1
|
Liu X, Zhou Q, Yang Y, Chen E. Application of hydrogels in cancer immunotherapy: a bibliometric analysis. Front Immunol 2024; 15:1433050. [PMID: 39192983 PMCID: PMC11347446 DOI: 10.3389/fimmu.2024.1433050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Background Cancer immunotherapy has made significant progress in recent years, with numerous studies worldwide. Immunotherapy has had a transformative impact on oncology and autoimmune diseases. In the biomedical arena, hydrogels with good properties are widely used in cancer immunotherapy. Our study used bibliometrics to analyze the changing trends in using hydrogels for cancer immunotherapy. Methods From 2013 to 2023, a systematic search was conducted in the Web of Science Core Collection database to identify reviews and articles discussing the applications of hydrogels in cancer immunotherapy. The software CiteSpace was used to visually perform the bibliometric analysis in terms of research trends, countries, institutions, authors, journals, and keywords. Individual authors' productivity was assessed with the Lotka's law. The most relevant publication sources were identified by Bradford's law. Results A total of 422 English-language publications related to hydrogels in cancer immunotherapy were collected. The number of annual publications increased rapidly after 2021 and remained constant for the past two years. China published the most articles in this field. The institution with the maximum number of published articles was the Chinese Academy of Sciences in China. Chen. Q was the most prolific author, and Liu. Z was the second most published author. In terms of journal contributions, the journal "Biomaterials" had the highest number of publications (n = 30). Biomaterials, Advanced Functional Materials and Journal of Controlled Release were the most influential journals. Keyword analysis revealed that cancer immunotherapy, drug delivery, immunogenic cell death, tumor microenvironment, injectable hydrogels, and immune checkpoint blockade were the primary research hotspots. In recent 3 years, adoptive T-cell therapy, black phosphorus, cell capture, adaptive cell therapy, tumor microenvironment, photodynamic therapy, and sustained release were the research hotspots in this field. Our study summarizes the objective of hydrogels in cancer immunotherapy in recent years, providing a reference for potential researchers in related field. Conclusion This bibliometric analysis shows the progress and trend of research on hydrogels in cancer immunotherapy. This study provides a significant avenue for future investigation into current concerns and trends in research within this field.
Collapse
Affiliation(s)
- Xiang Liu
- College of Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, China
| | - Qiang Zhou
- Department of Clinical Pharmacy, Jinling Hospital, Medical school of Nanjing University, Nanjing, China
| | - Yue Yang
- College of Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, China
| | - Erhua Chen
- College of Traditional Chinese Medicine, Jiangsu College of Nursing, Huaian, Jiangsu, China
| |
Collapse
|
2
|
Wei Z, Liu J, Hui G, Luan X. Circ_0020123 promotes non-small cell lung cancer progression via miR-146a-5p mediated regulation of EIF4G2 expression. Thorac Cancer 2024; 15:44-56. [PMID: 37993106 PMCID: PMC10761619 DOI: 10.1111/1759-7714.15159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been reported to be involved in the initiation and development of cancers. The aim of this study was to determine the role of a circRNA, circ_0020123, in the development of non-small cell lung cancer (NSCLC). METHODS The expression of circ_0020123, microRNA-146a-5p (miR-146a-5p), and eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) mRNA was detected by quantitative real-time PCR (qPCR). Western blot was used to determine the protein levels of cyclin D1, Bax, MMP-9, and EIF4G2. Cell proliferation was assessed by cell counting kit-8 (CCK-8) assay and colony formation assay. Flow cytometry assay was applied to determine cell cycle apoptosis. Cell migration and invasion were assessed using transwell assay. The potential relationship between miR-146a-5p and circ_0020123 or EIF4G2 was ascertained by dual-luciferase reporter assay and RIP assay. The role of circ_0020123 in vivo was explored by xenograft assay. RESULTS Circ_0020123 was upregulated in NSCLC, and circ_0020123 knockdown repressed proliferation, migration, and invasion of NSCLC cells. Circ_0020123 targeted miR-146a-5p, and miR-146a-5p inhibitor reversed the effects of circ_0020123 knockdown on NSCLC cells. In addition, miR-146a-5p suppressed cell proliferation, migration, and invasion by targeting EIF4G2. Moreover, the antitumor role of circ_0020123 knockdown was verified in vivo. CONCLUSION Knockdown of circ_0020123 inhibited NSCLC cell progression and tumor growth by targeting the miR-146a-5p/EIF4G2 axis.
Collapse
Affiliation(s)
- Zichun Wei
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina
| | - Jixian Liu
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina
| | - Gang Hui
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina
| | - Xinyu Luan
- Department of Thoracic SurgeryPeking University Shenzhen HospitalShenzhenChina
| |
Collapse
|
3
|
Zaman FY, Subramaniam A, Afroz A, Samoon Z, Gough D, Arulananda S, Alamgeer M. Circulating Tumour DNA (ctDNA) as a Predictor of Clinical Outcome in Non-Small Cell Lung Cancer Undergoing Targeted Therapies: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15092425. [PMID: 37173891 PMCID: PMC10177293 DOI: 10.3390/cancers15092425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Liquid biopsy (LB) analysis using (ctDNA)/cell-free DNA (cfDNA) is an emerging alternative to tissue profiling in (NSCLC). LB is used to guide treatment decisions, detect resistance mechanisms, and predicts responses, and, therefore, outcomes. This systematic review and meta-analysis evaluated the impact of LB quantification on clinical outcomes in molecularly altered advanced NSCLC undergoing targeted therapies. METHODS We searched Embase, MEDLINE, PubMed, and Cochrane Database, between 1 January 2020 and 31 August 2022. The primary outcome was progression-free survival (PFS). Secondary outcomes included overall survival (OS), objective response rate (ORR), sensitivity, and specificity. Age stratification was performed based on the mean age of the individual study population. The quality of studies was assessed using the Newcastle-Ottawa Scale (NOS). RESULTS A total of 27 studies (3419 patients) were included in the analysis. Association of baseline ctDNA with PFS was reported in 11 studies (1359 patients), while that of dynamic changes with PFS was reported in 16 studies (1659 patients). Baseline ctDNA-negative patients had a trend towards improved PFS (pooled hazard ratio [pHR] = 1.35; 95%CI: 0.83-1.87; p < 0.001; I2 = 96%) than ctDNA-positive patients. Early reduction/clearance of ctDNA levels after treatment was related to improved PFS (pHR = 2.71; 95%CI: 1.85-3.65; I2 = 89.4%) compared to those with no reduction/persistence in ctDNA levels. The sensitivity analysis based on study quality (NOS) demonstrated improved PFS only for good [pHR = 1.95; 95%CI: 1.52-2.38] and fair [pHR = 1.99; 95%CI: 1.09-2.89] quality studies, but not for poor quality studies. There was, however, a high level of heterogeneity (I2 = 89.4%) along with significant publication bias in our analysis. CONCLUSIONS This large systematic review, despite heterogeneity, found that baseline negative ctDNA levels and early reduction in ctDNA following treatment could be strong prognostic markers for PFS and OS in patients undergoing targeted therapies for advanced NSCLC. Future randomised clinical trials should incorporate serial ctDNA monitoring to further establish the clinical utility in advanced NSCLC management.
Collapse
Affiliation(s)
- Farzana Y Zaman
- Department of Medical Oncology, Monash Health, Clayton 3168, Australia
| | - Ashwin Subramaniam
- School of Public Health and Preventive Medicine, Monash University, Clayton 3168, Australia
- Department of Intensive Care, Peninsula Health, Frankston 3199, Australia
- Peninsula Clinical School, Monash University, Frankston 3199, Australia
| | - Afsana Afroz
- School of Public Health and Preventive Medicine, Monash University, Clayton 3168, Australia
| | - Zarka Samoon
- Department of Medical Oncology, Monash Health, Clayton 3168, Australia
| | - Daniel Gough
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton 3168, Australia
| | - Surein Arulananda
- Department of Medical Oncology, Monash Health, Clayton 3168, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3168, Australia
| | - Muhammad Alamgeer
- Department of Medical Oncology, Monash Health, Clayton 3168, Australia
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia
- School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton 3168, Australia
| |
Collapse
|
4
|
Endo S, Honda T, Kawahara T, Sakakibara R, Mitsumura T, Okamoto T, Miyazaki Y. Profile of metastatic lung cancer patients susceptible to development of thromboembolism during immunotherapy. Cancer Treat Res Commun 2022; 31:100547. [PMID: 35290865 DOI: 10.1016/j.ctarc.2022.100547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Thromboembolism (TE) is a serious complication in lung cancer patients; however, risk factors for developing TE during treatment with immuno-oncology (IO) drugs are unclear. MATERIALS AND METHODS A retrospective study of lung cancer patients hospitalized in Tokyo Medical and Dental University was performed to clarify the association between TE and systemic therapy, especially IOs. Patients were divided into an IO cohort, a chemotherapy cohort (CT cohort), and a control cohort (patients without recurrence after surgery). Association studies of variables relevant to TE were performed. RESULTS A total of 592 patients were enrolled (IO cohort, 120; CT cohort, 294; control cohort, 178). Eight patients (6.7%) in the IO cohort, seven (2.4%) in the CT cohort, and three (1.7%) in the control cohort developed TE. Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis identified IO, a history of TE, poor performance status (PS), and prior anticoagulation therapy as being associated with TE. Subsequent multivariate logistic regression analysis identified a history of TE (odds ratio (OR), 6.03; 95% confidence interval (CI), 2.09-17.40; P = 0.01) and poor PS (OR, 3.84; 95% CI, 1.34-11.00; P < 0.001) as potential risk factors for developing TE. The incidence of TE in the IO cohort patients with both of these characteristics was significantly higher (OR, 52.82; 95% CI, 6.72-506.37; P < 0.001) than that in the control cohort. CONCLUSION Lung cancer patients with a history of TE and poor PS are at increased risk of TE during treatment with IOs. MICRO ABSTRACT The profiles of lung cancer patients susceptible to development of thromboembolism (TE) during immunotherapy are unclear, even though TE is associated with a worse prognosis. Here, association studies of variables relevant to TE revealed that patients with a history of TE and poor performance status are at higher risk of developing TE during immunotherapy.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takayuki Honda
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tatsuo Kawahara
- Division of Respiratory Medicine, Shuwa General Hospital, 1200 Yahara-Shinden, Kasukabe, Saitama 344-0035, Japan
| | - Rie Sakakibara
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Takahiro Mitsumura
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tsukasa Okamoto
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Pulmonary Immunotherapeutics, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yasunari Miyazaki
- Department of Respiratory Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| |
Collapse
|
5
|
Cavallaro S, Hååg P, Sahu SS, Berisha L, Kaminskyy VO, Ekman S, Lewensohn R, Linnros J, Viktorsson K, Dev A. Multiplexed electrokinetic sensor for detection and therapy monitoring of extracellular vesicles from liquid biopsies of non-small-cell lung cancer patients. Biosens Bioelectron 2021; 193:113568. [PMID: 34428672 DOI: 10.1016/j.bios.2021.113568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022]
Abstract
Liquid biopsies based on extracellular vesicles (EVs) represent a promising tool for treatment monitoring of tumors, including non-small-cell lung cancers (NSCLC). In this study, we report on a multiplexed electrokinetic sensor for surface protein profiling of EVs from clinical samples. The method detects the difference in the streaming current generated by EV binding to the surface of a functionalized microcapillary, thereby estimating the expression level of a marker. Using multiple microchannels functionalized with different antibodies in a parallel fluidic connection, we first demonstrate the capacity for simultaneous detection of multiple surface markers in small EVs (sEVs) from NSCLC cells. To investigate the prospects of liquid biopsies based on EVs, we then apply the method to profile sEVs isolated from the pleural effusion (PE) fluids of five NSCLC patients with different genomic alterations (ALK, KRAS or EGFR) and applied treatments (chemotherapy, EGFR- or ALK-tyrosine kinase inhibitors). The vesicles were targeted against CD9, as well as EGFR and PD-L1, two treatment targets in NSCLC. The electrokinetic signals show detection of these markers on sEVs, highlighting distinct interpatient differences, e.g., increased EGFR levels in sEVs from a patient with EGFR mutation as compared to an ALK-fusion one. The sensors also detect differences in PD-L1 expressions. The analysis of sEVs from a patient prior and post ALK-TKI crizotinib treatment reveals significant increases in the expressions of some markers (EGFR and PD-L1). These results hold promise for the application of the method for tumor treatment monitoring based on sEVs from patient liquid biopsies.
Collapse
Affiliation(s)
- Sara Cavallaro
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden.
| | - Petra Hååg
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Siddharth S Sahu
- Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden
| | | | - Vitaliy O Kaminskyy
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden; Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164, Solna, Sweden
| | - Jan Linnros
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Kristina Viktorsson
- Department of Oncology/Pathology, Karolinska Institutet, 17164, Stockholm, Sweden
| | - Apurba Dev
- Department of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691, Stockholm, Sweden; Department of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121, Uppsala, Sweden.
| |
Collapse
|
6
|
Kiladze I, Mariamidze E, Jeremic B. Real-World Treatment Patterns of Lung Cancer in a Resource-Restricted Country: the Experience of Georgia. Health Serv Insights 2021; 14:11786329211055296. [PMID: 34776730 PMCID: PMC8573520 DOI: 10.1177/11786329211055296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Lung cancer (LC) is the most common malignancy responsible for 1.8 million of deaths worldwide. Lung and bronchus cancer represents 13% (n = 1217) of all new cancer cases in Georgia. In 2018, in Georgian males lung cancer age-standardized incidence rate was 35.7/per 100 000, less compared to regional countries as Turkey (70.6), Russia (48.2), Ukraine (41.7), and Armenia (58.5), but higher than in neighbor Azerbaijan (25.5). Incidence is higher compared to central and eastern Europe (27.3) and near similar to North America (34.5). Georgia is an Eastern European, middleincome country with 3.7 million residents and one of the highest numbers of active smokers in the European Region. The Georgian health care system is divided into a public and a private sector, with coverage of nearly 100% of the population. There is a national healthcare system as well as private insurance and all patients, irrespective of insurance (private or governmental) can choose the hospital for treatment by themselves all over the country. The Basic Package of the Universal Health Care Program includes the treatment of oncologic patients, specifically surgery, chemotherapy, hormone therapy and radiotherapy and investigations and medications related to these procedures. The program covers all types of laboratory and instrumental investigations related to planned treatment. Georgia lacks an LC screening program for smokers and partially because of this, the majority of patients with lung cancer present at an advanced stage. The National Centre for the Disease Control (NCDC) showed that almost 90% of LC patients in the country present with advanced stages (III-IV) with 60% of patients having stage IV disease at diagnosis . Lung cancer is generally diagnosed at an advanced stage. For non-small cell lung cancer (NSCLC), the proportion with metastatic disease (TNM stage IV) ranged from 46.8% to 61.2% in developed countries. In recent years, there have been several publications addressing specifics of LC worldwide, but none concerning Georgia. In light of the rapidly changing landscape in the diagnosis, staging, and treatment of LC, we thought to define the state of practice in Georgia by convening specialists who treat LC across 13 institutions in our country with the goal to describe differences in access and approaches to LC.
Collapse
Affiliation(s)
- Ivane Kiladze
- Department of Clinical Oncology, Caucasus Medical Centre, Tbilisi, Georgia
| | - Elene Mariamidze
- Department of Oncology and Hematology, Research Institute of Clinical Medicine after Academician F. Todua, Tbilisi, Georgia
| | | |
Collapse
|
7
|
First-line treatment options for advanced non-small cell lung cancer patients with PD-L1 ≥ 50%: a systematic review and network meta-analysis. Cancer Immunol Immunother 2021; 71:1345-1355. [PMID: 34657171 DOI: 10.1007/s00262-021-03089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Single-agent immune checkpoint inhibitors (ICIs) like pembrolizumab or atezolizumab have been approved as first-line monotherapy for advanced non-small cell lung cancer (NSCLC) patients with PD-L1 ≥ 50%. However, emerging evidences have showed that ICI combinations (chemoimmunotherapy or dual-agent ICIs) argue to offer a higher response rate. In this network meta-analysis, we aimed to evaluate the efficacy and toxicity of first-line single-agent ICIs versus ICI combinations for advanced NSCLC patients with PD-L1 ≥ 50%. METHODS PubMed, Embase, Cochrane Library and the Clinicaltrials.gov were systematically searched to extract eligible literature until December 2020. Outcomes included overall survival (OS), progression free survival (PFS), objective response rate (ORR) and treatment related adverse events (TRAEs) of grades 3-5. RESULTS Fourteen studies with 3448 patients were included. The results showed that chemotherapy plus ICIs significantly improved PFS and ORR compared to chemotherapy, and sinti-chemo (HR: 0.31, 95% CI: 0.20-0.49) and pembro-chemo (OR: 4.2, 95% CI: 2.6-6.7) ranked first. In terms of OS, cemiplimab provided the best benefit versus chemotherapy (HR: 0.57, 95% CI: 0.43-0.77), followed by atezolizumab and pembro-chemo. In the subgroup analysis of histological type, pembro-chemo and sinti-chemo showed the best benefit of PFS in squamous and nonsquamous NSCLC, respectively, while there was no significant difference between ICI combinations with single-agent ICIs in OS. Moreover, the addition of chemotherapy to ICIs elevated toxicity compared to chemotherapy. CONCLUSION The study suggested that chemotherapy plus ICIs might improve PFS and ORR than single-agent ICIs for advanced NSCLC patients with PD-L1 ≥ 50%. However, it did not lead to OS benefit.
Collapse
|
8
|
Sahu SS, Cavallaro S, Hååg P, Nagy Á, Karlström AE, Lewensohn R, Viktorsson K, Linnros J, Dev A. Exploiting Electrostatic Interaction for Highly Sensitive Detection of Tumor-Derived Extracellular Vesicles by an Electrokinetic Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42513-42521. [PMID: 34473477 PMCID: PMC8447189 DOI: 10.1021/acsami.1c13192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We present an approach to improve the detection sensitivity of a streaming current-based biosensor for membrane protein profiling of small extracellular vesicles (sEVs). The experimental approach, supported by theoretical investigation, exploits electrostatic charge contrast between the sensor surface and target analytes to enhance the detection sensitivity. We first demonstrate the feasibility of the approach using different chemical functionalization schemes to modulate the zeta potential of the sensor surface in a range -16.0 to -32.8 mV. Thereafter, we examine the sensitivity of the sensor surface across this range of zeta potential to determine the optimal functionalization scheme. The limit of detection (LOD) varied by 2 orders of magnitude across this range, reaching a value of 4.9 × 106 particles/mL for the best performing surface for CD9. We then used the optimized surface to profile CD9, EGFR, and PD-L1 surface proteins of sEVs derived from non-small cell lung cancer (NSCLC) cell-line H1975, before and after treatment with EGFR tyrosine kinase inhibitors, as well as sEVs derived from pleural effusion fluid of NSCLC adenocarcinoma patients. Our results show the feasibility to monitor CD9, EGFR, and PD-L1 expression on the sEV surface, illustrating a good prospect of the method for clinical application.
Collapse
Affiliation(s)
- Siddharth Sourabh Sahu
- Department
of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
| | - Sara Cavallaro
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Petra Hååg
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Ábel Nagy
- Department
of Protein Science, School of Chemistry, Biotechnology, and Health
(CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Amelie Eriksson Karlström
- Department
of Protein Science, School of Chemistry, Biotechnology, and Health
(CBH), KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Rolf Lewensohn
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Theme
Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital, 17164 Solna, Sweden
| | - Kristina Viktorsson
- Department
of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jan Linnros
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| | - Apurba Dev
- Department
of Electrical Engineering, The Ångström Laboratory, Uppsala University, 75121 Uppsala, Sweden
- Department
of Applied Physics, School of Engineering Sciences, KTH Royal Institute of Technology, 10691 Stockholm, Sweden
| |
Collapse
|
9
|
Chen W, Saxton B, Tessema M, Belinsky SA. Inhibition of GFAT1 in lung cancer cells destabilizes PD-L1 protein. Carcinogenesis 2021; 42:1171-1178. [PMID: 34270713 DOI: 10.1093/carcin/bgab063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy using checkpoint blockers (antibodies) has been a major advance in recent years in the management of various types of solid cancers including lung cancer. One target of checkpoint blockers is programmed death ligand 1 (PD-L1) expressed by cancer cells, which engages programmed death 1 (PD-1) on T cells and Natural Killer (NK) cells resulting in suppression of their activation and cancer-killing function, respectively. Apart from antibodies, other clinically relevant agents that can inhibit PD-L1 are limited. PD-L1 protein stability depends on its glycosylation. Here we show that L-glutamine:D-fructose amidotransferase 1 (GFAT1) a rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP) which produces uridine diphosphate-N-acetyl-β-glucosamine (UDP-GlcNAc), a precursor for glycosylation, is required for the stability of PD-L1 protein. Inhibition of GFAT1 activity markedly reduced interferon γ (IFNγ)-induced PD-L1 levels in various lung cancer cell lines. GFAT1 inhibition suppressed glycosylation of PD-L1 and accelerated its proteasomal degradation. Importantly, inhibition of GFAT1 in IFNγ-treated cancer cells enhanced the activation of T cells and the cancer-killing activity of NK cells. These findings support using GFAT1 inhibitors to manipulate PD-L1 protein level that could augment the efficacy of immunotherapy for lung cancer.
Collapse
Affiliation(s)
- Wenshu Chen
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bryanna Saxton
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Mathewos Tessema
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Steven A Belinsky
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
10
|
Prasetya RA, Metselaar-Albers M, Engels F. Concomitant use of analgesics and immune checkpoint inhibitors in non-small cell lung cancer: A pharmacodynamics perspective. Eur J Pharmacol 2021; 906:174284. [PMID: 34174268 DOI: 10.1016/j.ejphar.2021.174284] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/20/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
The invention of immunotherapy, such as immune checkpoint inhibitors (ICIs) for advanced-stage non-small cell lung cancer (NSCLC), has become a new standard of care for a defined group of NSCLC patients. However, the possible impacts of ICI interactions with analgesics for alleviating cancer-related pain are unclear and lack clinical evidence. Many studies have indicated that opioids detrimentally affect the immune system, possibly harming patients of ongoing immunotherapy. Opioids may repress the immune system in various ways, including impairing T cell function, upregulating immunosuppressor Treg cells, and interrupting intestinal microflora composition that disrupts the entire immune system. Furthermore, opioids can influence tumor progression and metastasis directly as opioid receptors are overexpressed in several types of NSCLC. In contrast, another analgesic acting on cyclooxygenase (COX) inhibition (i.e., NSAIDs) may be a candidate for adjuvant therapy since COX-2 is also expressed in the tumor cells of NSCLC patients. In addition, COX-2 is associated with tumor proliferation and metastasis. Therefore, both prospective and retrospective studies should confirm the advantages and disadvantages of the concurrent use of analgesics and ICIs in a clinical setting.
Collapse
Affiliation(s)
- Rahmad Aji Prasetya
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Clinical Pharmacy, Akademi Farmasi Surabaya, Surabaya, Indonesia.
| | - Marjolein Metselaar-Albers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ferdi Engels
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Abstract
Hyaluronic acid (HA), an important component of the extracellular matrix, has high water solubility and biocompatibility, and good application prospects in biomedicine. Especially in tumour treatment, prodrug polymer micelles prepared from HA and chemotherapeutics can increase water solubility, prolong drug release time, improve organ distribution and therapeutic effects, and show good tumour targeting and biocompatibility. Therefore, this study introduces strategies for using HA to prepare prodrug polymer micelles and discusses recent research on HA prodrug micelles for antitumor applications.
Collapse
Affiliation(s)
- Jiao Sun
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Lingyu Han
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, Liaoning 116600, China
| |
Collapse
|
12
|
Franzén B, Viktorsson K, Kamali C, Darai-Ramqvist E, Grozman V, Arapi V, Hååg P, Kaminskyy VO, Hydbring P, Kanter L, Nyrén S, Ekman S, De Petris L, Lewensohn R. Multiplex immune protein profiling of fine-needle aspirates from patients with non-small-cell lung cancer reveals signatures associated with PD-L1 expression and tumor stage. Mol Oncol 2021; 15:2941-2957. [PMID: 33768639 PMCID: PMC8564641 DOI: 10.1002/1878-0261.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
Biomarker signatures identified through minimally invasive procedures already at diagnosis of non‐small‐cell lung cancer (NSCLC) could help to guide treatment with immune checkpoint inhibitors (ICI). Here, we performed multiplex profiling of immune‐related proteins in fine‐needle aspirate (FNA) samples of thoracic lesions from patients with NSCLC to assess PD‐L1 expression and identify related protein signatures. Transthoracic FNA samples from 14 patients were subjected to multiplex antibody‐based profiling by proximity extension assay (PEA). PEA profiling employed protein panels relevant to immune and tumor signaling and was followed by Qlucore® Omics Explorer analysis. All lesions analyzed were NSCLC adenocarcinomas, and PEA profiles could be used to monitor 163 proteins in all but one sample. Multiple key immune signaling components (including CD73, granzyme A, and chemokines CCL3 and CCL23) were identified and expression of several of these proteins (e.g., CCL3 and CCL23) correlated to PD‐L1 expression. We also found EphA2, a marker previously linked to inferior NSCLC prognosis, to correlate to PD‐L1 expression. Our identified protein signatures related to stage included, among others, CXCL10 and IL12RB1. We conclude that transthoracic FNA allows for extensive immune and tumor protein profiling with assessment of putative biomarkers of important for ICI treatment selection in NSCLC.
Collapse
Affiliation(s)
- Bo Franzén
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Caroline Kamali
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Eva Darai-Ramqvist
- Department of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Vitali Grozman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Vasiliki Arapi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - Per Hydbring
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Kanter
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sven Nyrén
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Simon Ekman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Luigi De Petris
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Medical Unit Head and Neck, Lung, and Skin Tumors, Thoracic Oncology Center, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
13
|
Zhou T, Peng J, Hao Y, Shi K, Zhou K, Yang Y, Yang C, He X, Chen X, Qian Z. The construction of a lymphoma cell-based, DC-targeted vaccine, and its application in lymphoma prevention and cure. Bioact Mater 2021; 6:697-711. [PMID: 33005832 PMCID: PMC7511651 DOI: 10.1016/j.bioactmat.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
In recent years, Non-Hodgkin lymphoma (NHL) has been one of the most fast-growing malignant tumor diseases. NHL poses severe damages to physical health and a heavy burden to patients. Traditional therapies (chemotherapy or radiotherapy) bring some benefit to patients, but have severe adverse effects and do not prevent relapse. The relevance of emerging immunotherapy options (immune-checkpoint blockers or adoptive cellular methods) for NHL remains uncertain, and more intensive evaluations are needed. In this work, inspired by the idea of vaccination to promote an immune response to destroy tumors, we used a biomaterial-based strategy to improve a tumor cell-based vaccine and constructed a novel vaccine named Man-EG7/CH@CpG with antitumor properties. In this vaccine, natural tumor cells are used as a vector to load CpG-ODN, and following lethal irradiation, the formulations were decorated with mannose. The study of the characterization of the double-improved vaccine evidenced the enhanced ability of DCs targeting and improved immunocompetence, which displayed an antitumor function. In the lymphoma prevention model, the Man-EG7/CH@CpG vaccine restrained tumor formation with high efficiency. Furthermore, unlike the non-improved vaccine, the double-improved vaccine elicited an enhanced antitumor effect in the lymphoma treatment model. Next, to improve the moderate therapeutic effect of the mono-treatment method, we incorporated a chemotherapeutic drug (doxorubicin, DOX) into the process of vaccination and devised a combination regimen. Fortunately, a tumor inhibition rate of ~85% was achieved via the combination therapy, which could not be achieved by mono-chemotherapy or mono-immunotherapy. In summary, the strategy presented here may provide a novel direction in the establishment of a tumor vaccine and is the basis for a prioritization scheme of immuno-chemotherapy in enhancing the therapeutic effect on NHL.
Collapse
Affiliation(s)
- Tianlin Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Yun Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Chengli Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Xinlong He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Xinmian Chen
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of pharmacy, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, PR China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| |
Collapse
|
14
|
Luo SY, Kwok HH, Yang PC, Ip MSM, Minna JD, Lam DCL. Expression of large tumour suppressor (LATS) kinases modulates chemotherapy response in advanced non-small cell lung cancer. Transl Lung Cancer Res 2020; 9:294-305. [PMID: 32420069 PMCID: PMC7225163 DOI: 10.21037/tlcr.2020.03.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background The Hippo signalling pathway plays an important role in regulating organ size and cell proliferation. Down-regulation of large tumour suppressor (LATS) protein homologs LATS1 or LATS2 has been found in lung cancer. LATS1 and LATS2 are the core components of the Hippo signalling pathway. LATS1 and LATS2 share some conserved structural features and exhibit redundant biological functions. The aim of this study was to dissect the interaction between these two homologs. Methods In lung adenocarcinoma (AD) cells, protein expression of LATS1 and LATS2 were determined by western blotting; cell viability and apoptosis were measured by MTT and annexin V staining after treatment with cisplatin; subcellular distributions of LATS proteins were determined by immunofluorescence microscopy; LATS2 expression was modulated by shRNA-mediated knockdown or ectopic expression in cancer cell lines. Results Manipulation of the expression of these two LATS kinases influenced cisplatin response in advanced lung AD cell lines. High LATS2-to-LATS1 ratio in H2023 cells was associated with cisplatin resistance, while low LATS2-to-LATS1 ratio in CL1-0 and CL83 cells was associated with sensitivity to cisplatin. Manipulating the LATS2-to-LATS1 ratio by LATS2 over-expression in CL1-0 and CL83 rendered them resistant to cisplatin treatment, whereas LATS2 knockdown in H2023 alleviated the LATS2-to-LATS1 ratio and sensitized cancer cells to cisplatin exposure. Conclusions Our data suggested that the ratio of expression of LATS kinases played a role in the modulation of cisplatin sensitivity in advanced lung AD, and targeting of LATS proteins as a novel therapeutic strategy for lung AD deserves further investigation.
Collapse
Affiliation(s)
- Susan Yang Luo
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Hoi-Hin Kwok
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Mary Sau-Man Ip
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - John Dorrance Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Chi-Leung Lam
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
Pasini L, Ulivi P. Extracellular Vesicles in Non-Small-Cell Lung Cancer: Functional Role and Involvement in Resistance to Targeted Treatment and Immunotherapy. Cancers (Basel) 2019; 12:E40. [PMID: 31877735 PMCID: PMC7016858 DOI: 10.3390/cancers12010040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 01/08/2023] Open
Abstract
Targeted and immunological therapies have become the gold standard for a large portion of non-small cell lung cancer (NSCLC) patients by improving significantly clinical prognosis. However, resistance mechanisms inevitably develop after a first response, and almost all patients undergo progression. The knowledge of such a resistance mechanism is crucial to improving the efficacy of therapies. So far, monitoring therapy responses through liquid biopsy has been carried out mainly in terms of circulating tumor (ctDNA) analysis. However, other particles of tumor origin, such as extracellular vehicles (EVs) represent an emerging tool for the studying and monitoring of resistance mechanisms. EVs are now considered to be ubiquitous mediators of cell-to-cell communication, allowing cells to exchange biologically active cargoes that vary in response to the microenvironment and include proteins, metabolites, RNA species, and nucleic acids. Novel findings on the biogenesis and fate of these vesicles reveal their fundamental role in cancer progression, with foreseeable and not-far-to-come clinical applications in NSCLC.
Collapse
Affiliation(s)
| | - Paola Ulivi
- Biosciences Laboratory, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| |
Collapse
|
16
|
Velcheti V, Chandwani S, Chen X, Pietanza MC, Piperdi B, Burke T. Outcomes of first-line pembrolizumab monotherapy for PD-L1-positive (TPS ≥50%) metastatic NSCLC at US oncology practices. Immunotherapy 2019; 11:1541-1554. [PMID: 31774363 DOI: 10.2217/imt-2019-0177] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To determine real-world outcomes with first-line pembrolizumab monotherapy for metastatic non-small-cell lung cancer with PD-L1 tumor expression ≥50%. Methods: This retrospective study included adults with ECOG 0-1 initiating first-line pembrolizumab monotherapy on/after 24 October 2016 (EHR cohort) or from 1 December 2016 through 30 November 2017 (spotlight cohort) with ≥6-month follow-up. We estimated Kaplan-Meier overall survival (OS, both cohorts), and, for spotlight, real-world progression-free survival (rwPFS) by Kaplan-Meier and real-world tumor response (rwTR). Results: For 423 patients in the EHR cohort and 188 in spotlight, median OS was 18.9 months (95% CI: 14.9-25.5) and 19.1 months (12.6-not reached), respectively. For spotlight, median rwPFS was 6.8 months (5.3-8.1); rwTR of complete/partial response was 48% (41-56%). Conclusion: Observed OS, rwPFS and rwTR were consistent with clinical trial findings.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- NYU Langone, Perlmutter Cancer Center, 160 E 34th St, New York, NY 10016, USA
| | - Sheenu Chandwani
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Xin Chen
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | | | - Bilal Piperdi
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| | - Thomas Burke
- Merck & Co., Inc., 2000 Galloping Hill Rd., Kenilworth, NJ 07033, USA
| |
Collapse
|