROCK) inhibitor, Y-27632. The prepared USCs showed significantly enhanced migration, colony forming capacity, and differentiation into osteogenic or chondrogenic lineage. The USCs were successfully reprogramed into induced pluripotent stem cells (USC-iPSCs) and further differentiated into kidney organoid and hematopoietic progenitor cells (HPCs). Using flavonoid molecules, the isolation efficiency of USCs and the production of HPCs from the USC-iPSCs was increased. Taken together, we present an improved isolation method of USCs utilizing Matrigel, a ROCK inhibitor and flavonoids, and enhanced differentiation of USC-iPSC to HPC by flavonoids. These novel findings could significantly enhance the use of USCs and USC-iPSCs for stem cell research and further application in regenerative stem cell-based therapies.
Collapse
Affiliation(s)
- Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Sangbaek Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Sungha Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Yeojin Jeong
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Se Jong Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Jaekwon Seok
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Hee Jeong Kwak
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Subbroto Kumar Saha
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| | - Aram Kim
- Department of Urology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05029, Korea;
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea; (K.K.); (M.G.); (A.A.D.); (S.C.); (G.-H.K.); (G.-M.Y.); (S.C.); (Y.J.); (S.J.K.); (J.S.); (H.J.K.); (S.K.S.)
| |
Collapse
|
3
|
Kim K, Abdal Dayem A, Gil M, Yang GM, Lee SB, Kwon OH, Choi S, Kang GH, Lim KM, Kim D, Cho SG. 3,2'-Dihydroxyflavone Improves the Proliferation and Survival of Human Pluripotent Stem Cells and Their Differentiation into Hematopoietic Progenitor Cells. J Clin Med 2020; 9:jcm9030669. [PMID: 32131506 PMCID: PMC7141312 DOI: 10.3390/jcm9030669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/23/2020] [Accepted: 02/25/2020] [Indexed: 01/14/2023] Open
Abstract
Efficient maintenance of the undifferentiated status of human pluripotent stem cells (hiPSCs) is crucial for producing cells with improved proliferation, survival and differentiation, which can be successfully used for stem cell research and therapy. Here, we generated iPSCs from healthy donor peripheral blood mononuclear cells (PBMCs) and analyzed the proliferation and differentiation capacities of the generated iPSCs using single cell NGS-based 24-chromosome aneuploidy screening and RNA sequencing. In addition, we screened various natural compounds for molecules that could enhance the proliferation and differentiation potential of hiPSCs. Among the tested compounds, 3,2′-dihydroxyflavone (3,2′-DHF) significantly increased cell proliferation and expression of naïve stemness markers and decreased the dissociation-induced apoptosis of hiPSCs. Of note, 3,2′-DHF-treated hiPSCs showed upregulation of intracellular glutathione (GSH) and an increase in the percentage of GSH-high cells in an analysis with a FreSHtracer system. Interestingly, culture of the 3,2′-DHF-treated hiPSCs in differentiation media enhanced their mesodermal differentiation and differentiation into CD34+ CD45+ hematopoietic progenitor cells (HPC) and natural killer cells (NK) cells. Taken together, our results demonstrate that the natural compound 3,2′-DHF can improve the proliferation and differentiation capacities of hiPSCs and increase the efficiency of HPC and NK cell production from hiPSCs.
Collapse
Affiliation(s)
- Kyeongseok Kim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Minchan Gil
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Gwang-Mo Yang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Soo Bin Lee
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Oh-Hyung Kwon
- Bio-Medical Science (BMS) Co., Ltd., Gimpo 10136, Korea; (O.-H.K.)
| | - Sangbaek Choi
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Geun-Ho Kang
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Kyung Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
| | - Dongho Kim
- Bio-Medical Science (BMS) Co., Ltd., Gimpo 10136, Korea; (O.-H.K.)
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, Seoul 05029, Korea; (K.K.); (A.A.D.); (M.G.); (G.-M.Y.); (S.B.L.); (S.C.); (G.-H.K.); (K.M.L.)
- Correspondence: ; Tel.: +82-2-450-4207
| |
Collapse
|
4
|
Themeli M, Chhatta A, Boersma H, Prins HJ, Cordes M, de Wilt E, Farahani AS, Vandekerckhove B, van der Burg M, Hoeben RC, Staal FJT, Mikkers HMM. iPSC-Based Modeling of RAG2 Severe Combined Immunodeficiency Reveals Multiple T Cell Developmental Arrests. Stem Cell Reports 2020; 14:300-311. [PMID: 31956083 PMCID: PMC7013232 DOI: 10.1016/j.stemcr.2019.12.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 12/31/2022] Open
Abstract
RAG2 severe combined immune deficiency (RAG2-SCID) is a lethal disorder caused by the absence of functional T and B cells due to a differentiation block. Here, we generated induced pluripotent stem cells (iPSCs) from a RAG2-SCID patient to study the nature of the T cell developmental blockade. We observed a strongly reduced capacity to differentiate at every investigated stage of T cell development, from early CD7−CD5− to CD4+CD8+. The impaired differentiation was accompanied by an increase in CD7−CD56+CD33+ natural killer (NK) cell-like cells. T cell receptor D rearrangements were completely absent in RAG2SCID cells, whereas the rare T cell receptor B rearrangements were likely the result of illegitimate rearrangements. Repair of RAG2 restored the capacity to induce T cell receptor rearrangements, normalized T cell development, and corrected the NK cell-like phenotype. In conclusion, we succeeded in generating an iPSC-based RAG2-SCID model, which enabled the identification of previously unrecognized disorder-related T cell developmental roadblocks. RAG2-SCID cells show impaired differentiation at several stages of T cell development RAG2-SCID T and NK cells fail to undergo legitimate RAG-driven TCR rearrangements RAG2-SCID cells exhibit a skewed differentiation toward NK cell-like cells RAG2-SCID phenotype is rescued by gene correction
Collapse
Affiliation(s)
- Maria Themeli
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Amiet Chhatta
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Hester Boersma
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Henk Jan Prins
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Martijn Cordes
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Edwin de Wilt
- Department of Clinical Genetics, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Aïda Shahrabi Farahani
- Department of Hematology, Amsterdam UMC, Location VUmc, Cancer Center Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Gent 9000, Belgium
| | - Mirjam van der Burg
- Department of Immunology, Erasmus Medical Center, Rotterdam 3015 GE, The Netherlands
| | - Rob C Hoeben
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands
| | - Frank J T Staal
- Department of Immunohematology & Blood Transfusion, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands
| | - Harald M M Mikkers
- Department of Cell & Chemical Biology, Leiden University Medical Center, Leiden 2300 RC, The Netherlands; LUMC hiPSC Hotel, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands.
| |
Collapse
|
5
|
Organoid-Induced Differentiation of Conventional T Cells from Human Pluripotent Stem Cells. Cell Stem Cell 2019; 24:376-389.e8. [PMID: 30661959 DOI: 10.1016/j.stem.2018.12.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/05/2018] [Accepted: 12/13/2018] [Indexed: 11/21/2022]
Abstract
The ability to generate T cells from pluripotent stem cells (PSCs) has the potential to transform autologous T cell immunotherapy by facilitating universal, off-the-shelf cell products. However, differentiation of human PSCs into mature, conventional T cells has been challenging with existing methods. We report that a continuous 3D organoid system induced an orderly sequence of commitment and differentiation from PSC-derived embryonic mesoderm through hematopoietic specification and efficient terminal differentiation to naive CD3+CD8αβ+ and CD3+CD4+ conventional T cells with a diverse T cell receptor (TCR) repertoire. Introduction of an MHC class I-restricted TCR in PSCs produced naive, antigen-specific CD8αβ+ T cells that lacked endogenous TCR expression and showed anti-tumor efficacy in vitro and in vivo. Functional assays and RNA sequencing aligned PSC-derived T cells with primary naive CD8+ T cells. The PSC-artificial thymic organoid (ATO) system presented here is an efficient platform for generating functional, mature T cells from human PSCs.
Collapse
|
6
|
Zhu H, Lai YS, Li Y, Blum R, Kaufman D. Concise Review: Human Pluripotent Stem Cells to Produce Cell-Based Cancer Immunotherapy. Stem Cells 2018; 36:134-145. [PMID: 29235195 PMCID: PMC5914526 DOI: 10.1002/stem.2754] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/09/2017] [Accepted: 11/25/2017] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (PSCs) provide a promising resource to produce immune cells for adoptive cellular immunotherapy to better treat and potentially cure otherwise lethal cancers. Cytotoxic T cells and natural killer (NK) cells can now be routinely produced from human PSCs. These PSC-derived lymphocytes have phenotype and function similar to primary lymphocytes isolated from peripheral blood. PSC-derived T and NK cells have advantages compared with primary immune cells, as they can be precisely engineered to introduce improved anti-tumor activity and produced in essentially unlimited numbers. Stem Cells 2018;36:134-145.
Collapse
Affiliation(s)
- Huang Zhu
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Yi-Shin Lai
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Ye Li
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Robert Blum
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| | - Dan Kaufman
- Department of Medicine, Division of Regenerative Medicine, University of California San Diego, San Diego, California, USA
| |
Collapse
|
7
|
Alzubi J, Pallant C, Mussolino C, Howe SJ, Thrasher AJ, Cathomen T. Targeted genome editing restores T cell differentiation in a humanized X-SCID pluripotent stem cell disease model. Sci Rep 2017; 7:12475. [PMID: 28963568 PMCID: PMC5622068 DOI: 10.1038/s41598-017-12750-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 09/15/2017] [Indexed: 12/18/2022] Open
Abstract
The generation of T cells from pluripotent stem cells (PSCs) is attractive for investigating T cell development and validating genome editing strategies in vitro. X-linked severe combined immunodeficiency (X-SCID) is an immune disorder caused by mutations in the IL2RG gene and characterised by the absence of T and NK cells in patients. IL2RG encodes the common gamma chain, which is part of several interleukin receptors, including IL-2 and IL-7 receptors. To model X-SCID in vitro, we generated a mouse embryonic stem cell (ESC) line in which a disease-causing human IL2RG gene variant replaces the endogenous Il2rg locus. We developed a stage-specific T cell differentiation protocol to validate genetic correction of the common G691A mutation with transcription activator-like effector nucleases. While all ESC clones could be differentiated to hematopoietic precursor cells, stage-specific analysis of T cell maturation confirmed early arrest of T cell differentiation at the T cell progenitor stage in X-SCID cells. In contrast, genetically corrected ESCs differentiated to CD4 + or CD8 + single-positive T cells, confirming correction of the cellular X-SCID phenotype. This study emphasises the value of PSCs for disease modelling and underlines the significance of in vitro models as tools to validate genome editing strategies before clinical application.
Collapse
Affiliation(s)
- Jamal Alzubi
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Celeste Pallant
- Institute of Child Health, University College London, London, United Kingdom.,GlaxoSmithKline plc., Stevenage, Hertfordshire, United Kingdom
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Steven J Howe
- Institute of Child Health, University College London, London, United Kingdom.,GlaxoSmithKline plc., Stevenage, Hertfordshire, United Kingdom
| | - Adrian J Thrasher
- Institute of Child Health, University College London, London, United Kingdom.,Great Ormond Street Hospital, NHS Foundation Trust, London, United Kingdom
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany. .,Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany. .,Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
8
|
Sweeney CL, Teng R, Wang H, Merling RK, Lee J, Choi U, Koontz S, Wright DG, Malech HL. Molecular Analysis of Neutrophil Differentiation from Human Induced Pluripotent Stem Cells Delineates the Kinetics of Key Regulators of Hematopoiesis. Stem Cells 2016; 34:1513-26. [PMID: 26866427 DOI: 10.1002/stem.2332] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/22/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
In vitro generation of mature neutrophils from human induced pluripotent stem cells (iPSCs) requires hematopoietic progenitor development followed by myeloid differentiation. The purpose of our studies was to extensively characterize this process, focusing on the critical window of development between hemogenic endothelium, hematopoietic stem/progenitor cells (HSPCs), and myeloid commitment, to identify associated regulators and markers that might enable the stem cell field to improve the efficiency and efficacy of iPSC hematopoiesis. We utilized a four-stage differentiation protocol involving: embryoid body (EB) formation (stage-1); EB culture with hematopoietic cytokines (stage-2); HSPC expansion (stage-3); and neutrophil maturation (stage-4). CD34(+) CD45(-) putative hemogenic endothelial cells were observed in stage-3 cultures, and expressed VEGFR-2/Flk-1/KDR and VE-cadherin endothelial markers, GATA-2, AML1/RUNX1, and SCL/TAL1 transcription factors, and endothelial/HSPC-associated microRNAs miR-24, miR-125a-3p, miR-126/126*, and miR-155. Upon further culture, CD34(+) CD45(-) cells generated CD34(+) CD45(+) HSPCs that produced hematopoietic CFUs. Mid-stage-3 CD34(+) CD45(+) HSPCs exhibited increased expression of GATA-2, AML1/RUNX1, SCL/TAL1, C/EBPα, and PU.1 transcription factors, but exhibited decreased expression of HSPC-associated microRNAs, and failed to engraft in immune-deficient mice. Mid-stage-3 CD34(-) CD45(+) cells maintained PU.1 expression and exhibited increased expression of hematopoiesis-associated miR-142-3p/5p and a trend towards increased miR-223 expression, indicating myeloid commitment. By late Stage-4, increased CD15, CD16b, and C/EBPɛ expression were observed, with 25%-65% of cells exhibiting morphology and functions of mature neutrophils. These studies demonstrate that hematopoiesis and neutrophil differentiation from human iPSCs recapitulates many features of embryonic hematopoiesis and neutrophil production in marrow, but reveals unexpected molecular signatures that may serve as a guide for enhancing iPSC hematopoiesis. Stem Cells 2016;34:1513-1526.
Collapse
Affiliation(s)
- Colin L Sweeney
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ruifeng Teng
- The Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Hongmei Wang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Randall K Merling
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Janet Lee
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Uimook Choi
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sherry Koontz
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Daniel G Wright
- The Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Harry L Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
9
|
Eslami-Arshaghi T, Salehi M, Soleimani M, Gholipourmalekabadi M, Mossahebi-Mohammadi M, Ardeshirylajimi A, Rajabi H. Lymphoid lineage differentiation potential of mouse nuclear transfer embryonic stem cells. Biologicals 2015; 43:349-54. [PMID: 26239678 DOI: 10.1016/j.biologicals.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/04/2015] [Accepted: 07/02/2015] [Indexed: 01/16/2023] Open
Abstract
Stem cells therapy is considered as an efficient strategy for the treatment of some diseases. Nevertheless, some obstacles such as probability of rejection by the immune system limit applications of this strategy. Therefore, several efforts have been made to overcome this among which using the induced pluripotent stem cells (iPSCs) and nuclear transfer embryonic stem cell (nt-ESCs) are the most efficient strategies. The objective of this study was to evaluate the differentiation potential of the nt-ESCs to lymphoid lineage in the presence of IL-7, IL-3, FLT3-ligand and TPO growth factors in vitro. To this end, the nt-ESCs cells were prepared and treated with aforementioned growth factors for 7 and 14 days. Then, the cells were examined for expression of lymphoid markers (CD3, CD25, CD127 and CD19) by quantitative PCR (q-PCR) and flow cytometry. An increased expression of CD19 and CD25 markers was observed in the treated cells compared with the negative control samples by day 7. After 14 days, the expression level of all the tested CD markers significantly increased in the treated groups in comparison with the control. The current study reveals the potential of the nt-ESCs in differentiation to lymphoid lineage in the presence of defined growth factors.
Collapse
Affiliation(s)
- Tarlan Eslami-Arshaghi
- Department of Transgenic Animal Sciences, Stem Cells Technology Research Center, Tehran, Iran
| | - Mohammad Salehi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mazaher Gholipourmalekabadi
- Biotechnology Department, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Mossahebi-Mohammadi
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Urogenital Stem Cell Research Center (UGSCRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hoda Rajabi
- Department of Transgenic Animal Sciences, Stem Cells Technology Research Center, Tehran, Iran
| |
Collapse
|
10
|
Thymopentin enhances the generation of T-cell lineage derived from human embryonic stem cells in vitro. Exp Cell Res 2015; 331:387-98. [PMID: 25576384 DOI: 10.1016/j.yexcr.2014.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/21/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022]
Abstract
Thymopentin is a group of biologically active peptide secreted mainly by the epithelial cells of thymic cortex and medulla. Whether it promotes T cells production from human embryonic stem cells(hESCs) in vitro remains an elusive issue. In the present study, we develop a novel strategy that enhances T-cell lineage differentiation of hESCs in collagen matrix culture by sequential cytokine cocktails treatment combined with thymopentin stimulation. We observed that approximately 30.75% cells expressed CD34 on day 14 of the cultures and expressed the surface markers of erythroid, lymphoid and myeloid lineages. The results of colony assays and gene expressions by RT-PCR analysis also demonstrated that hematopoietic progenitor cells (HPCs) derived from hESCs were capable of multi-lineage differentiation. Further study revealed that culturing with thymopentin treatment, the CD34(+)CD45RA(+)CD7(+) cells sorted from HPCs expressed T-cell-related genes, IKAROS, DNTT, TCRγ and TCRβ, and T-cell surface markers, CD3, cytoplasmic CD3, CD5, CD27, TCRγδ, CD4 and CD8. The differentiated cells produced the cytokines including IFN-γ, IL-2 and TNF-α in response to stimulation, providing the evidence for T-cell function of these cells. In conclusion, thymopentin enhances T-cell lineage differentiation from hESCs in vitro by mimicking thymus peptide environment in vivo.
Collapse
|
11
|
Larbi A, Mitjavila-Garcia MT, Flamant S, Valogne Y, Clay D, Usunier B, l'Homme B, Féraud O, Casal I, Gobbo E, Divers D, Chapel A, Turhan AG, Bennaceur-Griscelli A, Haddad R. Generation of multipotent early lymphoid progenitors from human embryonic stem cells. Stem Cells Dev 2014; 23:2983-95. [PMID: 24955741 DOI: 10.1089/scd.2014.0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During human embryonic stem cell (ESC) hematopoietic differentiation, the description of the initial steps of lymphopoiesis remains elusive. Using a two-step culture procedure, we identified two original populations of ESC-derived hematopoietic progenitor cells (HPCs) with CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) phenotypes. Bulk cultures and limiting dilution assays, culture with MS5 cells in the presence of Notch ligand Delta-like-1 (DL-1), and ex vivo colonization tests using fetal thymic organ cultures showed that although CD34(+)CD45RA(+)CD7(-) HPCs could generate cells of the three lymphoid lineages, their potential was skewed toward the B cell lineages. In contrast, CD34(+)CD45RA(+)CD7(+) HPCs predominantly exhibited a T/natural killer (NK) cell differentiation potential. Furthermore these cells could differentiate equivalently into cells of the granulo-macrophagic lineage and dendritic cells and lacked erythroid potential. Expression profiling of 18 markers by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) HPCs express genes of the lymphoid specification and that CD34(+)CD45RA(+)CD7(-) cells express B-cell-associated genes, while CD34(+)CD45RA(+)CD7(+) HPCs display a T-cell molecular profile. Altogether, these findings indicate that CD34(+)CD45RA(+)CD7(-) and CD34(+)CD45RA(+)CD7(+) HPCs correspond to candidate multipotent early lymphoid progenitors polarized toward either the B or T/NK lineage, respectively. This work should improve our understanding of the early steps of lymphopoiesis from pluripotent stem cells and pave the way for the production of lymphocytes for cell-based immunotherapy and lymphoid development studies.
Collapse
Affiliation(s)
- Aniya Larbi
- 1 Inserm UMR 935, "ESTeam Paris Sud", Stem Cell Core Facility SFR André Lwoff, Paul Brousse Hospital, University Paris Sud , Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen U. Do we have a workable clinical protocol for differentiating lympho-hematopoietic stem cells from the source of embryonic stem cells and induced pluripotent stem cells in culture? Scand J Immunol 2014; 80:247-9. [PMID: 25041639 DOI: 10.1111/sji.12210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/02/2014] [Indexed: 12/15/2022]
Abstract
In recent years, many researchers are focusing on deriving lympho-hematopoietic stem cells (L-HSC) from human embryonic stem cells (ESC) and/or induced pluripotent stem cells (iPSC) in culture as alternative sources for transplantation. Two protocols are available for research purposes: mouse stroma cell line coculture system and embryoid bodies (EBs) suspension culture system. However, due to the lack of human stroma cell line, which could support the derivation of L-HSC in culture, the generation of therapeutic lympho-hematopoietic cells for clinical purpose can only be achieved using EBs suspension culture system. In this short communication/review, the results of EBs suspension culture system using mouse and human ESC/iPSC are summarized and the potential clinical application is discussed.
Collapse
Affiliation(s)
- U Chen
- International Senior Professional Institute (ISPI) e.V., Giessen, Germany
| |
Collapse
|
13
|
Differentially-expressed genes identified by suppression subtractive hybridization in the bone marrow hematopoietic stem cells of patients with psoriasis. Mol Med Rep 2014; 10:479-85. [PMID: 24807678 DOI: 10.3892/mmr.2014.2203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 02/24/2014] [Indexed: 11/05/2022] Open
Abstract
Psoriasis is a T cell-mediated, chronic, relapsing and inflammatory cutaneous disorder. The dysfunctional activity of T cells in patients with psoriasis is attributed to bone marrow hematopoietic stem cells (BMHSCs). To understand the pathogenic roles of BMHSCs in psoriasis, a differential gene expression analysis was performed using suppression subtractive hybridization of the BMHSCs from a patient with psoriasis and a healthy control. Using a cDNA array dot blot screening to screen 600 genes from forward- and reverse-subtracted cDNA libraries, 17 differentially-expressed sequence tags (ESTs) were identified. The genes within the ESTs were observed to be the homologs of genes that are involved in various cellular processes, including hormone signaling, RNA catabolism, protein ADP DNA base melting, transcriptional regulation, cell cycle regulation and metabolism. CD45, which was overexpressed in the psoriatic BMHSCs, was further analyzed using relative quantitative polymerase chain reaction. In addition, the levels of CD45 in the peripheral blood cells (PBCs) of the patients with psoriasis were markedly increased and closely associated with disease severity. An abnormality of hematopoietic progenitor cells, e.g., CD45 overexpression, may be transferred to PBCs via hematopoiesis, and may account for the psoriasis-inducing properties of activated T cells.
Collapse
|
14
|
Inoue-Yokoo T, Tani K, Sugiyama D. Mesodermal and hematopoietic differentiation from ES and iPS cells. Stem Cell Rev Rep 2014; 9:422-34. [PMID: 22684542 DOI: 10.1007/s12015-012-9388-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Embryonic stem (ES) and induced pluripotent stem (iPS) cells can differentiate into any type of tissue when grown in a suitable culture environment and are considered valuable tools for regenerative medicine. In the field of hematology, generation of hematopoietic stem cells (HSCs) and mature hematopoietic cells (HCs) from ES and iPS cells through mesodermal cells, the ancestors of HCs, can facilitate transplantation and transfusion therapy. Several studies report generation of functional HCs from both mouse and human ES and iPS cells. This approach will likely be applied to individual patient-derived iPS cells for regenerative medicine approaches and drug screening in the future. Here, we summarize current studies of HC-generation from ES and iPS cells.
Collapse
Affiliation(s)
- Tomoko Inoue-Yokoo
- Division of Hematopoietic Stem Cells, Advanced Medical Initiatives, Department of Advanced Medical Initiatives, Kyushu University Faculty of Medical Sciences, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
15
|
Nakajima-Takagi Y, Osawa M, Iwama A. Manipulation of Hematopoietic Stem Cells for Regenerative Medicine. Anat Rec (Hoboken) 2013; 297:111-20. [DOI: 10.1002/ar.22804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 09/13/2013] [Indexed: 12/25/2022]
Affiliation(s)
- Yaeko Nakajima-Takagi
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| | - Mitsujiro Osawa
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| | - Atsushi Iwama
- Department of Cellular and Molecular Medicine; Graduate School of Medicine; Chiba University; 1-8-1 Inohana Chuo-ku Chiba 260-8670 Japan
- Japan Science and Technology Corporation, Core Research for Evolutional Science and Technology; Gobancho Chiyoda-ku, Tokyo Japan
| |
Collapse
|
16
|
Abstract
Abstract
Transcriptional profiling of differentiating human embryonic stem cells (hESCs) revealed that MIXL1-positive mesodermal precursors were enriched for transcripts encoding the G-protein–coupled APELIN receptor (APLNR). APLNR-positive cells, identified by binding of the fluoresceinated peptide ligand, APELIN (APLN), or an anti-APLNR mAb, were found in both posterior mesoderm and anterior mesendoderm populations and were enriched in hemangioblast colony-forming cells (Bl-CFC). The addition of APLN peptide to the media enhanced the growth of embryoid bodies (EBs), increased the expression of hematoendothelial genes in differentiating hESCs, and increased the frequency of Bl-CFCs by up to 10-fold. Furthermore, APLN peptide also synergized with VEGF to promote the growth of hESC-derived endothelial cells. These studies identified APLN as a novel growth factor for hESC-derived hematopoietic and endothelial cells.
Collapse
|
17
|
Togarrati PP, Suknuntha K. Generation of mature hematopoietic cells from human pluripotent stem cells. Int J Hematol 2012; 95:617-23. [PMID: 22648826 DOI: 10.1007/s12185-012-1094-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 04/20/2012] [Accepted: 05/07/2012] [Indexed: 12/22/2022]
Abstract
A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.
Collapse
Affiliation(s)
- Padma Priya Togarrati
- National Primate Research Center, University of Wisconsin Graduate School, 1220 Capitol Court, Madison, WI 53715, USA.
| | | |
Collapse
|
18
|
Yao Y, Nashun B, Zhou T, Qin L, Qin L, Zhao S, Xu J, Esteban MA, Chen X. Generation of CD34+ cells from CCR5-disrupted human embryonic and induced pluripotent stem cells. Hum Gene Ther 2011; 23:238-42. [PMID: 21981760 DOI: 10.1089/hum.2011.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
C-C chemokine receptor type 5 (CCR5) is a major co-receptor for the entry of human immunodeficiency virus type-1 (HIV-1) into target cells. Human hematopoietic stem cells (hHSCs) with naturally occurring CCR5 deletions (Δ32) or artificially disrupted CCR5 have shown potential for curing acquired immunodeficiency syndrome (AIDS). However, Δ32 donors are scarce, heterologous bone marrow transplantation is not exempt of risks, and genetic engineering of autologous hHSCs is not trivial. Here, we have disrupted the CCR5 locus of human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) using specific zinc finger nucleases (ZFNs) combined with homologous recombination. The modified hESCs and hiPSCs retained pluripotent characteristics and could be differentiated in vitro into CD34(+) cells that formed all types of hematopoietic colonies. Our results suggest the potential of using patient-specific hHSCs derived from ZFN-modified hiPSCs for treating AIDS.
Collapse
Affiliation(s)
- Yongchao Yao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Chinese Academy of Sciences , Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Woods NB, Parker AS, Moraghebi R, Lutz MK, Firth AL, Brennand KJ, Berggren WT, Raya A, Izpisúa Belmonte JC, Gage FH, Verma IM. Brief report: efficient generation of hematopoietic precursors and progenitors from human pluripotent stem cell lines. Stem Cells 2011; 29:1158-64. [PMID: 21544903 DOI: 10.1002/stem.657] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
By mimicking embryonic development of the hematopoietic system, we have developed an optimized in vitro differentiation protocol for the generation of precursors of hematopoietic lineages and primitive hematopoietic cells from human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSCs). Factors such as cytokines, extra cellular matrix components, and small molecules as well as the temporal association and concentration of these factors were tested on seven different human ESC and iPSC lines. We report the differentiation of up to 84% human CD45+ cells (average 41% ± 16%, from seven pluripotent lines) from the differentiation culture, including significant numbers of primitive CD45+/CD34+ and CD45+/CD34+/CD38- hematopoietic progenitors. Moreover, the numbers of hematopoietic progenitor cells generated, as measured by colony forming unit assays, were comparable to numbers obtained from fresh umbilical cord blood mononuclear cell isolates on a per CD45+ cell basis. Our approach demonstrates highly efficient generation of multipotent hematopoietic progenitors with among the highest efficiencies reported to date (CD45+/CD34+) using a single standardized differentiation protocol on several human ESC and iPSC lines. Our data add to the cumulating evidence for the existence of an in vitro derived precursor to the hematopoietic stem cell (HSC) with limited engrafting ability in transplanted mice but with multipotent hematopoietic potential. Because this protocol efficiently expands the preblood precursors and hematopoietic progenitors, it is ideal for testing novel factors for the generation and expansion of definitive HSCs with long-term repopulating ability.
Collapse
Affiliation(s)
- Niels-Bjarne Woods
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Melichar H, Li O, Ross J, Haber H, Cado D, Nolla H, Robey EA, Winoto A. Comparative study of hematopoietic differentiation between human embryonic stem cell lines. PLoS One 2011; 6:e19854. [PMID: 21603627 PMCID: PMC3095633 DOI: 10.1371/journal.pone.0019854] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/04/2011] [Indexed: 12/27/2022] Open
Abstract
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34+ or CD34+CD45+ hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34+ precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34+ hematopoietic precursors generated in vitro versus in vivo.
Collapse
Affiliation(s)
- Heather Melichar
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Ou Li
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Jenny Ross
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Hilary Haber
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Dragana Cado
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Hector Nolla
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Ellen A. Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
| | - Astar Winoto
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Dravid GG, Crooks GM. The challenges and promises of blood engineered from human pluripotent stem cells. Adv Drug Deliv Rev 2011; 63:331-41. [PMID: 21232565 DOI: 10.1016/j.addr.2010.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/02/2010] [Accepted: 12/09/2010] [Indexed: 12/21/2022]
Abstract
The concept that stem cells can be used to replace and regenerate tissue was founded over half a century ago using hematopoietic stem cells in the clinical field of bone marrow transplantation. The development of human embryonic stem cell lines and patient-specific induced pluripotent stem cells has the potential to overcome the problem presented by shortages of immunologically compatible hematopoietic stem cell donors. This review summarizes the current advances made and limitations to be overcome in order to realize the full potential of engineering blood from pluripotent stem cells for clinical use.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Stem cell-based strategies for treating HIV-infected individuals represent a novel approach toward reconstituting the ravaged immune system with the ultimate aim of clearing the virus from the body. Genetic modification of human hematopoietic stem cells to produce cells that are either resistant to infection, cells that produce lower amounts of infectious virus, or cells that specifically target the immune response against the virus are currently the dominant strategies under development. This review focuses on the understanding of stem cell-based approaches that are under investigation and the rationale behind such approaches. RECENT FINDINGS Significant progress has recently been made utilizing stem cell-based approaches to treat HIV infection. Ideally, a successful strategy would result in immune clearance of the virus from the body as well long-term restoration of overall immune responses to successfully combat everyday environmental antigens. Two recent clinical trails illustrate how new advances in stem cell-based approaches may propel this field forward to clinical reality: one that demonstrates that large-scale gene therapy trials can be performed in a conventional, reproducible manner; and one that demonstrates the utilization of a multipronged approach using lentiviral-based gene therapy vectors. These clinical trails serve as the foundation for the development of other technologies, discussed here, that are currently in preclinical development. SUMMARY Recent advances using stem cell-based approaches to treat HIV infection have provided the impetus for a renewed and expanded interest in the development of new cell-based strategies to treat HIV infection as well as a variety of other diseases.
Collapse
|
23
|
Kimbrel EA, Lu SJ. Potential clinical applications for human pluripotent stem cell-derived blood components. Stem Cells Int 2011; 2011:273076. [PMID: 21437192 PMCID: PMC3062143 DOI: 10.4061/2011/273076] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 01/14/2011] [Indexed: 01/01/2023] Open
Abstract
The ability of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) to divide indefinitely without losing pluripotency and to theoretically differentiate into any cell type in the body makes them highly attractive cell sources for large scale regenerative medicine purposes. The current use of adult stem cell-derived products in hematologic intervention sets an important precedent and provides a guide for developing hESC/iPSC based therapies for the blood system. In this review, we highlight biological functions of mature cells of the blood, clinical conditions requiring the transfusion or stimulation of these cells, and the potential for hESC/iPSC-derivatives to serve as functional replacements. Many researchers have already been able to differentiate hESCs and/or iPSCs into specific mature blood cell types. For example, hESC-derived red blood cells and platelets are functional in tasks such as oxygen delivery and blood clotting, respectively and may be able to serve as substitutes for their donor-derived counterparts in emergencies. hESC-derived dendritic cells are functional in antigen-presentation and may be used as off-the-shelf vaccine therapies to stimulate antigen-specific immune responses against cancer cells. However, in vitro differentiation systems used to generate these cells will need further optimization before hESC/iPSC-derived blood components can be used clinically.
Collapse
Affiliation(s)
- Erin A Kimbrel
- Stem Cell & Regenerative Medicine International, 33 Locke Drive, Marlborough, MA 01752, USA
| | | |
Collapse
|
24
|
Kitchen SG, Shimizu S, An DS. Stem cell-based anti-HIV gene therapy. Virology 2011; 411:260-72. [PMID: 21247612 DOI: 10.1016/j.virol.2010.12.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 12/19/2010] [Indexed: 12/14/2022]
Abstract
Human stem cell-based therapeutic intervention strategies for treating HIV infection have recently undergone a renaissance as a major focus of investigation. Unlike most conventional antiviral therapies, genetically engineered hematopoietic stem cells possess the capacity for prolonged self-renewal that would continuously produce protected immune cells to fight against HIV. A successful strategy therefore has the potential to stably control and ultimately eradicate HIV from patients by a single or minimal treatment. Recent progress in the development of new technologies and clinical trials sets the stage for the current generation of gene therapy approaches to combat HIV infection. In this review, we will discuss two major approaches that are currently underway in the development of stem cell-based gene therapy to target HIV: one that focuses on the protection of cells from productive infection with HIV, and the other that focuses on targeting immune cells to directly combat HIV infection.
Collapse
Affiliation(s)
- Scott G Kitchen
- The David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
25
|
Leveraging human genetics to develop future therapeutic strategies in rheumatoid arthritis. Rheum Dis Clin North Am 2010; 36:259-70. [PMID: 20510233 DOI: 10.1016/j.rdc.2010.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The purpose of this article is to place these genetic discoveries in the context of current and future therapeutic strategies for patients with RA. More specifically, this article focuses on (1) a brief overview of genetic studies, (2) human genetics as an approach to identify the Achilles heel of disease pathways, (3) humans as the model organism for functional studies of human mutations, (4) pharmacogenetic studies to gain insight into the mechanism of action of drugs, and (5) next-generation patient registries to enable large-scale genotype-phenotype studies.
Collapse
|
26
|
Irion S, Clarke RL, Luche H, Kim I, Morrison SJ, Fehling HJ, Keller GM. Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development 2010; 137:2829-39. [PMID: 20659975 DOI: 10.1242/dev.042119] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The efficient and reproducible generation of differentiated progenitors from pluripotent stem cells requires the recapitulation of appropriate developmental stages and pathways. Here, we have used the combination of activin A, BMP4 and VEGF under serum-free conditions to induce hematopoietic differentiation from both embryonic and induced pluripotent stem cells, with the aim of modeling the primary sites of embryonic hematopoiesis. We identified two distinct Flk1-positive hematopoietic populations that can be isolated based on temporal patterns of emergence. The earliest arising population displays characteristics of yolk sac hematopoiesis, whereas a late developing Flk1-positive population appears to reflect the para-aortic splanchnopleura hematopoietic program, as it has reduced primitive erythroid capacity and substantially enhanced myeloid and lymphoid potential compared with the earlier wave. These differences between the two populations are accompanied by differences in the expression of Sox17 and Hoxb4, as well as in the cell surface markers AA4.1 and CD41. Together, these findings support the interpretation that the two populations are representative of the early sites of mammalian hematopoiesis.
Collapse
Affiliation(s)
- Stefan Irion
- McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Genetic studies have identified more than 150 autoimmune loci, and next-generation sequencing will identify more. Is it time to make human the model organism for autoimmune research?
Collapse
Affiliation(s)
- Robert Plenge
- Brigham and Women's Hospital, Division of Rheumatology, Immunology and Allergy, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Sakamoto H, Tsuji-Tamura K, Ogawa M. Hematopoiesis from pluripotent stem cell lines. Int J Hematol 2010; 91:384-91. [PMID: 20169427 DOI: 10.1007/s12185-010-0519-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 11/12/2009] [Indexed: 01/20/2023]
Abstract
Embryonic stem cells (ESCs) can differentiate into various types of hematopoietic cells (HPCs) when placed in an appropriate environment. Various methods for the differentiation of ESCs into specific HPC lineages have been developed using mouse ESCs. These ESC-differentiation methods have been utilized also as an in vitro model to investigate hematopoiesis in embryos and they provided critical perceptions into it. These methods have been adapted for use with human ESCs, which have the possibility of being employed in regenerative medicine; further improvement of these methods may lead to the efficient production of HPCs for use in transfusions. The generation of transplantable hematopoietic stem cells is a medical goal that is still difficult to achieve. Recently, induced pluripotent stem (iPS) cells have been established from differentiated cells. Thereby, iPS cells have expanded further possibilities of the use of pluripotent stem cell lines in clinical application. Indeed, iPS cells have been established from cells with disease genes and those which have undergone reprogramming and targeting have generated phenotypically normal HPCs. Here, we mainly summarize the recent progress in research on hematopoiesis conducted with ESCs and iPS cells.
Collapse
Affiliation(s)
- Hiroshi Sakamoto
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| | | | | |
Collapse
|
29
|
Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice. PLoS One 2009; 4:e8208. [PMID: 19997617 PMCID: PMC2785433 DOI: 10.1371/journal.pone.0008208] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 11/13/2009] [Indexed: 01/10/2023] Open
Abstract
There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, “transgenic” human anti-HIV T cell receptor (TCR). Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.
Collapse
|
30
|
Abstract
The discovery of human embryonic stem cells (hESCs) raised promises for a universal resource for cell based therapies in regenerative medicine. Recently, fast-paced progress has been made towards the generation of pluripotent stem cells (PSCs) amenable for clinical applications, culminating in reprogramming of adult somatic cells to autologous PSCs that can be indefinitely expanded in vitro. However, besides the efficient generation of bona fide, clinically safe PSCs (e.g., without the use of oncoproteins and gene transfer based on viruses inserting randomly into the genome), a major challenge in the field remains how to efficiently differentiate PSCs to specific lineages and how to select cells that will function normally upon transplantation in adults. In this review, we analyse the in vitro differentiation potential of PSCs to the hematopoietic lineage by discussing blood cell types that can be currently obtained, limitations in derivation of adult-type HSCs and prospects for clinical application of PSCs-derived blood cells.
Collapse
Affiliation(s)
- Claudia Lengerke
- Division of Hematology and Oncology, University of Tuebingen Medical Center II, 72076 Tuebingen, Germany.
| | | |
Collapse
|
31
|
Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood 2009; 114:3513-23. [PMID: 19652198 DOI: 10.1182/blood-2009-03-191304] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide remarkable cellular platforms to better understand human hematopoiesis and to develop clinically applicable hematopoietic cell-based therapies. Over the past decade, hESCs have been used to characterize molecular and cellular mechanisms underpinning the differentiation of hematopoietic progenitors and mature, functional hematopoietic cells. These advances are now poised to lead to clinical translation of hESC- and iPSC-derived hematopoietic cells for novel therapies in the next few years. On the basis of areas of recent success, initial clinical use of hematopoietic cells derived from human pluripotent stem cells will probably be in the areas of transfusion therapies (erythrocytes and platelets) and immune therapies (natural killer cells). In contrast, efficient development and isolation of hematopoietic stem cells capable of long-term, multilineage engraftment still remains a significant challenge. Technical, safety, and regulatory concerns related to clinical applications of human PSCs must be appropriately addressed. However, proper consideration of these issues should facilitate and not inhibit clinical translation of new therapies. This review outlines the current status of hematopoietic cell development and what obstacles must be surmounted to bring hematopoietic cell therapies from human PSCs from "bench to bedside."
Collapse
|
32
|
Timmermans F, Velghe I, Vanwalleghem L, De Smedt M, Van Coppernolle S, Taghon T, Moore HD, Leclercq G, Langerak AW, Kerre T, Plum J, Vandekerckhove B. Generation of T cells from human embryonic stem cell-derived hematopoietic zones. THE JOURNAL OF IMMUNOLOGY 2009; 182:6879-88. [PMID: 19454684 DOI: 10.4049/jimmunol.0803670] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human embryonic stem cells (hESC) are pluripotent stem cells. A major challenge in the field of hESC is the establishment of specific differentiation protocols that drives hESC down a particular lineage fate. So far, attempts to generate T cells from hESC in vitro were unsuccessful. In this study, we show that T cells can be generated in vitro from hESC-derived hematopoietic precursor cells present in hematopoietic zones (HZs). These zones are morphologically similar to blood islands during embryonic development, and are formed when hESC are cultured on OP9 stromal cells. Upon subsequent transfer of these HZs on OP9 cells expressing high levels of Delta-like 1 and in the presence of growth factors, cells expand and differentiate to T cells. Furthermore, we show that T cells derive exclusively from a CD34(high)CD43(low) population, further substantiating the notion that hESC-derived CD34(high)CD43(low) cells are formed in HZs and are the only population containing multipotent hematopoietic precursor cells. Differentiation to T cells sequentially passes through the physiological intermediates: CD34(+)CD7(+) T/NK committed, CD7(+)CD4(+)CD8(-) immature single positive, CD4(+)CD8(+) double positive, and finally CD3(+)CD1(-)CD27(+) mature T cell stages. TCRalphabeta(+) and TCRgammadelta(+) T cells are generated. Mature T cells are polyclonal, proliferate, and secrete cytokines in response to mitogens. This protocol for the de novo generation of T cells from hESC could be clinically and scientifically relevant.
Collapse
Affiliation(s)
- Frank Timmermans
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|