1
|
Brandão PE, Berg M, Leite BA, Silva SO, Taniwaki SA. The order of events on Avian coronavirus life cycle shapes the order of quasispecies evolution during host switches. Genet Mol Biol 2022; 45:e20220034. [PMID: 35671496 PMCID: PMC9173666 DOI: 10.1590/1678-4685-gmb-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/01/2022] [Indexed: 12/02/2022] Open
Abstract
To understand the population genetics events during coronavirus host switches, the Beaudette strain of Avian coronavirus (AvCoV) adapted to BHK-21 cells was passaged 15 times in VERO cells, the virus load and the variants at each passage being determined by RT-qPCR and genome-length deep sequencing. From BHK-21 P2 to VERO P3, a trend for the extinction of variants was followed by stability up to VERO P11 and both the emergence and the rise in frequency in some variants, while the virus loads were stable up to VERO P12. At the spillover from BHK-21 to VERO cells, variants that both emerged, showed a rise in frequency or were extinguished were detected on the spike, while variants at the M gene showed the same pattern only at VERO passage 13. Furthermore, nsps 3-5, 9 and 15 variants were detected at lower passages compared to the consensus sequences, with those at nsp3 being detected in the spectra also at higher passages. This suggests that quasispecies coronavirus evolution in spillovers follows the virus life cycle, starting with the evolution of the receptor binding proteins, followed by the replicase and then proteins involved in virion assembly, keeping the general fitness of the mutant spectrum stable.
Collapse
Affiliation(s)
| | - Mikael Berg
- Swedish University of Agricultural Sciences, Sweden
| | | | | | | |
Collapse
|
2
|
Toro H. Global Control of Infectious Bronchitis Requires Replacing Live Attenuated Vaccines by Alternative Technologies. Avian Dis 2021; 65:637-642. [DOI: 10.1637/aviandiseases-d-21-00105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/05/2022]
Affiliation(s)
- Haroldo Toro
- Department of Pathobiology, College of Veterinary Medicine, 264 Greene Hall, Auburn University, Auburn, AL 36849
| |
Collapse
|
3
|
Bose P, Roy S, Ghosh P. A Comparative NLP-Based Study on the Current Trends and Future Directions in COVID-19 Research. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2021; 9:78341-78355. [PMID: 34786315 PMCID: PMC8545210 DOI: 10.1109/access.2021.3082108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/15/2021] [Indexed: 05/03/2023]
Abstract
COVID-19 is a global health crisis that has altered human life and still promises to create ripples of death and destruction in its wake. The sea of scientific literature published over a short time-span to understand and mitigate this global phenomenon necessitates concerted efforts to organize our findings and focus on the unexplored facets of the disease. In this work, we applied natural language processing (NLP) based approaches on scientific literature published on COVID-19 to infer significant keywords that have contributed to our social, economic, demographic, psychological, epidemiological, clinical, and medical understanding of this pandemic. We identify key terms appearing in COVID literature that vary in representation when compared to other virus-borne diseases such as MERS, Ebola, and Influenza. We also identify countries, topics, and research articles that demonstrate that the scientific community is still reacting to the short-term threats such as transmissibility, health risks, treatment plans, and public policies, underpinning the need for collective international efforts towards long-term immunization and drug-related challenges. Furthermore, our study highlights several long-term research directions that are urgently needed for COVID-19 such as: global collaboration to create international open-access data repositories, policymaking to curb future outbreaks, psychological repercussions of COVID-19, vaccine development for SARS-CoV-2 variants and their long-term efficacy studies, and mental health issues in both children and elderly.
Collapse
Affiliation(s)
- Priyankar Bose
- Department of Computer ScienceVirginia Commonwealth UniversityRichmondVA23284USA
| | - Satyaki Roy
- Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNC27515USA
| | - Preetam Ghosh
- Department of Computer ScienceVirginia Commonwealth UniversityRichmondVA23284USA
| |
Collapse
|
4
|
Zegpi RA, Joiner KS, van Santen VL, Toro H. Infectious Bronchitis Virus Population Structure Defines Immune Response and Protection. Avian Dis 2020; 64:60-68. [PMID: 32267126 DOI: 10.1637/0005-2086-64.1.60] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/10/2019] [Indexed: 11/05/2022]
Abstract
A commercial Arkansas (Ark) Delmarva Poultry Industry (DPI)-type vaccine and a more homogeneous population of that vaccine obtained previously through adaptation to chicken embryo kidney (CEK) cells (CEK-ArkDPI) were used as a model to further understand the impact of population genetic structure on generation of immune responses and protection. In a first experiment, vaccinated chickens were challenged with an IBV Ark99-type virulent strain (AL/4614/98). Despite extensive sequence similarity between the vaccines, the more heterogeneous commercial ArkDPI was more efficient at reducing viral loads in challenged chickens, while respiratory signs and tracheal lesions were reduced similarly by either vaccine. A distinct subpopulation of the Ark challenge virus showing asparagine at S1 position 56 was consistently negatively selected by immune pressure originating from vaccination with either vaccine. Antibody levels and antibody avidity to Ark-type S1 protein were greater in CEK-ArkDPI-vaccinated chickens compared to chickens vaccinated with the more diverse commercial ArkDPI vaccine. Synchronous replication of a homogeneous virus population likely elicits clonal expansion and affinity maturation of a greater number of responding B cells compared to a diverse virus population continuously changing its proportion of phenotypes during replication. The results of a second experiment showed that during initial vaccine virus replication (24 and 48 hr postvaccination), the virus population showing increased diversity (commercial ArkDPI) achieved higher concentrations of IBV RNA in the trachea compared to the more homogenous virus. mRNA expression of genes associated with innate immune responses in the trachea 48 hr postvaccination generally showed greater upregulation in chickens vaccinated with the heterogeneous commercial ArkDPI vaccine compared to the CEK-adapted virus. The greater upregulation of these genes is likely associated with higher virus replication achieved by the heterogeneous commercial vaccine. Thus, while the adaptive antibody response was favored by the more homogenous structure of the CEK-ArkDPI vaccine population (higher antibody levels and antibody avidity), the innate immune response was favored by the more diverse viral population of the commercial ArkDPI. We confirmed previous results that distinct subpopulations in wild Ark challenge virus become selected by immune pressure originating from vaccination, and we concluded that the population structure of IBV vaccines impacts innate immune response, antibody avidity, and protection.
Collapse
Affiliation(s)
- R A Zegpi
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36830
| | - K S Joiner
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36830
| | - V L van Santen
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36830
| | - H Toro
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn, AL 36830,
| |
Collapse
|
5
|
Albanese GA, Lee DH, Cheng IHN, Hilt DA, Jackwood MW, Jordan BJ. Biological and molecular characterization of ArkGA: A novel Arkansas serotype vaccine that is highly attenuated, efficacious, and protective against homologous challenge. Vaccine 2018; 36:6077-6086. [PMID: 30197283 PMCID: PMC7115623 DOI: 10.1016/j.vaccine.2018.08.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 11/30/2022]
Abstract
Almost all commercial poultry are vaccinated against avian coronavirus infectious bronchitis virus (IBV) using live attenuated vaccines mass administered by spray at day of hatch. Although many different types of IBV vaccines are used successfully, the ArkDPI serotype vaccine, when applied by spray, does not infect and replicate sufficiently to provide protection against homologous challenge. In this study, we examined a different Ark vaccine strain (Ark99), which is no longer used commercially due to its reactivity in one day old chicks, to determine if it could be further attenuated by passage in embryonated eggs but still provide adequate protection. Further attenuation of the Ark99 vaccine was achieved by passage in embryonated eggs but ArkGA P1, P20, and P40 (designated ArkGA after P1) were still too reactive to be suitable vaccine candidates. However, ArkGA P60 when given by spray had little or no vaccine reaction in one day old broiler chicks, and it induced protection from clinical signs and ciliostasis following homologous challenge. In addition, vaccinated and challenged birds had significantly less challenge virus, an important measure of protection, compared to non-vaccinated and challenged controls. The full-length genomes of viruses from egg passages 1, 20, 40, and 60 were sequenced using the Illumina platform and the data showed single nucleotide polymorphisms (SNPs) had accumulated in regions of the genome associated with viral replication, pathogenicity, and cell tropism. ArkGA P60 accumulated the most SNPs in key genes associated with pathogenicity (polyprotein gene 1ab) and cell tropism (spike gene), compared to previous passages, which likely resulted in its more attenuated phenotype. These results indicate that the ArkGA P60 vaccine is safe for spray vaccination of broiler chicks and induces suitable protection against challenge with pathogenic Ark-type virus.
Collapse
Affiliation(s)
- Grace A Albanese
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Dong-Hun Lee
- Southeast Poultry Research Laboratory, US National Poultry Research Center, ARS, USDA, Athens, GA 30605, USA
| | - I-Hsin N Cheng
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Deborah A Hilt
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Mark W Jackwood
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA
| | - Brian J Jordan
- Poultry Diagnostic and Research Center, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, USA; Department of Poultry Science, College of Agricultural and Environmental Sciences, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|