1
|
Brüssow H. Avian influenza virus cross-infections as test case for pandemic preparedness: From epidemiological hazard models to sequence-based early viral warning systems. Microb Biotechnol 2024; 17:e14389. [PMID: 38227348 PMCID: PMC10832514 DOI: 10.1111/1751-7915.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/17/2024] Open
Abstract
Pandemic preparedness starts with an early warning system of viruses with a pandemic potential. Based on information collected in a multitude of surveys, hazard models were developed identifying influenza viruses presenting a pandemic threat. Scores are attributed for 10 viral traits by expert panels which identified avian influenza viruses (AIV) belonging to subtypes H7N9 and H5N1 as representing the greatest pandemic risk. In 2013, more than 100 human cases infected with AIV H7N9 were observed in China. Case fatality rate (CFR) was high (27%), but the human-to-human transmission rate was low and by serological evidence H7N9 did not spread widely. Nevertheless, until 2019 more than 1500 H7N9 patients were identified characterized by a high CFR of 39%. Serology demonstrated that mild infections with H7N9 were widespread. In 2003, more than 400 people experienced AIV H7N7 cross-infection causing mainly conjunctivitis during a large poultry epidemic in The Netherlands. Between 1996 and 2019, a total of 881 human infections with avian H5N1 viruses were documented showing a CFR of 52%. Outbreaks were centred on South East Asia and showed close associations with epizootics in poultry. Mutations predisposing to human cross-infections were identified in the haemagglutinin (HA) and the RNA polymerase subunit PB2 of human H7N9 isolates. Human H5N1 isolates showed mutations in the receptor binding domain of HA and transmission in mammals could be obtained by as few as four additional aa changes introduced experimentally. Researchers have defined viral point mutations in HA, PB2 and the nucleoprotein NP that allowed AIV to cross the species barrier to mammals with respect to receptor recognition, RNA replication and escape from innate immunity respectively. Based on this insight a sequence-based early warning system for AIV preadapted to human transmission could be envisioned. Mink farms and live poultry markets are prime targets for such sequencing efforts.
Collapse
Affiliation(s)
- Harald Brüssow
- Division of Animal and Human Health Engineering, Department of BiosystemsKU LeuvenLeuvenBelgium
| |
Collapse
|
2
|
Islam A, Amin E, Munro S, Hossain ME, Islam S, Hassan MM, Al Mamun A, Samad MA, Shirin T, Rahman MZ, Epstein JH. Potential risk zones and climatic factors influencing the occurrence and persistence of avian influenza viruses in the environment of live bird markets in Bangladesh. One Health 2023; 17:100644. [PMID: 38024265 PMCID: PMC10665157 DOI: 10.1016/j.onehlt.2023.100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Live bird markets (LBMs) are critical for poultry trade in many developing countries that are regarded as hotspots for the prevalence and contamination of avian influenza viruses (AIV). Therefore, we conducted weekly longitudinal environmental surveillance in LBMs to determine annual cyclic patterns of AIV subtypes, environmental risk zones, and the role of climatic factors on the AIV presence and persistence in the environment of LBM in Bangladesh. From January 2018 to March 2020, we collected weekly fecal and offal swab samples from each LBM and tested using rRT-PCR for the M gene and subtyped for H5, H7, and H9. We used Generalized Estimating Equations (GEE) approaches to account for repeated observations over time to correlate the AIV prevalence and potential risk factors and the negative binomial and Poisson model to investigate the role of climatic factors on environmental contamination of AIV at the LBM. Over the study period, 37.8% of samples tested AIV positive, 18.8% for A/H5, and A/H9 was, for 15.4%. We found the circulation of H5, H9, and co-circulation of H5 and H9 in the environmental surfaces year-round. The Generalized Estimating Equations (GEE) model reveals a distinct seasonal pattern in transmitting AIV and H5. Specifically, certain summer months exhibited a substantial reduction of risk up to 70-90% and 93-94% for AIV and H5 contamination, respectively. The slaughtering zone showed a significantly higher risk of contamination with H5, with a three-fold increase in risk compared to bird-holding zones. From the negative binomial model, we found that climatic factors like temperature and relative humidity were also significantly associated with weekly AIV circulation. An increase in temperature and relative humidity decreases the risk of AIV circulation. Our study underscores the significance of longitudinal environmental surveillance for identifying potential risk zones to detect H5 and H9 virus co-circulation and seasonal transmission, as well as the imperative for immediate interventions to reduce AIV at LBMs in Bangladesh. We recommend adopting a One Health approach to integrated AIV surveillance across animal, human, and environmental interfaces in order to prevent the epidemic and pandemic of AIV.
Collapse
Affiliation(s)
- Ariful Islam
- EcoHealth Alliance, New York, NY 10018, USA
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - Emama Amin
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | | | - Mohammad Enayet Hossain
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR), Bangladesh
| | - Shariful Islam
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammad Mahmudul Hassan
- Queensland Alliance for One Health Sciences, School of Veterinary Science, University of Queensland, QLD 4343, Australia
| | - Abdullah Al Mamun
- EcoHealth Alliance, New York, NY 10018, USA
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammed Abdus Samad
- National Reference Laboratory for Avian Influenza, Bangladesh Livestock Research Institute (BLRI), Savar, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka 1212, Bangladesh
| | - Mohammed Ziaur Rahman
- One Health Laboratory, International Centre for Diarrheal Diseases Research, Bangladesh (ICDDR), Bangladesh
| | | |
Collapse
|
3
|
Lee DH, Criado MF, Swayne DE. Pathobiological Origins and Evolutionary History of Highly Pathogenic Avian Influenza Viruses. Cold Spring Harb Perspect Med 2021; 11:a038679. [PMID: 31964650 PMCID: PMC7849344 DOI: 10.1101/cshperspect.a038679] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
High-pathogenicity avian influenza (HPAI) viruses have arisen from low-pathogenicity avian influenza (LPAI) viruses via changes in the hemagglutinin proteolytic cleavage site, which include mutation of multiple nonbasic to basic amino acids, duplication of basic amino acids, or recombination with insertion of cellular or viral amino acids. Between 1959 and 2019, a total of 42 natural, independent H5 (n = 15) and H7 (n = 27) LPAI to HPAI virus conversion events have occurred in Europe (n = 16), North America (n = 9), Oceania (n = 7), Asia (n = 5), Africa (n = 4), and South America (n = 1). Thirty-eight of these HPAI outbreaks were limited in the number of poultry premises affected and were eradicated. However, poultry outbreaks caused by A/goose/Guangdong/1/1996 (H5Nx), Mexican H7N3, and Chinese H7N9 HPAI lineages have continued. Active surveillance and molecular detection and characterization efforts will provide the best opportunity for early detection and eradication from domestic birds.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Miria Ferreira Criado
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia 30605, USA
| |
Collapse
|
4
|
Koutsakos M, Kedzierska K, Subbarao K. Immune Responses to Avian Influenza Viruses. THE JOURNAL OF IMMUNOLOGY 2019; 202:382-391. [DOI: 10.4049/jimmunol.1801070] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/26/2022]
|
5
|
Abstract
The occurrence of avian influenza A(H5N1) in Hong Kong in 1997 led to the development of a "One-Health" approach to deal with emerging infectious diseases that has been applied to other emergent diseases such as SARS and the pandemic H1N1 2009. Evaluation of poultry marketing and production systems and investigations at the animal-human interface, led to defining the routes of human exposure to avian influenza and factors that allowed virus to multiply and persist. Active and systematic surveillance of apparently healthy as well as diseased poultry and wild birds provided evidence of ongoing virus evolution in the wider region. Epidemiological studies, supplemented with molecular epidemiology, helped to elucidate the role of the poultry marketing system and live poultry markets in the persistence of avian influenza viruses and provided evidence for the impact of interventions designed to interrupt virus transmission. Enhanced bio-security, active surveillance together with targeted and evidence-based interventions in the poultry production, and marketing system together with poultry vaccination has prevented further human H5N1 disease and minimized outbreaks of poultry disease in Hong Kong. Similar strategies have led to the understanding of the emergence of SARS and provided options for preventing the re-emergence of this disease. Surveillance of influenza in swine has provided insights into the emergence of the 2009 pandemic, to the reverse zoonosis of the pandemic virus from humans to swine and to the emergence of novel reassortant viruses within swine. "One Health" strategies are not "cost-free" and require sensitive implementation to optimize food-safety and food security, while safeguarding the economics of animal husbandry and the environment and remaining sensitive to cultural practices.
Collapse
|
6
|
Connie Leung YH, Luk G, Sia SF, Wu YO, Ho CK, Chow KC, Tang SC, Guan Y, Malik Peiris JS. Experimental challenge of chicken vaccinated with commercially available H5 vaccines reveals loss of protection to some highly pathogenic avian influenza H5N1 strains circulating in Hong Kong/China. Vaccine 2013; 31:3536-42. [PMID: 23791547 DOI: 10.1016/j.vaccine.2013.05.076] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 04/01/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 virus continues to circulate in poultry in Asia and Africa posing a threat to both public and animal health. Vaccination, used as an adjunct to improved bio-security and stamping-out policies, contributed to protecting poultry in Hong Kong from HPAI H5N1 infection in 2004-2008 although the virus was repeatedly detected in dead wild birds. The detection of clade 2.3.4 H5N1 viruses in poultry markets and a farm in Hong Kong in 2008 raised the question whether this virus has changed to evade protection from the H5 vaccines in use. We tested the efficacy of three commercial vaccines (Nobilis, Poulvac and Harbin Re-5 vaccine) in specific pathogen free white leghorn chickens against a challenge with A/chicken/Hong Kong/8825-2/2008 (clade 2.3.4) isolated from vaccinated poultry in Hong Kong and A/chicken/Hong Kong/782/2009 (clade 2.3.2). Harbin Re5 vaccine provided the best, albeit not complete protection against challenge with the clade 2.3.4 virus. All three vaccines provided good protection from death and significantly reduced virus shedding following challenge with the clade 2.3.2 virus. Only Harbin Re-5 was able to completely protect chickens from virus shedding as well as mortality. Sera from vaccinated chickens had lower geometric hemagglutination inhibition titers against A/chicken/Hong Kong/8825-2/08, as compared to two other clade 2.3.4 and one clade 0 virus. Alignment of amino-acid sequences of the haemagglutinin of A/chicken/Hong Kong/8825-2/08 and the other H5 viruses revealed several mutations in positions including 69, 71, 83, 95, 133,140, 162, 183, 189, 194 and 270 (H5 numbering) which may correlate with loss of vaccine protection. Our results indicated that the tested HPAI H5N1 (2.3.4) virus has undergone antigenic changes that allow it to evade immunity from poultry vaccines. This highlights the need for continued surveillance and monitoring of vaccine induced immunity, with experimental vaccine challenge studies being done where indicated.
Collapse
Affiliation(s)
- Y H Connie Leung
- Center of Influenza Research, School of Public Health and State Key Laboratory for Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Lekcharoensuk P, Wiriyarat W, Petcharat N, Lekcharoensuk C, Auewarakul P, Richt JA. Cloned cDNA of A/swine/Iowa/15/1930 internal genes as a candidate backbone for reverse genetics vaccine against influenza A viruses. Vaccine 2012; 30:1453-9. [PMID: 22230579 DOI: 10.1016/j.vaccine.2011.12.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/08/2011] [Accepted: 12/22/2011] [Indexed: 12/09/2022]
Abstract
Reverse genetics viruses for influenza vaccine production usually utilize the internal genes of the egg-adapted A/Puerto Rico/8/34 (PR8) strain. This egg-adapted strain provides high production yield in embryonated eggs but does not necessarily give the best yield in mammalian cell culture. In order to generate a reverse genetics viral backbone that is well-adapted to high growth in mammalian cell culture, a swine influenza isolate A/swine/Iowa/15/30 (H1N1) (rg1930) that was shown to give high yield in Madin-Darby canine kidney (MDCK) cells was used as the internal gene donor for reverse genetics plasmids. In this report, the internal genes from rg1930 were used for construction of reverse genetics viruses carrying a cleavage site-modified hemagglutinin (HA) gene and neuraminidase (NA) gene from a highly pathogenic H5N1 virus. The resulting virus (rg1930H5N1) was low pathogenic in vivo. Inactivated rg1930H5N1 vaccine completely protected chickens from morbidity and mortality after challenge with highly pathogenic H5N1. Protective immunity was obtained when chickens were immunized with an inactivated vaccine consisting of at least 2(9) HA units of the rg1930H5N1 virus. In comparison to the PR8-based reverse genetics viruses carrying the same HA and NA genes from an H5N1 virus, rg1930 based viruses yielded higher viral titers in MDCK and Vero cells. In addition, the reverse genetics derived H3N2 and H5N2 viruses with the rg1930 backbone replicated in MDCK cells better than the cognate viruses with the rgPR8 backbone. It is concluded that this newly established reverse genetics backbone system could serve as a candidate for a master donor strain for development of inactivated influenza vaccines in cell-based systems.
Collapse
|
9
|
Zilberman D, Otte J, Roland-Holst D, Pfeiffer D. Epidemiology of Highly Pathogenic Avian Influenza Virus Strain Type H5N1. HEALTH AND ANIMAL AGRICULTURE IN DEVELOPING COUNTRIES 2011; 36. [PMCID: PMC7122524 DOI: 10.1007/978-1-4419-7077-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Highly pathogenic avian influenza (HPAI) is a severe disease of poultry. It is highly transmissible with a flock mortality rate approaching 100% in vulnerable species (Capua et al. 2007a). Due to the potentially disastrous impact the disease can have on affected poultry sectors, HPAI has received huge attention and is classified as a notifiable disease by the World Organisation for Animal Health (OIE).
Collapse
Affiliation(s)
- David Zilberman
- College of Natural Resources, Dept. Agricultural & Resource Economics, University of California, Berkeley, Giannini Hall 206, Berkeley, 94720-3310 California USA
| | - Joachim Otte
- Food and Agriculture Organization of the, Viale delle Terme di Caracalla, Rome, 00100 Italy
| | - David Roland-Holst
- , Department of Agricultural and Resource, University of California, Giannini Hall 207, Berkeley, 94720-3310 USA
| | - Dirk Pfeiffer
- , Veterinary Clinical Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA United Kingdom
| |
Collapse
|
10
|
Fournié G, Guitian FJ, Mangtani P, Ghani AC. Impact of the implementation of rest days in live bird markets on the dynamics of H5N1 highly pathogenic avian influenza. J R Soc Interface 2010; 8:1079-89. [PMID: 21131332 DOI: 10.1098/rsif.2010.0510] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Live bird markets (LBMs) act as a network 'hub' and potential reservoir of infection for domestic poultry. They may therefore be responsible for sustaining H5N1 highly pathogenic avian influenza (HPAI) virus circulation within the poultry sector, and thus a suitable target for implementing control strategies. We developed a stochastic transmission model to understand how market functioning impacts on the transmission dynamics. We then investigated the potential for rest days-periods during which markets are emptied and disinfected-to modulate the dynamics of H5N1 HPAI within the poultry sector using a stochastic meta-population model. Our results suggest that under plausible parameter scenarios, HPAI H5N1 could be sustained silently within LBMs with the time spent by poultry in markets and the frequency of introduction of new susceptible birds' dominant factors determining sustained silent spread. Compared with interventions applied in farms (i.e. stamping out, vaccination), our model shows that frequent rest days are an effective means to reduce HPAI transmission. Furthermore, our model predicts that full market closure would be only slightly more effective than rest days to reduce transmission. Strategies applied within markets could thus help to control transmission of the disease.
Collapse
Affiliation(s)
- G Fournié
- Veterinary Epidemiology and Public Health Group, Department of Veterinary Clinical Sciences, Royal Veterinary College, London, UK.
| | | | | | | |
Collapse
|
11
|
Smith GJD, Vijaykrishna D, Ellis TM, Dyrting KC, Leung YHC, Bahl J, Wong CW, Kai H, Chow MKW, Duan L, Chan ASL, Zhang LJ, Chen H, Luk GSM, Peiris JSM, Guan Y. Characterization of avian influenza viruses A (H5N1) from wild birds, Hong Kong, 2004-2008. Emerg Infect Dis 2009; 15:402-7. [PMID: 19239752 PMCID: PMC2666293 DOI: 10.3201/eid1503.081190] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Repeated detection of subclade 2.3.2 viruses in nonpasserine birds from different regions suggests possible establishment of this lineage in wild bird species. From January 2004 through June 2008, surveillance of dead wild birds in Hong Kong, People’s Republic of China, periodically detected highly pathogenic avian influenza (HPAI) viruses (H5N1) in individual birds from different species. During this period, no viruses of subtype H5N1 were detected in poultry on farms and in markets in Hong Kong despite intensive surveillance. Thus, these findings in wild birds demonstrate the potential for wild birds to disseminate HPAI viruses (H5N1) to areas otherwise free from the viruses. Genetic and antigenic characterization of 47 HPAI (H5N1) viruses isolated from dead wild birds in Hong Kong showed that these isolates belonged to 2 antigenically distinct virus groups: clades 2.3.4 and 2.3.2. Although research has shown that clade 2.3.4 viruses are established in poultry in Asia, the emergence of clade 2.3.2 viruses in nonpasserine birds from Hong Kong, Japan, and Russia raises the possibility that this virus lineage may have become established in wild birds.
Collapse
Affiliation(s)
- Gavin J D Smith
- State Key Laboratory of Emerging Infectious Diseases/The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Savill NJ, St Rose SG, Woolhouse MEJ. Detection of mortality clusters associated with highly pathogenic avian influenza in poultry: a theoretical analysis. J R Soc Interface 2009; 5:1409-19. [PMID: 18477540 DOI: 10.1098/rsif.2008.0133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rapid detection of infectious disease outbreaks is often crucial for their effective control. One example is highly pathogenic avian influenza (HPAI) such as H5N1 in commercial poultry flocks. There are no quantitative data, however, on how quickly the effects of HPAI infection in poultry flocks can be detected. Here, we study, using an individual-based mathematical model, time to detection in chicken flocks. Detection is triggered when mortality, food or water intake or egg production in layers pass recommended thresholds suggested from the experience of past HPAI outbreaks. We suggest a new threshold for caged flocks--the cage mortality detection threshold--as a more sensitive threshold than current ones. Time to detection is shown to depend nonlinearly on R0 and is particularly sensitive for R0<10. It also depends logarithmically on flock size and number of birds per cage. We also examine how many false alarms occur in uninfected flocks when we vary detection thresholds owing to background mortality. The false alarm rate is shown to be sensitive to detection thresholds, dependent on flock size and background mortality and independent of the length of the production cycle. We suggest that current detection thresholds appear sufficient to rapidly detect the effects of a high R0 HPAI strain such as H7N7 over a wide range of flock sizes. Time to detection of the effects of a low R0 HPAI strain such as H5N1 can be significantly improved, particularly for large flocks, by lowering detection thresholds, and this can be accomplished without causing excessive false alarms in uninfected flocks. The results are discussed in terms of optimizing the design of disease surveillance programmes in general.
Collapse
Affiliation(s)
- Nicholas J Savill
- Centre for Infectious Diseases, Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JT, UK.
| | | | | |
Collapse
|
13
|
UYEKI TM. Global epidemiology of human infections with highly pathogenic avian influenza A (H5N1) viruses. Respirology 2008; 13 Suppl 1:S2-9. [DOI: 10.1111/j.1440-1843.2008.01246.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Leung YHC, Zhang LJ, Chow CK, Tsang CL, Ng CF, Wong CK, Guan Y, Peiris JSM. Poultry drinking water used for avian influenza surveillance. Emerg Infect Dis 2008; 13:1380-2. [PMID: 18252115 PMCID: PMC2857302 DOI: 10.3201/eid1309.070517] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Samples of drinking water from poultry cages, which can be collected conveniently and noninvasively, provide higher rates of influenza (H9N2) virus isolation than do samples of fecal droppings. Studies to confirm the usefulness of poultry drinking water for detecting influenza (H5N1) should be conducted in disease-endemic areas.
Collapse
Affiliation(s)
- Y H Connie Leung
- The University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Park AW, Glass K. Dynamic patterns of avian and human influenza in east and southeast Asia. THE LANCET. INFECTIOUS DISEASES 2007; 7:543-8. [PMID: 17646027 DOI: 10.1016/s1473-3099(07)70186-x] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The seasonal patterns of human influenza in temperate regions have been well documented; however, much less attention has been paid to patterns of infection in the tropical and subtropical areas of east and southeast Asia. During the period 1997-2006, this region experienced several outbreaks of highly pathogenic avian influenza A (H5N1) in hosts including wild and domestic poultry, human beings, and other mammals. H5N1 is thought to be a likely source of a pandemic strain of human influenza. Incidence of both human influenza and avian influenza in human beings shows evidence of seasonality throughout east and southeast Asia, although the seasonal patterns in tropical and subtropical areas are not as simple or as pronounced as those in temperate regions around the world. The possibility of a human being becoming co-infected with both human and avian strains of influenza is not restricted to a short season, although the risks do appear to be greatest during the winter months.
Collapse
Affiliation(s)
- Andrew W Park
- Department of Genetics and Evolution of Infectious Diseases, Institute of Research for Development, Montpellier, France.
| | | |
Collapse
|
16
|
Kung NY, Morris RS, Perkins NR, Sims LD, Ellis TM, Bissett L, Chow M, Shortridge KF, Guan Y, Peiris MJS. Risk for infection with highly pathogenic influenza A virus (H5N1) in chickens, Hong Kong, 2002. Emerg Infect Dis 2007; 13:412-8. [PMID: 17552094 PMCID: PMC2725907 DOI: 10.3201/eid1303.060365] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We used epidemiologic evaluation, molecular epidemiology, and a case-control study to identify possible risk factors for the spread of highly pathogenic avian influenza A virus (subtype H5N1) in chicken farms during the first quarter of 2002 in Hong Kong. Farm profiles, including stock sources, farm management, and biosecurity measures, were collected from 16 case and 46 control chicken farms by using a pretested questionnaire and personal interviews. The risk for influenza A (H5N1) infection was assessed by using adjusted odds ratios based on multivariate logistic regression analysis. Retail marketing of live poultry was implicated as the main source of exposure to infection on chicken farms in Hong Kong during this period. Infection control measures should be reviewed and upgraded as necessary to reduce the spread of influenza A (H5N1) related to live poultry markets, which are commonplace across Asia.
Collapse
Affiliation(s)
- Nina Y Kung
- Massey University, Palmerston North, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Qiao C, Tian G, Jiang Y, Li Y, Shi J, Yu K, Chen H. Vaccines developed for H5 highly pathogenic avian influenza in China. Ann N Y Acad Sci 2007; 1081:182-92. [PMID: 17135510 DOI: 10.1196/annals.1373.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Since the first detection of highly pathogenic H5N1 avian influenza virus from sick goose in Guangdong province in China in 1996, scientists in China started to develop vaccines for avian influenza pandemic preparedness. An H5N2 inactivated vaccine was produced from a low pathogenic virus, A/turkey/England/N-28/73, and was used for the buffer zone vaccination in the H5N1 outbreaks in 2004 in China. We also generated a low pathogenic H5N1 reassortant virus A/Harbin/Re-1/2003 (Re-1) that derives its HA and NA genes from GSGD/96 virus and six internal genes from the high-growth A/Puerto Rico/8/34 (PR8) virus by using plasmid-based reverse genetics. The inactivated vaccine derived from Re-1 strain could induce more than 10 months protective immune response in chickens after one dose inoculation, and most importantly, this vaccine is immunogenic for geese and ducks. An H5N1 fowlpox vectored live vaccine was also generated by inserting the HA and NA genes of GSGD/96 virus in the genome of a fowlpox vaccine strain. Laboratory tests indicated that after one dose of immunization of this vaccine, chickens could develop an over than 40 weeks protective immune response against H5N1 virus challenge.
Collapse
Affiliation(s)
- Chuanling Qiao
- Animal Influenza Laboratory of the Ministry of Agriculture, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Martin V, Sims L, Lubroth J, Kahn S, Domenech J, Begnino C. History and evolution of HPAI viruses in southeast Asia. Ann N Y Acad Sci 2007; 1081:153-62. [PMID: 17135505 DOI: 10.1196/annals.1373.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Highly pathogenic avian influenza (HPAI) has been recognized as a serious viral disease of poultry since 1878. The number of outbreaks of this disease globally has increased in the past 10 years culminating in 2004 with the unprecedented outbreak of H5N1 HPAI involving nine countries in East and South East Asia. Apart from the geographical extent of this outbreak and apparent rapid spread, this epidemic has a number of unique features, among which is the carriage of highly pathogenic AI viruses by asymptomatic domestic waterfowl. When this disease first emerged it was recognized almost simultaneously in a number of countries for the first time. This created considerable concern among both veterinary and public health authorities especially as the virus was also shown to cause fatal disease in humans. This article brings together a range of information on H5N1 HPAI viruses in Asia that were collected by FAO during the past year through field projects and explores possible reasons for the emergence of the disease in late 2003 and early 2004. Key epidemiological features of the disease in different Asian countries are described in an attempt to look for, and where possible, explain similarities and differences. This includes assessment of factors that could have contributed to the spread of the disease. Molecular aspects of the viruses are examined to assess relationships between isolates from different locations and times so as to gain insights into the origins of viruses in various countries. It is apparent that the coincidence and grouping of the reports declaring the outbreaks of HPAI did not truly reflect the time course of disease emergence, which was widespread well before the outbreak. The factors that could have led to a change from infection to emergence of widespread disease in 2003-2004 are discussed. There are still some questions that remain unanswered regarding the origins of the 2004 outbreak. This article does not provide answers to all of these, but brings together what is currently known about these outbreaks and the viruses that have caused them.
Collapse
|
19
|
Chua TH, Ellis TM, Wong CW, Guan Y, Ge SX, Peng G, Lamichhane C, Maliadis C, Tan SW, Selleck P, Parkinson J. Performance Evaluation of Five Detection Tests for Avian Influenza Antigen with Various Avian Samples. Avian Dis 2007; 51:96-105. [PMID: 17461273 DOI: 10.1637/0005-2086(2007)051[0096:peofdt]2.0.co;2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this paper, we report on the evaluation of five influenza antigen detection tests by avian influenza H5N 1 virus-positive swab samples to estimate their diagnostic sensitivity. The tests included two chromatographic immunoassays, an H5 avian influenza-specific antigen detection enzyme-linked immunosorbent assay (ELISA), an influenza A antigen detection ELISA, and an H5 rapid immunoblot assay. The results showed that the overall sensitivities of these tests ranged from 36.3% to 51.4% (95% confidence interval ranging from 31.0% to 57.0%), which were comparable to Directigen Flu A antigen detection tests but substantially lower than genome detection methods. Diagnostic sensitivity performance is a function of the concentration of antigens in samples and the analytical sensitivity of the individual test. The test sensitivities were significantly higher for sick and dead birds by cloacal, tracheal, or tissue swabs than for fecal swabs from apparently healthy birds, and these tests would not be suitable for surveillance testing of clinically healthy birds. Furthermore, the sensitivity for testing tracheal and cloacal swabs from waterfowl and wild birds was not as good as for chickens. This was most likely to be associated with variation in virus titers between specimens from different bird species. However, the tests showed good sensitivities for testing brain swabs from clinically affected waterfowl species. The results indicate that these antigen detection tests could be used for preliminary investigations of H5N 1 outbreaks as a low-cost, simple flock test in sick and dead birds for the rapid detection of H5N1 infection. However, the relatively low sensitivity of the tests as individual bird tests means that they should be used on optimal clinical specimens from diseased birds, testing birds on a flock basis, or testing samples as close to the onset of disease as possible before viral titers diminish. They should be followed up by confirmatory tests, such as reverse transcription polymerase chain reaction or viral culture, wherever possible but could assist in facilitating rapid investigations and control interventions.
Collapse
Affiliation(s)
- Tze-Hoong Chua
- School of Veterinary and Biomedical Sciences, Murdoch University, South Street, Murdoch, Western Australia, 6150, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ge J, Deng G, Wen Z, Tian G, Wang Y, Shi J, Wang X, Li Y, Hu S, Jiang Y, Yang C, Yu K, Bu Z, Chen H. Newcastle disease virus-based live attenuated vaccine completely protects chickens and mice from lethal challenge of homologous and heterologous H5N1 avian influenza viruses. J Virol 2007; 81:150-8. [PMID: 17050610 PMCID: PMC1797253 DOI: 10.1128/jvi.01514-06] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Accepted: 10/09/2006] [Indexed: 11/20/2022] Open
Abstract
H5N1 highly pathogenic avian influenza virus (HPAIV) has continued to spread and poses a significant threat to both animal and human health. Current influenza vaccine strategies have limitations that prevent their effective use for widespread inoculation of animals in the field. Vaccine strains of Newcastle disease virus (NDV), however, have been used successfully to easily vaccinate large numbers of animals. In this study, we used reverse genetics to construct a NDV that expressed an H5 subtype avian influenza virus (AIV) hemagglutinin (HA). Both a wild-type and a mutated HA open reading frame (ORF) from the HPAIV wild bird isolate, A/Bar-headed goose/Qinghai/3/2005 (H5N1), were inserted into the intergenic region between the P and M genes of the LaSota NDV vaccine strain. The recombinant viruses stably expressing the wild-type and mutant HA genes were found to be innocuous after intracerebral inoculation of 1-day-old chickens. A single dose of the recombinant viruses in chickens induced both NDV- and AIV H5-specific antibodies and completely protected chickens from challenge with a lethal dose of both velogenic NDV and homologous and heterologous H5N1 HPAIV. In addition, BALB/c mice immunized with the recombinant NDV-based vaccine produced H5 AIV-specific antibodies and were completely protected from homologous and heterologous lethal virus challenge. Our results indicate that recombinant NDV is suitable as a bivalent live attenuated vaccine against both NDV and AIV infection in poultry. The recombinant NDV vaccine may also have potential use in high-risk human individuals to control the pandemic spread of lethal avian influenza.
Collapse
Affiliation(s)
- Jinying Ge
- National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, 427 Maduan Street, Harbin 150001, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Webster RG, Webby RJ, Hoffmann E, Rodenberg J, Kumar M, Chu HJ, Seiler P, Krauss S, Songserm T. The immunogenicity and efficacy against H5N1 challenge of reverse genetics-derived H5N3 influenza vaccine in ducks and chickens. Virology 2006; 351:303-11. [PMID: 16690097 DOI: 10.1016/j.virol.2006.01.044] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 12/22/2005] [Accepted: 01/30/2006] [Indexed: 11/16/2022]
Abstract
H5N1 avian influenza viruses are continuing to spread in waterfowl in Eurasia and to threaten the health of avian and mammalian species. The possibility that highly pathogenic (HP) H5N1 avian influenza is now endemic in both domestic and migratory birds in Eurasia makes it unlikely that culling alone will control H5N1 influenza. Because ducks are not uniformly killed by HP H5N1 viruses, they are considered a major contributor to virus spread. Here, we describe a reverse genetics-derived high-growth H5N3 strain containing the modified H5 of A/chicken/Vietnam/C58/04, the N3 of A/duck/Germany/1215/73, and the internal genes of A/PR/8/34. One or two doses of inactivated oil emulsion vaccine containing 0.015 to 1.2 microg of HA protein provide highly efficacious protection against lethal H5N1 challenge in ducks; only the two dose regimen has so far been tested in chickens with high protective efficacy.
Collapse
Affiliation(s)
- Robert G Webster
- St. Jude Children's Research Hospital, Department of Infectious Diseases, Division of Virology, 332 N. Lauderdale, Memphis, TN 38105, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Opinion of the Scientific Panel Animal Health and Welfare (AHAW) related with the Migratory Birds and their Possible Role in the Spread of Highly Pathogenic Avian Influenza. EFSA J 2006; 4:357. [PMID: 32313578 PMCID: PMC7163743 DOI: 10.2903/j.efsa.2006.357] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
23
|
Swayne DE, Lee CW, Spackman E. Inactivated North American and European H5N2 avian influenza virus vaccines protect chickens from Asian H5N1 high pathogenicity avian influenza virus. Avian Pathol 2006; 35:141-6. [PMID: 16595307 DOI: 10.1080/03079450600597956] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
High-pathogenicity (HP) avian influenza (AI) virus of the H5N1 subtype has caused an unprecedented epizootic in birds within nine Asian countries/regions since it was first reported in 1996. Vaccination has emerged as a tool for use in managing the infection in view of future eradication. This study was undertaken to determine whether two divergent H5N2 commercial vaccine strains, one based on a European and the other a North American low-pathogenicity AI virus, could protect chickens against a recent Asian H5N1 HPAI virus. The North American and European vaccine viruses had 84 and 91% deduced amino acid sequence similarity to the HA1 segment of haemagglutinin protein of Indonesia H5N1 HPAI challenge virus, respectively. Both vaccine strains provided complete protection from clinical signs and death. The vaccines reduced the number of chickens infected and shedding virus from the respiratory and intestinal tracts at the peak of virus replication. In addition, the quantity of virus shed was reduced by 10(4) to 10(5) median embryo infectious doses. The use of specific neuraminidase inhibition tests allowed identification of infected chickens within the vaccinated groups. These data indicate that the currently available H5 vaccines of European and North American lineages will protect chickens against the Asian H5N1 HPAI virus and reduce environmental contamination by the H5N1 HPAI virus. They will be an adjunct to biosecurity measures to reduce virus transmission.
Collapse
Affiliation(s)
- David E Swayne
- United States Department of Agriculture, Southeast Poultry Research Laboratory, Agricultural Research Service, 934 College Station Road, Athens, GA 30605, USA.
| | | | | |
Collapse
|
24
|
Abstract
Since 1997, avian influenza (AI) virus infections in poultry have taken on new significance, with increasing numbers of cases involving bird-to-human transmission and the resulting production of clinically severe and fatal human infections. Such human infections have been sporadic and are caused by H7N7 and H5N1 high-pathogenicity (HP) and H9N2 low-pathogenicity (LP) AI viruses in Europe and Asia. These infections have raised the level of concern by human health agencies for the potential reassortment of influenza virus genes and generation of the next human pandemic influenza A virus. The presence of endemic infections by H5N1 HPAI viruses in poultry in several Asian countries indicates that these viruses will continue to contaminate the environment and be an exposure risk with human transmission and infection. Furthermore, the reports of mammalian infections with H5N1 AI viruses and, in particular, mammal-to-mammal transmission in humans and tigers are unprecedented. However, the subsequent risk for generating a pandemic human strain is unknown. More international funding from both human and animal health agencies for diagnosis or detection and control of AI in Asia is needed. Additional funding for research is needed to understand why and how these AI viruses infect humans and what pandemic risks they pose.
Collapse
Affiliation(s)
- Michael L Perdue
- Department of Communicable Disease Surveillance and Response, World Health Organization, Global Influenza Programme, 1211 Geneva 27, Switzerland
| | | |
Collapse
|
25
|
Tian G, Zhang S, Li Y, Bu Z, Liu P, Zhou J, Li C, Shi J, Yu K, Chen H. Protective efficacy in chickens, geese and ducks of an H5N1-inactivated vaccine developed by reverse genetics. Virology 2005; 341:153-62. [PMID: 16084554 DOI: 10.1016/j.virol.2005.07.011] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 07/05/2005] [Accepted: 07/14/2005] [Indexed: 11/19/2022]
Abstract
We generated a high-growth H5N1/PR8 virus by plasmid-based reverse genetics. The virulence associated multiple basic amino acids of the HA gene were removed, and the resulting virus is attenuated for chickens and chicken eggs. A formalin-inactivated oil-emulsion vaccine was prepared from this virus. When SPF chickens were inoculated with 0.3 ml of the vaccine, the hemagglutinin-inhibition (HI) antibody became detectable at 1 week post-vaccination (p.v.) and reached a peak of 10log2 at 6 weeks p.v. then slowly declined to 4log2 at 43 weeks p.v. Challenge studies performed at 2, 3 and 43 weeks p.v. indicated that all of the chickens were completely protected from disease signs and death. Ducks and geese were completely protected from highly pathogenic H5N1 virus challenge 3 weeks p.v. The duration of protective immunity in ducks and geese was investigated by detecting the HI antibody of the field vaccinated birds, and the results indicated that 3 doses of the vaccine inoculation in geese could induce a 34 weeks protection, while 2 doses induced more than 52 weeks protection in ducks. We first reported that an oil-emulsion inactivated vaccine derived from a high-growth H5N1 vaccine induced approximately 10 months of protective immunity in chickens and demonstrated that the oil-emulsion inactivated avian influenza vaccine is immunogenic for geese and ducks. These results provide useful information for the application of vaccines to the control of H5N1 avian influenza in poultry, including chickens and domestic waterfowl.
Collapse
Affiliation(s)
- Guobin Tian
- Animal Influenza Laboratory of the Ministry of Agriculture, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Mase M, Tsukamoto K, Imada T, Imai K, Tanimura N, Nakamura K, Yamamoto Y, Hitomi T, Kira T, Nakai T, Kiso M, Horimoto T, Kawaoka Y, Yamaguchi S. Characterization of H5N1 influenza A viruses isolated during the 2003-2004 influenza outbreaks in Japan. Virology 2005; 332:167-76. [PMID: 15661149 DOI: 10.1016/j.virol.2004.11.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2004] [Revised: 09/28/2004] [Accepted: 11/16/2004] [Indexed: 11/28/2022]
Abstract
In Japan, between the end of December 2003 and March 2004, four outbreaks of acute, highly transmissible and lethal disease occurred in birds in three prefectures separated by 150-450 km, involving three chicken farms and a group of chickens raised as pets. The cause of each outbreak was an H5N1 influenza A virus-the first highly pathogenic virus to be isolated from the outbreaks in Japan since 1925. The H5N1 virus was also isolated from dead crows, apparently infected by contact with virus-contaminated material. These H5N1 viruses were antigenically similar to each other, but could be differentiated from other H5 viruses, including those isolated from Hong Kong in 1997 and 2003, by use of a panel of monoclonal antibodies in hemagglutination inhibition assays. Genetically, the H5N1 viruses in Japan were closely related to each other in all genes and were genetically closely related to a single isolate of genotype V that was isolated in 2003 in the Guandong Province of mainland China (A/chicken/Shantou/4231/2003). The virulence of the index isolate (A/chicken/Yamaguchi/7/2004) was studied in chickens and mice. Chickens intravenously or intranasally inoculated with the isolate died within 1 or 3 days of inoculation, respectively. In mice, although this virus replicated well in the lung without prior adaptation and spread to the brain, the dose lethal to 50% of the mice was 5 x 10(5) 50% egg infectious doses (EID50), which is less pathogenic than the Hong Kong 1997 H5N1 viruses isolated from humans. Our findings indicate that the H5N1 viruses associated with the influenza outbreaks in chickens in Japan were genotypically closely related to an H5N1 virus isolated from chicken in China in 2003 (genotype V), but were different from those prevalent in southeastern Asia in 2003-2004 (i.e., genotype Z) and that these highly pathogenic viruses can be transmitted to crows, which are highly susceptible to these viruses.
Collapse
Affiliation(s)
- Masaji Mase
- Department of Infectious Diseases, National Institute of Animal Health, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Stephenson I, Nicholson KG, Wood JM, Zambon MC, Katz JM. Confronting the avian influenza threat: vaccine development for a potential pandemic. THE LANCET. INFECTIOUS DISEASES 2004; 4:499-509. [PMID: 15288823 PMCID: PMC7106438 DOI: 10.1016/s1473-3099(04)01105-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sporadic human infection with avian influenza viruses has raised concern that reassortment between human and avian subtypes could generate viruses of pandemic potential. Vaccination is the principal means to combat the impact of influenza. During an influenza pandemic the immune status of the population would differ from that which exists during interpandemic periods. An emerging pandemic virus will create a surge in worldwide vaccine demand and new approaches in immunisation strategies may be needed to ensure optimum protection of unprimed individuals when vaccine antigen may be limited. The manufacture of vaccines from pathogenic avian influenza viruses by traditional methods is not feasible for safety reasons as well as technical issues. Strategies adopted to overcome these issues include the use of reverse genetic systems to generate reassortant strains, the use of baculovirus-expressed haemagglutinin or related non-pathogenic avian influenza strains, and the use of adjuvants to enhance immunogenicity. In clinical trials, conventional surface-antigen influenza virus vaccines produced from avian viruses have proved poorly immunogenic in immunologically naive populations. Adjuvanted or whole-virus preparations may improve immunogenicity and allow sparing of antigen.
Collapse
Affiliation(s)
- Iain Stephenson
- Influenza Branch, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
28
|
Liu M, Wood JM, Ellis T, Krauss S, Seiler P, Johnson C, Hoffmann E, Humberd J, Hulse D, Zhang Y, Webster RG, Perez DR. Preparation of a standardized, efficacious agricultural H5N3 vaccine by reverse genetics. Virology 2003; 314:580-90. [PMID: 14554086 DOI: 10.1016/s0042-6822(03)00458-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Options for the control of emerging and reemerging H5N1 influenza viruses include improvements in biosecurity and the use of inactivated vaccines. Commercially available H5N2 influenza vaccine prevents disease signs and reduces virus load but does not completely prevent virus shedding after challenge with H5N1 virus. By using reverse genetics, we prepared an H5N3 vaccine whose hemagglutinin is 99.6% homologous to that of A/CK/HK/86.3/02 (H5N1). We used the internal genes of A/PR/8/34 and the H5 of A/Goose/HK/437.4/99 (H5N1) after deletion of basic amino acids from its connecting peptide region. The resulting virus was not lethal to chicken embryos and grew to high HA titers in eggs, allowing preparation of HA protein-standardized vaccine in unconcentrated allantoic fluid. The N3 neuraminidase, derived from A/Duck/Germany/1215/73 (H2N3), permitted discrimination between vaccinated and naturally infected birds. The virus construct failed to replicate in quail and chickens. Similar to parental A/PR/8/34 (H1N1), it replicated in mice and ferrets and spread to the brains of mice; therefore, it should not be used as a live-attenuated vaccine. The H5N3 vaccine, at doses of 1.2 microg HA, induced HI antibodies in chickens and prevented death, signs of disease, and markedly reduced virus shedding after challenge with A/CK/HK/86.3/02 (H5N1) but did not provide sterilizing immunity. Thus, reverse genetics allows the inexpensive preparation of standardized, efficacious H5N3 poultry vaccines that may also reduce the reemergence of H5N1 genotypes.
Collapse
Affiliation(s)
- Ming Liu
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|