1
|
Rohilla S, Singh M, Alzarea SI, Almalki WH, Al-Abbasi FA, Kazmi I, Afzal O, Altamimi ASA, Singh SK, Chellappan DK, Dua K, Gupta G. Recent Developments and Challenges in Molecular-Targeted Therapy of Non-Small-Cell Lung Cancer. J Environ Pathol Toxicol Oncol 2023; 42:27-50. [PMID: 36734951 DOI: 10.1615/jenvironpatholtoxicoloncol.2022042983] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment of lung cancer with conventional therapies, which include radiation, surgery, and chemotherapy results in multiple undesirable adverse or side effects. The major clinical challenge in developing new drug therapies for lung cancer is resistance, which involves mutations and disturbance in various signaling pathways. Molecular abnormalities related to epidermal growth factor receptor (EGFR), v-Raf murine sarcoma viral oncogene homolog B1 (B-RAF) Kirsten rat sarcoma virus (KRAS) mutations, translocation of the anaplastic lymphoma kinase (ALK) gene, mesenchymal-epithelial transition factor (MET) amplification have been studied to overcome the resistance and to develop new therapies for non-small cell lung cancer (NSCLC). But, inevitable development of resistance presents limits the clinical benefits of various new drugs. Here, we review current progress in the development of molecularly targeted therapies, concerning six clinical biomarkers: EGFR, ALK, MET, ROS-1, KRAS, and B-RAF for NSCLC treatment.
Collapse
Affiliation(s)
- Suman Rohilla
- SGT College of Pharmacy, Shree Guru Gobind Singh Tricentenary University, Gurugram, 122505, India
| | - Mahaveer Singh
- Swami Keshvanand Institute of Pharmacy (SKIP), Raiser, Bikaner, 334803, India
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur, 57000, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Department of Pharmacology, Suresh GyanVihar University, Jagatpura, Jaipur, India; Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
2
|
Sun J, Chen J. [Research Progress of DNA Methylation in Cisplatin Resistance in Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:52-58. [PMID: 36792081 PMCID: PMC9987084 DOI: 10.3779/j.issn.1009-3419.2023.101.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
As one of the most common malignant tumors, lung cancer poses a serious threat to human life and health. The platinum-based drug cisplatin (DDP) is used as the first-line treatment for lung cancer. The poor prognosis of lung cancer is mostly due to developed resistance to cisplatin, which poses a serious treatment challenge. The mechanism of cisplatin resistance is complex and unclear. Numerous studies have shown that DNA methylation plays a crucial role in the emergence of lung cancer cisplatin resistance. DNA hypermethylation results in the deactivation of numerous drug resistance genes and tumor suppressor genes through a change in chromatin conformation. Finding new therapeutic targets and indicators to predict the therapeutic effect can be aided by elucidating the complex mechanism. In order to discover novel strategies to overcome cisplatin resistance in lung cancer, this paper discusses DNA methylation-mediated cisplatin resistance and offers an overview of current demethylation procedures.
.
Collapse
Affiliation(s)
- Jinzhe Sun
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian 116000, China
| | - Jun Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian 116000, China
| |
Collapse
|
3
|
Shameer K, Zhang Y, Prokop A, Nampally S, N IKA, Weatherall J, Iacona RB, Khan FM. OSPred Tool: A Digital Health Aid for Rapid Predictive Analysis of Correlations Between Early End Points and Overall Survival in Non-Small-Cell Lung Cancer Clinical Trials. JCO Clin Cancer Inform 2022; 6:e2100173. [PMID: 35467964 PMCID: PMC9067362 DOI: 10.1200/cci.21.00173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Overall survival (OS) is the gold standard end point for establishing clinical benefits in phase III oncology trials. However, these trials are associated with low success rates, largely driven by failure to meet the primary end point. Surrogate end points such as progression-free survival (PFS) are increasingly being used as indicators of biologic drug activity and to inform early go/no-go decisions in oncology drug development. We developed OSPred, a digital health aid that combines actual clinical data and machine intelligence approaches to visualize correlation trends between early (PFS-based) and late (OS) end points and provide support for shared decision making in the drug development pipeline.
Collapse
Affiliation(s)
- Khader Shameer
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Youyi Zhang
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Andrzej Prokop
- Oncology Biometrics, Oncology R&D, AstraZeneca, Warsaw, Poland
| | - Sreenath Nampally
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| | - Imran Khan A N
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | - Jim Weatherall
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Macclesfield, United Kingdom
| | | | - Faisal M Khan
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD
| |
Collapse
|
4
|
Yuan Z, Niu XM, Liu XM, Fu HC, Xue TJ, Koo CW, Okuda K, Yao F, Ye XD. Use of diffusion-weighted magnetic resonance imaging (DW-MRI) to predict early response to anti-tumor therapy in advanced non-small cell lung cancer (NSCLC): a comparison of intravoxel incoherent motion-derived parameters and apparent diffusion coefficient. Transl Lung Cancer Res 2021; 10:3671-3681. [PMID: 34584865 PMCID: PMC8435389 DOI: 10.21037/tlcr-21-610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
Background The intravoxel incoherent motion (IVIM) method of magnetic resonance imaging (MRI) analysis can provide information regarding many physiological and pathological processes. This study aimed to investigate whether IVIM-derived parameters and the apparent diffusion coefficient (ADC) can act as imaging biomarkers for predicting non-small cell lung cancer (NSCLC) response to anti-tumor therapy and compare their performances. Methods This prospective study included 45 patients with NSCLC treated with chemotherapy (29 men and 16 women, mean age 57.9±9.7 years). Diffusion-weighted imaging was performed with 13 b-values before and 2–4 weeks after treatment. The IVIM parameter pseudo-diffusion coefficient (D*), perfusion fraction (f), diffusion coefficient (D), and ADC from a mono-exponential model were obtained. Responses 2 months after chemotherapy were assessed. The diagnostic performance was evaluated, and optimal cut-off values were determined by receiver operating characteristic (ROC) curve analysis, and the differences of progression-free survival (PFS) in groups of responders and non-responders were tested by Cox regression and Kaplan-Meier survival analyses. Results Of 45 patients, 30 (66.7%) were categorized as responders, and 15 as non-responders. Differences in the diffusion coefficient D and ADC between responders and non-responders were statistically significant (all P<0.05). Conversely, differences in f and D* between responders and non-responders were both not statistically significance (all P>0.05). The ROC analyses showed the change in D value (ΔD) was the best predictor of early response to anti-tumor therapy [area under the ROC curve (AUC), 0.764]. The Cox-regression model showed that all ADC and D parameters were independent predictors of PFS, with a range of reduction in risk from 56.2% to 82.7%, and ΔD criteria responders had the highest reduction (82.7%). Conclusions ADC and D derived from IVIM are potentially useful for the prediction of NSCLC treatment response to anti-tumor therapy. Although ΔD is best at predicting response to treatment, ΔADC measurement may simplify manual efforts and reduce the workload.
Collapse
Affiliation(s)
- Zheng Yuan
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiao-Min Niu
- Department of Medical Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue-Mei Liu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hong-Chao Fu
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ting-Jia Xue
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chi Wan Koo
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Dan Ye
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Ye Q, Zhou L, Jin P, Li L, Zheng S, Huang Z, Liu J, Qin S, Liu H, Zou B, Xie K. Guaiazulene Triggers ROS-Induced Apoptosis and Protective Autophagy in Non-small Cell Lung Cancer. Front Pharmacol 2021; 12:621181. [PMID: 33935713 PMCID: PMC8082441 DOI: 10.3389/fphar.2021.621181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/29/2021] [Indexed: 02/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the most frequent cancers worldwide, yet effective treatment remains a clinical challenge. Guaiazulene (GYZ), a cosmetic color additive, has previously been characterized as a potential antitumor agent due to observed anticancer effects. However, the efficacy of GYZ in the treatment of NSCLC and the involved molecular mechanisms remain largely unknown. Here, we indicated a role for GYZ in the suppression of NSCLC both in vitro and in vivo via triggering reactive oxygen species (ROS)-induced apoptosis. Concomitantly, GYZ induced complete autophagic flux in NSCLC cells via inhibiting the Akt/mTOR signaling pathway, which displayed cytoprotective effect against GYZ-induced growth suppression. Accompanied with autophagy inhibition obviously enhanced the effects of GYZ. Notably, GYZ acts synergistically with paclitaxel in the suppression of NSCLC in vitro. Together, our results for the first time reported that GYZ suppressed the proliferation of NSCLC and suggested a potential strategy for inhibiting NSCLC growth by combinational use of GYZ and autophagy inhibitors.
Collapse
Affiliation(s)
- Qin Ye
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuwen Zheng
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Jiayang Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Siyuan Qin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Sciences and Forensic Medicine, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Hao Liu
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bingwen Zou
- Department of Thoracic Oncology and Department of Radiation Oncology, Cancer center, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Xie
- Department of Oncology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Upregulation of Serum miR-629 Predicts Poor Prognosis for Non-Small-Cell Lung Cancer. DISEASE MARKERS 2021; 2021:8819934. [PMID: 33763157 PMCID: PMC7946467 DOI: 10.1155/2021/8819934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is one of the most common types of cancer worldwide. Accumulating evidence has suggested that aberrant expression of microRNAs (miRNAs) is involved in the carcinogenesis and progression of NSCLC. The current study is aimed at investigating the clinical significance of serum miR-629 in NSCLC. The expression levels of serum miR-629 in patients with NSCLC, patients with nonmalignant lung diseases, and healthy controls were assessed by real-time quantitative polymerase chain reaction. Our results showed that serum miR-629 levels were significantly upregulated in NSCLC patients compared to the controls. Serum miR-629 exhibited better performance for discriminating NSCLC patients from healthy controls, compared to the traditional biomarkers CYFRA 21-1 and CEA. In addition, a high serum miR-629 level was positively correlated with adverse clinicopathological parameters including lymph node metastasis, differentiation, and clinical stage. Serum miR-629 was dramatically reduced in the NSCLC cases receiving surgical treatment. Moreover, the patients in the high serum miR-629 group suffered poorer overall survival and disease-free survival than those in the low serum miR-629 group. In conclusion, serum miR-629 might serve as a potential prognostic biomarker for NSCLC.
Collapse
|
7
|
Zhang R, Tao F, Ruan S, Hu M, Hu Y, Fang Z, Mei L, Gong C. The TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop increases the cisplatin resistance of non-small cell lung cancer by inducing G6PD expression. Am J Transl Res 2019; 11:6860-6876. [PMID: 31814893 PMCID: PMC6895501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/02/2019] [Indexed: 06/10/2023]
Abstract
Platinum-based chemotherapy is still widely applied for the treatment of advanced non-small cell lung cancer (NSCLC). However, acquired chemoresistance compromises the curative effect of this drug. In this study, we found that glucose-6-phosphate dehydrogenase (G6PD), a critical enzyme of the pentose phosphate pathway, contributed to cisplatin resistance in NSCLC. The experimental results showed that transforming growth factor beta 1 (TGFβ1) increased the expression of G6PD by activating the forkhead box protein M1-high mobility group AT-hook 1-G6PD (FOXM1-HMGA1-G6PD) transcriptional regulatory pathway, in which TGFβ1 inhibited the ubiquitination and degradation of FOXM1 protein. Additionally, HMGA1 induced TGFβ1 expression, and neutralized TGFβ1 in the culture medium downregulated HMGA1 levels, suggesting the existence of a TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop and its role in maintaining G6PD expression. Further investigations showed that exogenous TGFβ1 enhanced the cisplatin resistance of NSCLC cells, while disrupting the FOXM1-HMGA1-G6PD pathway, thereby sensitizing the cells to cisplatin. Consistently, the TGFβ1-FOXM1-HMGA1-G6PD axis was confirmed in NSCLC tissues, and overactivation of this axis predicted poor survival in NSCLC patients. Collectively, the results of this study demonstrate that the TGFβ1-FOXM1-HMGA1-TGFβ1 positive feedback loop plays a crucial role in the cisplatin resistance of NSCLC by upregulating the expression of G6PD, providing a potential therapeutic target to restore chemosensitivity in cisplatin-resistant NSCLC.
Collapse
Affiliation(s)
- Rongwei Zhang
- Division of Thoracic Surgery, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
- Department of Emergency, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
| | - Fuzheng Tao
- Department of Cardiovascular, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
| | - Shenghui Ruan
- Department of Emergency, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
| | - Miaoxian Hu
- Department of Emergency, Chinese and Western Combined Hospital of TaizhouWenlin 317523, China
| | - Yanyan Hu
- Central Laboratory, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Zejun Fang
- Central Laboratory, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Lingming Mei
- Department of Educations, Sanmen People’s Hospital of ZhejiangSanmen 317100, China
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221002, China
| |
Collapse
|
8
|
Kong X, Pan P, Sun H, Xia H, Wang X, Li Y, Hou T. Drug Discovery Targeting Anaplastic Lymphoma Kinase (ALK). J Med Chem 2019; 62:10927-10954. [PMID: 31419130 DOI: 10.1021/acs.jmedchem.9b00446] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As a receptor tyrosine kinase of insulin receptor (IR) subfamily, anaplastic lymphoma kinase (ALK) has been validated to play important roles in various cancers, especially anaplastic large cell lymphoma (ALCL), nonsmall cell lung cancer (NSCLC), and neuroblastomas. Currently, five small-molecule inhibitors of ALK, including Crizotinib, Ceritinib, Alectinib, Brigatinib, and Lorlatinib, have been approved by the U.S. Food and Drug Administration (FDA) against ALK-positive NSCLCs. Novel type-I1/2 and type-II ALK inhibitors with improved kinase selectivity and enhanced capability to combat drug resistance have also been reported. Moreover, the "proteolysis targeting chimera" (PROTAC) technique has been successfully applied in developing ALK degraders, which opened a new avenue for targeted ALK therapies. This review provides an overview of the physiological and biological functions of ALK, the discovery and development of drugs targeting ALK by focusing on their chemotypes, activity, selectivity, and resistance as well as potential therapeutic strategies to overcome drug resistance.
Collapse
Affiliation(s)
- Xiaotian Kong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China.,Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Peichen Pan
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Huiyong Sun
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Hongguang Xia
- Department of Biochemistry & Research Center of Clinical Pharmacy of the First Affiliated Hospital , Zhejiang University , Hangzhou 310058 , China
| | - Xuwen Wang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| | - Youyong Li
- Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Tingjun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences , Zhejiang University , Hangzhou , Zhejiang 310058 , China
| |
Collapse
|
9
|
JMJD2 promotes acquired cisplatin resistance in non-small cell lung carcinoma cells. Oncogene 2019; 38:5643-5657. [PMID: 30967636 DOI: 10.1038/s41388-019-0814-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/19/2019] [Accepted: 03/23/2019] [Indexed: 12/11/2022]
Abstract
Platinum-based drugs such as cisplatin (CP) are the first-line chemotherapy for non-small-cell lung carcinoma (NSCLC). Unfortunately, NSCLC has a low response rate to CP and acquired resistance always occurs. Histone methylation regulates chromatin structure and is implicated in DNA repair. We hypothesize histone methylation regulators are involved in CP resistance. We therefore screened gene expression of known histone methyltransferases and demethylases in three NSCLC cell lines with or without acquired resistance to CP. JMJD2s are a family of histone demethylases that remove tri-methyl groups from H3K9 and H3K36. We found expression of several JMJD2 family genes upregulated in CP-resistant cells, with JMJD2B expression being upregulated in all three CP-resistant NSCLC cell lines. Further analysis showed increased JMJD2 protein expression coincided with decreased H3K9me3 and H3K36me3. Chemical inhibitors of JMJD2-family proteins increased H3K9me3 and H3K36me3 levels and sensitized resistant cells to CP. Mechanistic studies showed that JMJD2 inhibition decreased chromatin association of ATR and Chk1 and inhibited the ATR-Chk1 replication checkpoint. Our results reveal that JMJD2 demethylases are potential therapeutic targets to overcome CP resistance in NSCLC.
Collapse
|
10
|
Solà-Morales O, Volmer T, Mantovani L. Perspectives to mitigate payer uncertainty in health technology assessment of novel oncology drugs. JOURNAL OF MARKET ACCESS & HEALTH POLICY 2019; 7:1562861. [PMID: 30719243 PMCID: PMC6346722 DOI: 10.1080/20016689.2018.1562861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/09/2018] [Accepted: 12/20/2018] [Indexed: 05/03/2023]
Abstract
Reimbursement decisions on new oncology drugs are now often made while uncertainty remains about a drug's risk-benefit profile. One consequence of this is a delay in patient access to valuable new medicines. We share our perspectives on strategies to mitigate sources of uncertainty in the health technology assessment process. These include flexible approaches for evaluating the additional benefit, such as better use of surrogate endpoints and health-related quality of life data, and renewed research efforts to define the optimal target population and generate real-world evidence post-authorisation.
Collapse
Affiliation(s)
- Oriol Solà-Morales
- Health Innovation Technology Transfer and International, University of Catalonia, Barcelona, Spain
- CONTACT Oriol Solà-Morales Health Innovation Technology Transfer and International, University of Catalonia, Escoles Pies 40, Biaxos, BarcelonaE-08017, Spain
| | | | - Lorenzo Mantovani
- Centre for Public Health Research, University of Milan–Bicocca, Milan, Italy
| |
Collapse
|
11
|
Zhang D, Zhang C, Huang J, Guan Y, Guo Q. Clinical investigation of the efficacy and toxicity of apatinib (YN968D1) in stage III/IV non-small cell lung cancer after second-line chemotherapy treatment: A retrospective study. Thorac Cancer 2018; 9:1754-1762. [PMID: 30338916 PMCID: PMC6275827 DOI: 10.1111/1759-7714.12898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
Background This study was designed to assess the clinical efficacy and toxicity of apatinib (YN968D1) as third or subsequent‐line treatment for stage III/IV non‐small cell lung cancer (NSCLC). Methods A total of 100 patients with advanced NSCLC who were treated with apatinib at a daily dose of 250/425/500 mg at Shandong Cancer Hospital from January 2016 to June 2018 were enrolled in our study. The objective response, disease control, and median progression‐free survival rates were reviewed and evaluated. Univariate and multivariate analyses were performed to determine the prognostic factors. The main adverse events were evaluated per the Common Terminology Criteria for Adverse Events version 4.0. Results All patients were assessable for response. No complete responses were observed, 11 patients achieved a partial response, and 56 showed stable disease. The objective response rate was 11.0%, the disease control rate was 67.0%, and the median progression‐free survival was 2.93 months (95% confidence interval 2.07–3.87). In Cox regression analysis, the Eastern Cooperative Oncology Group performance status score (hazard ratio 1.799; P < 0.05) and smoking history (hazard ratio 1.958; P < 0.05) were predictive indicators for apatinib treatment efficacy. Treatment‐related adverse events were tolerated, predictable, reversible, and controllable. Conclusion Apatinib was found to be both effective and safe in advanced NSCLC patients without a genetic driver mutation who experienced progression after two or more lines of chemotherapy treatment.
Collapse
Affiliation(s)
- Di Zhang
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, China.,Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Chufeng Zhang
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Jiaqi Huang
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong University, Jinan, China.,Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Yan Guan
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| | - Qisen Guo
- Department of Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, China
| |
Collapse
|