1
|
Transfection of gene regulation nanoparticles complexed with pDNA and shRNA controls multilineage differentiation of hMSCs. Biomaterials 2018; 177:1-13. [PMID: 29883913 DOI: 10.1016/j.biomaterials.2018.05.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/21/2018] [Indexed: 10/16/2022]
Abstract
Overexpression and knockdown of specific proteins can control stem cell differentiation for therapeutic purposes. In this study, we fabricated RUNX2, SOX9, and C/EBPα plasmid DNAs (pDNAs) and ATF4-targeting shRNA (shATF4) to induce osteogenesis, chondrogenesis, and adipogenesis of human mesenchymal stem cells (hMSCs). The pDNAs and shATF4 were complexed with TRITC-gene regulation nanoparticles (GRN). Osteogenesis-related gene expression was reduced at early (12 h) and late (36 h) time points after co-delivery of shATF4 and SOX9 or C/EBPα pDNA, respectively, and osteogenesis was inhibited in these hMSCs. By contrast, osteogenesis-related genes were highly expressed upon co-delivery of RUNX2 and ATF4 pDNAs. DEX in GRN enhanced chondrogenic differentiation. Expression of osteogenesis-, chondrogenesis-, and adipogenesis-related genes was higher in hMSCs transfected with NPs complexed with RUNX2 and ATF4 pDNAs, shATF4 and SOX9 pDNA, and shATF4 and C/EBPα pDNA for 72 h than in control hMSCs, respectively. Moreover, delivery of these NPs also increased expression of osteogenesis-, chondrogenesis-, and adipogenesis-related proteins. These alterations in expression led to morphological changes, indicating that hMSCs differentiated into osteoblasts, chondrocytes, and adipose cells.
Collapse
|
2
|
iMAD, a genetic screening strategy for dissecting complex interactions between a pathogen and its host. Nat Protoc 2014; 9:1916-30. [PMID: 25033208 DOI: 10.1038/nprot.2014.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Insertional mutagenesis and depletion (iMAD) is a genetic screening strategy for dissecting complex interactions between two organisms. The simultaneous genetic manipulation of both organisms allows the identification of aggravating and alleviating genetic interactions between pairs of gene disruptions, one from each organism. Hierarchial clustering and genetic interaction networks are then used to identify common behavioral patterns among subsets of genes, which allow functional relationships between proteins and their component pathways to be elucidated. Here we present a protocol for dissecting the interaction between a pathogen (Legionella pneumophila) and its host (cultured Drosophila melanogaster cells) using bacterial mutagenesis and host RNAi. The key stages covered in the PROCEDURE include the design, execution and data analysis of an iMAD screen; details for determining the abundance of individual mutants by microarray analysis and next-generation sequencing are not included because detailed protocols have been published elsewhere. Adapting and optimizing iMAD to a specific experimental system can require 6-18 months. Once a bacterial mutant library, host cell factor depletion strategies and conditions to monitor the interaction are established, an iMAD screen can be completed in 4-8 weeks, depending on the organisms' growth rates, the duration of the interaction and the types of data analysis performed.
Collapse
|
3
|
Lee JM, Kojin Y, Tatsuke T, Mon H, Miyagawa Y, Kusakabe T. Coexpression of Escherichia coli RNase III in silkworm cells improves the efficiency of RNA interference induced by long hairpin dsRNAs. INSECT SCIENCE 2013; 20:69-77. [PMID: 23955827 DOI: 10.1111/j.1744-7917.2012.01569.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Long hairpin dsRNA transcribed from chromosomal DNA can induce RNA interference in Bombyx mori cells, although its gene silencing efficiency is lower than that of exogenously introduced double-stranded RNAs (dsRNAs). To solve this problem, we monitored the nuclear cytoplasmic translocation of the transcribed hairpin dsRNA and analyzed the processing efficiency into mature small interfering RNA (siRNA). Northern blot analysis revealed that the transcribed hairpin dsRNAs were spliced and transported into the cytoplasm, but were not effectively diced into siRNAs. Interestingly, RNAi with hairpin dsRNAs from genome-integrated IR transgene was stimulated by the coexpression of Escherichia coli RNase III, although this exogenous enzyme seemed to bring about nonspecific cleavage of cellular mRNA.
Collapse
Affiliation(s)
- Jae Man Lee
- Laboratory of Silkworm Sciences, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
4
|
Greenblatt EJ, Olzmann JA, Kopito RR. Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum. Nat Struct Mol Biol 2011; 18:1147-52. [PMID: 21909096 DOI: 10.1038/nsmb.2111] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 07/05/2011] [Indexed: 12/17/2022]
Abstract
The degradation of misfolded secretory proteins is ultimately mediated by the ubiquitin-proteasome system in the cytoplasm, therefore endoplasmic reticulum-associated degradation (ERAD) substrates must be dislocated across the ER membrane through a process driven by the AAA ATPase p97/VCP. Derlins recruit p97/VCP and have been proposed to be part of the dislocation machinery. Here we report that Derlins are inactive members of the rhomboid family of intramembrane proteases and bind p97/VCP through C-terminal SHP boxes. Human Derlin-1 harboring mutations within the rhomboid domain stabilized mutant α-1 antitrypsin (NHK) at the cytosolic face of the ER membrane without disrupting the p97/VCP interaction. We propose that substrate interaction and p97/VCP recruitment are separate functions that are essential for dislocation and can be assigned respectively to the rhomboid domain and the C terminus of Derlin-1. These data suggest that intramembrane proteolysis and protein dislocation share unexpected mechanistic features.
Collapse
|
5
|
Huo Q, Zheng ST, Tuersun A, Huang CG, Liu Q, Zhang X, Sheyhidin I, Lu XM. shRNA interference for extracellular signal-regulated kinase 2 can inhibit the growth of esophageal cancer cell line Eca109. J Recept Signal Transduct Res 2010; 30:170-7. [PMID: 20415541 DOI: 10.3109/10799891003786200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma is one of the most common digestive tract cancers with 5-year survival rate less than 10% owing to its poor prognosis. Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway has been mainly involved in the pathogenesis of various cancers. In present study, we investigated the role of ERK2 in human esophageal cancer cell line Eca109. METHODS Short-hairpin RNA (shRNA) interference vector targeted ERK2 was constructed using pGeneclip U1 hairpin cloning systems, then transfected into Eca109 cell line. The transfection efficiency was observed by fluorescence microscope and cell growth after transfection with shRNA-ERK2 vector was determined by methylthiazolyl blue tetrazolium (MTT) assay. The ERK2 expression after transfection was detected by western-blotting. The cell apoptosis and cell-cycle was analyzed by flow cytometry. The role of p-ERK2 was confirmed by immunohistochemistry and soft agar colony formation assay. RESULTS The growth of Eca109 transfected with shRNA-ERK2 vector was obviously inhibited compared to control group via MTT analysis. The inhibition rate after transfection with shRNA-ERK2 for 96 h was 10.45%, the expression of ERK2 was obviously reduced compared to the control analyzed by western-blot, cell apoptosis was 9.7% (compared to control, P < 0.05), and cell-cycle was arrested at G1 phase. CONCLUSIONS In present study we demonstrated for the first time that transfection with shRNA-ERK2 targeted ERK2 into Eca109 cells can inhibit growth of Eca109, inducing cell apoptosis and influencing cell-cycle. Together, these results we obtained suggested that ERK2 plays an important role in cell growth of Eca109.
Collapse
Affiliation(s)
- Qi Huo
- Medical Research Center, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Zheng ST, Huo Q, Tuerxun A, Ma WJ, Lv GD, Huang CG, Liu Q, Wang X, Lin RY, Sheyhidin I, Lu XM. The expression and activation of ERK/MAPK pathway in human esophageal cancer cell line EC9706. Mol Biol Rep 2010; 38:865-72. [PMID: 20464500 DOI: 10.1007/s11033-010-0178-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 03/22/2010] [Indexed: 12/18/2022]
|
7
|
Schellander K, Hoelker M, Tesfaye D. Selective degradation of transcripts in mammalian oocytes and embryos. Theriogenology 2007; 68 Suppl 1:S107-15. [PMID: 17573104 DOI: 10.1016/j.theriogenology.2007.05.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During the last decade several gene expression analysis studies have been carried out to investigate the transcriptional profile of bovine embryos in response to various culture and treatments conditions. Despite this fact, the function of a large number of genes in mammalian embryogenesis has not yet been investigated or is not known. The conventional gene-knockout experiments have been used extensively to study the function of genes in mammalian embryogenesis. However, these studies are relatively slow and cannot keep pace with the rapid accumulation of new sequence information produced by various genome projects. For this, the posttranscriptional gene silencing (PTGS) by double-stranded RNA (dsRNA), or RNA interference (RNAi), has emerged as a new tool for studying gene function in an increasing number of organisms. The present review will focus on recent developments in the use of RNAi for selective degradation of transcripts in mammalian embryos to elucidate their function in early development.
Collapse
Affiliation(s)
- K Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, Endenicher Allee 15, 53115 Bonn, Germany.
| | | | | |
Collapse
|
8
|
Jian R, Cheng X, Jiang J, Deng S, Hu F, Zhang J. A cDNA-based random RNA interference library for functional genetic screens in embryonic stem cells. Stem Cells 2007; 25:1904-12. [PMID: 17379769 DOI: 10.1634/stemcells.2006-0448] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To facilitate high-throughput functional genetic screens in embryonic stem cells, a simple and efficient system to construct cDNA-based random RNA interference (RNAi) library was developed in the study. Previous studies have demonstrated that sequence-specific gene silencing could be induced by long double-stranded RNA (dsRNA) in mouse embryos, mouse oocytes, embryonic stem cells, and other mammalian cells. Based on these findings, a dsRNA-expressing RNAi vector system was designed. This study provided evidence that the vector design could induce efficient knockdown of expression of both exogenous egfp gene and endogenous MTM1 gene in mouse embryonic stem cells. A random RNAi library was established by cloning enzyme-digested cDNA of mouse embryonic stem (ES) cells into the BamHI site of the convergent dual promoter RNAi vector. Sequencing of 20 randomly selected clones from the library showed that 17 contained inserts and that all of them were unique sequences. A functional genetic screen of genes involving in self-renewal and differentiation with the random RNAi library identified ubiquitin. The ubiquitin knockdown ES cell line generated 20%-30% of undifferentiated colonies in the absence of leukemia inhibitor factor, whereas parental ES cells and control vector pDCont transfectants produced less than 5% of colonies of undifferentiated cells, suggesting that ubiquitin plays a role in ES cell differentiation. The random RNAi library provides a useful tool for investigation of molecular mechanisms of cellular development and differentiation.
Collapse
Affiliation(s)
- Rui Jian
- Laboratory of Infection Immunity, Department of Microbiology, Third Military Medical University, Chongqing, PR China
| | | | | | | | | | | |
Collapse
|
9
|
Clément S, Stouffs M, Bettiol E, Kampf S, Krause KH, Chaponnier C, Jaconi M. Expression and function of alpha-smooth muscle actin during embryonic-stem-cell-derived cardiomyocyte differentiation. J Cell Sci 2006; 120:229-38. [PMID: 17179203 DOI: 10.1242/jcs.03340] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Three alpha-muscle actin isoforms are sequentially expressed during in vivo cardiac development. alpha-Smooth muscle actin is first and transiently expressed, followed by alpha-skeletal and finally alpha-cardiac actin. The significance of these transitions in actin gene expression during myogenesis remains to be determined. To understand whether actin isoforms have specific functions during cardiac development and cardiomyocyte contractility, we have hampered alpha-smooth muscle and alpha-skeletal actin expression and organization during embryonic stem cell differentiation towards cardiomyocyte. We show that the sequence of actin isoform expression displays similar pattern in the in vitro model and in mouse heart embryogenesis. Treatment with an interfering fusion peptide containing the N-terminal sequence of alpha-smooth muscle actin during a time window preceding spontaneous beating, prevents proper cardiac sarcomyogenesis, whereas alpha-skeletal actin-fusion peptide has no effect. Knockdown of alpha-smooth muscle actin in embryonic stem cells using RNA interference also affects cardiac differentiation. The application of both fusion peptides on beating embryoid bodies impairs frequency. These results suggest specific functional activities for actin isoforms in cardiogenesis and cardiomyocyte contractility.
Collapse
Affiliation(s)
- Sophie Clément
- Department of Geriatrics, Laboratory of Ageing, Geneva Hospital, Chêne-Bourg, Geneva, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
10
|
Zhang JZ, Gao W, Yang HB, Zhang B, Zhu ZY, Xue YF. Screening for genes essential for mouse embryonic stem cell self-renewal using a subtractive RNA interference library. Stem Cells 2006; 24:2661-8. [PMID: 16960129 DOI: 10.1634/stemcells.2006-0017] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The pluripotency of mouse embryonic stem (ES) cells is maintained by self-renewal. To screen for genes essential for this process, we constructed an RNA interference (RNAi) library by inserting subtracted ES cell cDNA fragments into plasmid containing two opposing cytomegalovirus promoters. ES cells were transfected with individual RNAi plasmids and levels of the pluripotency marker Oct-4 were monitored 48 hours later by real time RT-PCR. Of the first 89 RNAi plasmids characterized, 12 downregulated Oct-4 expression to less than 50% of the normal level and 7 of them upregulated Oct-4 expression to more than 150% of the normal level. To investigate their long-term effect on self-renewal, ES cells were transfected by these 19 RNAi plasmids individually and G418-resistant colonies were subjected to alkaline phosphatase (AP) staining after 7 days selection. Except for 4 plasmids that caused cell death, the ratio of AP positive colonies was repressed to less than 60% of the control group by the other 15 plasmids and even below 20% by 10 plasmids. The cDNA fragments in these 10 plasmids correspond to eight genes, including Zfp42/Rex-1, which was chosen for further functional analysis. RNAi knockdown of Zfp42 induced ES cells differentiate to endoderm and mesoderm lineages, and overexpression of Zfp42 also caused ES cells to lose the capacity of self-renewal. Our results indicate that RNAi screen is a feasible and efficient approach to identify genes involved in ES cells self-renewal. Further functional characterization of these genes will promote our understanding of the complex regulatory networks in ES cells.
Collapse
Affiliation(s)
- Jun-Zheng Zhang
- Key Laboratory of Cell Proliferation and Differentiation of Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | |
Collapse
|
11
|
Wang BB, Lu R, Wang WC, Jin Y. Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells. Biochem Biophys Res Commun 2006; 347:1129-37. [PMID: 16870143 DOI: 10.1016/j.bbrc.2006.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 11/19/2022]
Abstract
The tetracycline (Tc)-inducible small interference RNA (siRNA) is a powerful tool for studying gene function in mammalian cells. However, the system is infrequently utilized in embryonic stem (ES) cells. Here, we present the first application of the Tc-inducible, stably integrated plasmid-based siRNA system in mouse ES cells to down-regulate expression of Npm1, an essential gene for embryonic development. The physiological role of Npm1 in ES cells has not been defined. Our data show that the knock-down of Npm1 expression by this siRNA system was not only highly efficient, but also Tc- dose- and induction time-dependent. Particularly, the down-regulation of Npm1 expression was reversible. Importantly, suppression of Npm1 expression in ES cells resulted in reduced cell proliferation. Taken together, this system allows for studying gene function in a highly controlled manner, otherwise difficult to achieve in ES cells. Moreover, our results demonstrate that Npm1 is essential for ES cell proliferation.
Collapse
Affiliation(s)
- Bei Bei Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | |
Collapse
|
12
|
Krzewski K, Chen X, Orange JS, Strominger JL. Formation of a WIP-, WASp-, actin-, and myosin IIA-containing multiprotein complex in activated NK cells and its alteration by KIR inhibitory signaling. ACTA ACUST UNITED AC 2006; 173:121-32. [PMID: 16606694 PMCID: PMC2063796 DOI: 10.1083/jcb.200509076] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The tumor natural killer (NK) cell line YTS was used to examine the cytoskeletal rearrangements required for cytolysis. A multiprotein complex weighing approximately 1.3 mD and consisting of WASp-interacting protein (WIP), Wiskott-Aldrich syndrome protein (WASp), actin, and myosin IIA that formed during NK cell activation was identified. After induction of an inhibitory signal, the recruitment of actin and myosin IIA to a constitutive WIP-WASp complex was greatly decreased. Both actin and myosin IIA were recruited to WIP in the absence of WASp. This recruitment correlated with increased WIP phosphorylation, which was mediated by PKCtheta. Furthermore, the disruption of WIP expression by WIP RNA interference prevented the formation of this protein complex and led to almost complete inhibition of cytotoxic activity. Thus, the multiprotein complex is important for NK cell function, killer cell immunoglobulin-like receptor inhibitory signaling affects proteins involved in cytoskeletal rearrangements, and WIP plays a central role in the formation of the complex and in the regulation of NK cell activity.
Collapse
Affiliation(s)
- Konrad Krzewski
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
13
|
Takada T, Nemoto KI, Yamashita A, Kato M, Kondo Y, Torii R. Efficient gene silencing and cell differentiation using siRNA in mouse and monkey ES cells. Biochem Biophys Res Commun 2005; 331:1039-44. [PMID: 15882982 DOI: 10.1016/j.bbrc.2005.04.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Indexed: 11/17/2022]
Abstract
Small interfering RNA (siRNA) has been widely used for suppressing gene expression in various organisms. Here, we describe efficient methods to suppress target genes (EGFP or Oct4) using siRNA in mouse and monkey ES cells, and differentiation. In mouse ES cells, FACS analysis revealed that EGFP expression was suppressed in 97% of transfected cells at 48 h after transfection. In addition, cells expressed Hand1 and Cdx2, which are the marker genes of trophoblast lineage by the transient suppression of Oct4. In the case of monkey ES cells, highly efficient suppression was achieved in 98% of cells at 96 h post-transfection using the Sendai virus (hemagglutinating virus of Japan, HVJ) envelope as a carrier of siRNA. These efficient transfection methods using synthetic siRNA should contribute to evaluate specific gene function in ES cells and can be used to differentiate ES cells into desired cell lineages.
Collapse
Affiliation(s)
- Tatsuyuki Takada
- Research Center for Animal Life Science, Shiga University of Medical Science, Ohtsu, Shiga 520-2192, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Zheng GD, Hidaka K, Morisaki T. Stable and uniform gene suppression by site-specific integration of siRNA expression cassette in murine embryonic stem cells. Stem Cells 2005; 23:1028-34. [PMID: 15941861 DOI: 10.1634/stemcells.2004-0335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We developed a simple system to introduce small interfering RNA (siRNA) into murine embryonic stem cells (ESCs) and then showed its stable and uniform expression. Using hypoxanthine guanine phosphoribosyl transferase 1 (Hprt)-deficient ESCs as a recipient, we efficiently introduced an siRNA expression cassette into the Hprt locus by homologous recombination, which was easily detected by HAT selection. Nearly all of the HAT-resistant clones exhibited a silenced expression of the exogenous target gene (enhanced green fluorescent protein [EGFP]) or the endogenous target gene (Flk1). Flow cytometry profiles demonstrated that there were no significant differences in level of suppression among individual clones and cells. The suppressing effect by siRNA was maintained for more than 1 month in both undifferentiated and differentiated ESCs, while its persistent expression did not disturb their growth or differentiation potential. The stable and uniform suppression capability of this system will help to screen genes and provide important information regarding cell differentiation in ESCs.
Collapse
Affiliation(s)
- Guo Dong Zheng
- Department of Bioscience, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | | | | |
Collapse
|
15
|
Miura T, Luo Y, Khrebtukova I, Brandenberger R, Zhou D, Thies RS, Vasicek T, Young H, Lebkowski J, Carpenter MK, Rao MS. Monitoring early differentiation events in human embryonic stem cells by massively parallel signature sequencing and expressed sequence tag scan. Stem Cells Dev 2005; 13:694-715. [PMID: 15684837 DOI: 10.1089/scd.2004.13.694] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To identify genes that may be involved in the process of human embryonic stem cell (hESC) differentiation, we profiled gene expression by expressed sequenced tag (EST) enumeration and massively parallel signature sequencing (MPSS) using RNA samples from feeder-free cultures of undifferentiated (passages 40-50) and differentiated (day 14) H1, H7, and H9 lines. MPSS and EST scan analysis showed good concordance and identified a large number of genes that changed rapidly as cultures transition from a pluripotent to a differentiated state. These included known and unknown ES cell-specific genes as well as a large number of known genes that were altered as cells differentiate. A subset of genes that were either up- or down-regulated were selected and their differential expression confirmed by a variety of independent methods, including comparison of expression after further differentiation, publicly available databases, and direct assessments by reverse transcriptase (RT)-PCR and immunocytochemistry. The analysis identified markers unique to the hESC and embryoid bodies (hEBs) stage as well as signaling pathways that likely regulate differentiation. The data generated can be used to monitor the state of hESC isolated by different laboratories using independent methods and maintained under differing culture conditions.
Collapse
Affiliation(s)
- Takumi Miura
- Gerontology Research Center, Stem Cell Biology Unit/Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Xu H, Fan X, Tang J, Zhou G, Yang L, Wu X, Liu S, Qu J, Yang H. A modified method for generation of neural precursor cells from cultured mouse embryonic stem cells. ACTA ACUST UNITED AC 2005; 15:52-8. [PMID: 15878151 DOI: 10.1016/j.brainresprot.2005.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 03/17/2005] [Accepted: 03/23/2005] [Indexed: 12/01/2022]
Abstract
The pluripotency and high proliferative capacity of embryonic stem (ES) cells make them an attractive source of different cell types for biomedical research and cell replacement therapies. It has been demonstrated that ES cells can be induced into neural precursor cells (NPCs) under conditions. NPCs can be expanded in large numbers for significant periods of time to provide a reliable source of cells for transplantation in neurodegenerative disorders and injury of the central nervous system. This study describes a modified method for generation of NPCs from cultured mouse ES cells.
Collapse
Affiliation(s)
- Haiwei Xu
- Department of Physiology, The Third Military Medical University, Chongqing 400038, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|