1
|
Duc HM, Hutchinson M, Flory GA, Ngan PH, Son HM, Hung LV, Hoa TTK, Lan NT, Lam TQ, Rozeboom D, Remmenga MD, Vuolo M, Miknis R, Burns A, Flory R. Viability of African Swine Fever Virus with the Shallow Burial with Carbon Carcass Disposal Method. Pathogens 2023; 12:pathogens12040628. [PMID: 37111514 PMCID: PMC10140975 DOI: 10.3390/pathogens12040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
African swine fever (ASF) is a highly contagious swine disease with high mortality. In many countries, culling pigs infected and exposed to the ASF virus is mandatory to control the disease, which poses a real challenge in the disposal of large numbers of carcasses during ASF outbreaks. Shallow burial with carbon (SBC) Thanks ew mortality disposal method developed from deep burial and composting. The present study investigates the effectiveness of SBC in disposing of ASF virus-infected pigs. The real-time PCR results showed that DNA of the ASF virus was still detected in bone marrow samples on day 56, while the virus isolation test revealed that the infectious ASF virus was destroyed in both spleen and bone marrow samples on day 5. Interestingly, decomposition was found to occur rapidly in these shallow burial pits. On day 144, only large bones were found in the burial pit. In general, the results of this study indicated that SBC is a potential method for the disposal of ASF-infected carcasses; however, further studies are needed to provide more scientific evidence for the efficacy of SBC in different environment conditions.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Mark Hutchinson
- Maine Food and Agriculture Center, University of Maine Cooperative Extension, Orono, ME 04473, USA
| | - Gary A Flory
- G.A. Flory Consulting, Mt. Crawford, VA 22841, USA
| | - Pham Hong Ngan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Le Van Hung
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Tran Thi Khanh Hoa
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Nguyen Thi Lan
- Department of Pathoglogy, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Truong Quang Lam
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi 12406, Vietnam
| | - Dale Rozeboom
- Department of Animal Science, Michigan State University Cooperative Extension, Lansing, MI 48824, USA
| | - Marta D Remmenga
- Center for Epidemiology and Animal Health, Veterinary Service, U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Matthew Vuolo
- Center for Epidemiology and Animal Health, Veterinary Service, U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Robert Miknis
- U.S. Department of Agriculture, Animal and Plant Health Inspection Services, Fort Collins, CO 80521, USA
| | - Amira Burns
- Department of Statistics, Colorado State University, Fort Collins, CO 80523, USA
| | - Renée Flory
- English Department, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Duc HM, Ngan PH, Son HM, Lan NT, Van Hung L, Ha CTT, Hoa NT, Lam TQ, Van Thang N, Flory GA, Hutchinson M. The use of composting for the disposal of African swine fever virus infected swine carcasses. Transbound Emerg Dis 2022; 69:e3036-e3044. [PMID: 35830975 DOI: 10.1111/tbed.14659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
African swine fever (ASF) has been considered as one of the most important and devastating swine diseases with high mortality rates. Since effective vaccines and treatment are not available, mass euthanasia of infected and exposed pigs has been known to be the best measure to control ASF. Although composting has been proved to be a safe method for the rapid disposal of animal carcasses during outbreaks, there is no information about the effect of composting on the viability of ASF virus in swine carcasses. This study investigates the survival of the ASF virus in swine carcasses during composting. The findings suggested that the DNA of the ASF virus was detected in all samples tested. On the contrary, infectious ASF virus particles were rapidly destroyed at day 3. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hoang Minh Duc
- Head, Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Pham Hong Ngan
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam.,Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Hoang Minh Son
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Nguyen Thi Lan
- Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Le Van Hung
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Cam Thi Thu Ha
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Nguyen Thi Hoa
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Truong Quang Lam
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Nguyen Van Thang
- Faculty of Veterinary Medicine, Vietnam National Univeristy of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| | - Gary A Flory
- President, Director of Operations, G.A. Flory Consulting, Mt. Crawford, Virginia, USA
| | - Mark Hutchinson
- Extension Professor, University of Maine Cooperative Extension, Orono, Maine, USA
| |
Collapse
|
3
|
Shang B, Zhou T, Tao X, Chen Y, Dong H. Simultaneous removal of ammonia and volatile organic compounds from composting of dead pigs and manure using pilot-scale biofilter. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2021; 71:378-391. [PMID: 33094706 DOI: 10.1080/10962247.2020.1841040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Odor emission is one of the most common problems associated with dead animals composting. Biofiltration treatment for eliminating exhaust odors formed during dead pigs and manure composting has been studied. The composting and biofiltration process consisted of two series of tests. Composting experimental trials lasted 6 weeks, and composting was performed using six pilot-scale reactor vessels. A total of 37 kinds of volatile organic compounds (VOCs) present in the air were identified, and temporal variations were determined during the 42 days of composting. Dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), and trimethylamine (TMA) were identified as the main odors VOCs component according to odor active values (OAVs). Nine biofilter vessels containing mature compost were used in studying the effect of different (30, 60, and 100 s) empty bed retention times (EBRT) on the simultaneous removal efficiencies (REs) of NH3, DMS, DMDS, DMTS, and TMA. Results indicated that the inlet concentration of NH3 applied was 12-447 mg m-3, and the average removal efficiencies were 85.4%, 88.7%, and 89.0% for EBRTs of 30, 60, and 100 s, respectively. The average REs of DMS, DMDS, DMTS, and TMA were 79.2%-95.4%, 81.9%-94.0%, 76.7%-99.1%, and 92.9%-100%, respectively, and their maximum elimination capacity (ECs) were 220, 1301, 296, and 603 mg m-3 h-1, respectively. The optimal EBRT for the stimulation removal of NH3, DMS, DMDS, DMTS, and TMA was 60 s.Implications: Dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS), and trimethylamine (TMA) were identified as the main odors VOCs component during dead pigs and manure composting. Biofilter with mature as media can be used to stimulation remove NH3, DMS, DMDS, DMTS, and TMA, the optimal empty bed retention times EBRT was 60 s.
Collapse
Affiliation(s)
- Bin Shang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| | - Tanlong Zhou
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| | - Xiuping Tao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yongxing Chen
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| | - Hongmin Dong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
- Key Laboratory of Energy Conservation and Waste Utilization in Agriculture, Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
4
|
Costa T, Akdeniz N. A review of the animal disease outbreaks and biosecure animal mortality composting systems. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 90:121-131. [PMID: 31088667 PMCID: PMC7126724 DOI: 10.1016/j.wasman.2019.04.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/19/2019] [Accepted: 04/22/2019] [Indexed: 05/05/2023]
Abstract
Despite the development of new vaccines and the application of rigorous biosecurity measures, animal diseases pose a continuing threat to animal health, food safety, national economy, and the environment. Intense livestock production, increased travel, and changing climate have increased the risk of catastrophic animal losses due to infectious diseases. In the event of an outbreak, it is essential to properly manage the infected animals to prevent the spread of diseases. The most common disposal methods used during a disease outbreak include burial, landfilling, incineration and composting. Biosecurity, transportation logistics, public perception, and environmental concerns limit the use of some of these methods. During a disease outbreak, the large number of mortalities often exceeds the capacity of local rendering plants and landfills. Transporting mortalities to disposal and incineration facilities outside the production operation introduces biosecurity risks. Burying mortalities is limited by the size and availability of suitable sites and it has the risk of pathogen survival and contamination of groundwater and soil. Portable incinerators are expensive and have the potential to aerosolize infectious particles. Composting, on the other hand, has been recognized as a biosecure disposal method. Research showed that it eliminates bacterial pathogens such as Escherichia coli O157: H7, Salmonella spp., as well as viruses including highly pathogenic avian influenza, foot-and-mouth disease, Newcastle disease, and porcine epidemic diarrhea. This paper summarizes the lessons learned during the major animal disease outbreaks including the 2010 foot-and-mouth disease, 2016 highly pathogenic avian influenza, and recent African swine fever outbreaks. The purpose of this review is to critically discuss the biosecurity of composting as a mortality disposal method during the outbreaks of infectious animal diseases.
Collapse
Affiliation(s)
- Tiago Costa
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Neslihan Akdeniz
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA.
| |
Collapse
|