1
|
McLure A, Shadbolt C, Desmarchelier PM, Kirk MD, Glass K. Source attribution of salmonellosis by time and geography in New South Wales, Australia. BMC Infect Dis 2022; 22:14. [PMID: 34983395 PMCID: PMC8725445 DOI: 10.1186/s12879-021-06950-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Salmonella is a major cause of zoonotic illness around the world, arising from direct or indirect contact with a range of animal reservoirs. In the Australian state of New South Wales (NSW), salmonellosis is believed to be primarily foodborne, but the relative contribution of animal reservoirs is unknown. METHODS The analysis included 4543 serotyped isolates from animal reservoirs and 30,073 serotyped isolates from domestically acquired human cases in NSW between January 2008 and August 2019. We used a Bayesian source attribution methodology to estimate the proportion of foodborne Salmonella infections attributable to broiler chickens, layer chickens, ruminants, pigs, and an unknown or unsampled source. Additional analyses included covariates for four time periods and five levels of rurality. RESULTS A single serotype, S. Typhimurium, accounted for 65-75% of included cases during 2008-2014 but < 50% during 2017-2019. Attribution to layer chickens was highest during 2008-2010 (48.7%, 95% CrI 24.2-70.3%) but halved by 2017-2019 (23.1%, 95% CrI 5.7-38.9%) and was lower in the rural and remote populations than in the majority urban population. The proportion of cases attributed to the unsampled source was 11.3% (95% CrI 1.2%-22.1%) overall, but higher in rural and remote populations. The proportion of cases attributed to pork increased from approximately 20% in 2009-2016 to approximately 40% in 2017-2019, coinciding with a rise in cases due to Salmonella ser. 4,5,12:i:-. CONCLUSION Layer chickens were likely the primary reservoir of domestically acquired Salmonella infections in NSW circa 2010, but attribution to the source declined contemporaneously with increased vaccination of layer flocks and tighter food safety regulations for the handling of eggs.
Collapse
Affiliation(s)
- Angus McLure
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia.
| | - Craig Shadbolt
- New South Wales Department of Primary Industries, New South Wales, Australia
| | | | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - Kathryn Glass
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| |
Collapse
|
2
|
Salmonella enterica Serovar Hvittingfoss in Bar-Tailed Godwits (Limosa lapponica) from Roebuck Bay, Northwestern Australia. Appl Environ Microbiol 2020; 86:AEM.01312-20. [PMID: 32737126 DOI: 10.1128/aem.01312-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/19/2020] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Hvittingfoss is an important foodborne serotype of Salmonella, being detected in many countries where surveillance is conducted. Outbreaks can occur, and there was a recent multistate foodborne outbreak in Australia. S Hvittingfoss can be found in animal populations, though a definitive animal host has not been established. Six species of birds were sampled at Roebuck Bay, a designated Ramsar site in northwestern Australia, resulting in 326 cloacal swabs for bacterial culture. Among a single flock of 63 bar-tailed godwits (Limosa lapponica menzbieri) caught at Wader Spit, Roebuck Bay, in 2018, 17 (27%) were culture positive for Salmonella All other birds were negative for Salmonella The isolates were identified as Salmonella enterica serovar Hvittingfoss. Phylogenetic analysis revealed a close relationship between isolates collected from godwits and the S Hvittingfoss strain responsible for a 2016 multistate foodborne outbreak originating from tainted cantaloupes (rock melons) in Australia. While it is not possible to determine how this strain of S Hvittingfoss was introduced into the bar-tailed godwits, these findings show that wild Australian birds are capable of carrying Salmonella strains of public health importance.IMPORTANCE Salmonella is a zoonotic pathogen that causes gastroenteritis and other disease presentations in both humans and animals. Serovars of S. enterica commonly cause foodborne disease in Australia and globally. In 2016-2017, S Hvittingfoss was responsible for an outbreak that resulted in 110 clinically confirmed human cases throughout Australia. The origin of the contamination that led to the outbreak was never definitively established. Here, we identify a migratory shorebird, the bar-tailed godwit, as an animal reservoir of S Hvittingfoss. These birds were sampled in northwestern Australia during their nonbreeding period. The presence of a genetically similar S Hvittingfoss strain circulating in a wild bird population, 2 years after the 2016-2017 outbreak and ∼1,500 km from the suspected source of the outbreak, demonstrates a potentially unidentified environmental reservoir of S Hvittingfoss. While the birds cannot be implicated in the outbreak that occurred 2 years prior, this study does demonstrate the potential role for wild birds in the transmission of this important foodborne pathogen.
Collapse
|
3
|
Wille M, Eden JS, Shi M, Klaassen M, Hurt AC, Holmes EC. Virus-virus interactions and host ecology are associated with RNA virome structure in wild birds. Mol Ecol 2018; 27:5263-5278. [PMID: 30375075 PMCID: PMC6312746 DOI: 10.1111/mec.14918] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
Little is known about the factors that shape the ecology of RNA viruses in nature. Wild birds are an important case in point, as other than influenza A virus, avian samples are rarely tested for viruses, especially in the absence of overt disease. Using bulk RNA-sequencing ("meta-transcriptomics"), we revealed the viral diversity present in Australian wild birds through the lens of the ecological factors that may determine virome structure and abundance. A meta-transcriptomic analysis of four Anseriformes (waterfowl) and Charadriiformes (shorebird) species sampled in temperate and arid Australia revealed the presence of 27 RNA virus genomes, 18 of which represent newly described species. The viruses identified included a previously described gammacoronavirus and influenza A viruses. Additionally, we identified novel virus species from the families Astroviridae, Caliciviridae, Reoviridae, Rhabdoviridae, Picobirnaviridae and Picornaviridae. We noted differences in virome structure that reflected underlying differences in location and influenza A infection status. Red-necked Avocets (Recurvirostra novaehollandiae) from Australia's arid interior possessed the greatest viral diversity and abundance, markedly higher than individuals sampled in temperate Australia. In Ruddy Turnstones (Arenaria interpres) and dabbling ducks (Anas spp.), viral abundance and diversity were higher and more similar in hosts that were positive for influenza A infection compared to those that were negative for this virus, despite samples being collected on the same day and from the same location. This study highlights the extent and diversity of RNA viruses in wild birds and lays the foundation for understanding the factors that determine virome structure in wild populations.
Collapse
Affiliation(s)
- Michelle Wille
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - John-Sebastian Eden
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Centre for Virus Research, Sydney, New South Wales, Australia
| | - Mang Shi
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Marcel Klaassen
- Centre for Integrative Ecology, Deakin University, Geelong, Victoria, Australia
| | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life and Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Marzal A, Møller AP, Espinoza K, Morales S, Luján-Vega C, Cárdenas-Callirgos JM, Mendo L, Álvarez-Barrientos A, González-Blázquez M, García-Longoria L, de Lope F, Mendoza C, Iannacone J, Magallanes S. Variation in malaria infection and immune defence in invasive and endemic house sparrows. Anim Conserv 2018. [DOI: 10.1111/acv.12423] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- A. Marzal
- Department of Anatomy, Cellular Biology and Zoology; University of Extremadura; Badajoz Spain
| | - A. P. Møller
- Ecologie Systématique Evolution; Université Paris-Sud; CNRS; AgroParisTech; Université Paris-Saclay; Orsay Cedex France
| | - K. Espinoza
- Department of Veterinary Medicine; Universidad Científica del Sur; Villa Peru
| | - S. Morales
- Department of Veterinary Medicine; Universidad Científica del Sur; Villa Peru
- Department of Animal and Public Health; Faculty of Veterinary Medicine; Universidad Nacional Mayor de San Marcos; San Borja Peru
| | - C. Luján-Vega
- Global Health Initiative; Wabash College; Crawfordsville Indiana USA
- Pharmacology and Toxicology Graduate Group; University of California; Davis USA
| | | | - L. Mendo
- Área de Gestión de fauna Silvestre; Autoridad Regional Ambiental; Gobierno Regional de San Martín; Tarapoto Perú
| | - A. Álvarez-Barrientos
- Servicio de Técnicas Aplicadas a las Biociencias; Universidad de Extremadura; Badajoz Spain
| | - M. González-Blázquez
- Department of Anatomy, Cellular Biology and Zoology; University of Extremadura; Badajoz Spain
| | - L. García-Longoria
- Department of Anatomy, Cellular Biology and Zoology; University of Extremadura; Badajoz Spain
| | - F. de Lope
- Department of Anatomy, Cellular Biology and Zoology; University of Extremadura; Badajoz Spain
| | - C. Mendoza
- Laboratorio de Análisis Clínico Moraleslab SAC; Morales San Martín Perú
| | - J. Iannacone
- Laboratorio de Ecología y Biodiversidad Animal; Universidad Nacional Federico Villarreal; El Agustino; Lima Perú
- Laboratorio de Parasitología; Universidad Ricardo Palma; Santiago de Surco; Lima Perú
| | - S. Magallanes
- Department of Anatomy, Cellular Biology and Zoology; University of Extremadura; Badajoz Spain
| |
Collapse
|
5
|
MORTALITY OF SELECTED AVIAN ORDERS SUBMITTED TO A WILDLIFE DIAGNOSTIC LABORATORY (SOUTHEASTERN COOPERATIVE WILDLIFE DISEASE STUDY, USA): A 36-YEAR RETROSPECTIVE ANALYSIS. J Wildl Dis 2016; 52:441-58. [PMID: 27187034 DOI: 10.7589/2015-05-117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine the relative importance of mortality factors for birds and to assess for patterns in avian mortality over time, we retrospectively examined data of birds submitted to the Southeastern Cooperative Wildlife Disease Study (SCWDS; http://vet.uga.edu/scwds ), US, from 1976 to 2012. During this period, SCWDS, a wildlife diagnostic laboratory, received 2,583 wild bird specimens, from the taxonomic orders Apodiformes, Caprimulgiformes, Cuculiformes, Passeriformes, and Piciformes, originating from 22 states. Data from 2,001 of these birds were analyzed using log-linear models to explore correlations between causes of mortality, taxonomic family, demography, geographic location, and seasonality. Toxicosis was the major cause of mortality, followed by trauma, bacterial infection, physiologic stress, viral infection, and other (mortality causes with low sample numbers and etiologies inconsistent with established categories). Birds submitted during fall and winter had a higher frequency of parasitic infections, trauma, and toxicoses, whereas birds submitted during the spring and summer were more likely to die of an infectious disease, physiologic stress, or trauma. We noted a decrease in toxicoses concurrent with an increase in bacterial infections and trauma diagnoses after the mid-1990s. Toxicosis was the most commonly diagnosed cause of death among adult birds; the majority of juveniles died from physiologic stress, trauma, or viral infections. Infectious agents were diagnosed more often within the families Cardinalidae and Fringilidae, whereas noninfectious etiologies were the primary diagnoses in the Bombycillidae, Parulidae, Sturnidae, Turdidae, and Icteridae. There are important inherent limitations in the examination of data from diagnostic labs, as submission of cases varies in timing, frequency, location, and species and is often influenced by several factors, including media coverage of high-profile mortality events. Notwithstanding, our data provide a rare opportunity to examine long-term, regional, and temporal patterns in causes of avian mortality, and they allow for the analysis of novel and rare mortality factors.
Collapse
|
6
|
Krawiec M, Kuczkowski M, Kruszewicz AG, Wieliczko A. Prevalence and genetic characteristics of Salmonella in free-living birds in Poland. BMC Vet Res 2015; 11:15. [PMID: 25636375 PMCID: PMC4316766 DOI: 10.1186/s12917-015-0332-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background Salmonella species are widespread in the environment, and occur in cattle, pigs, and birds, including poultry and free-living birds. In this study, we determined the occurrence of Salmonella in different wild bird species in Poland, focusing on five Salmonella serovars monitored in poultry by the European Union: Salmonella serovars Enteritidis, Typhimurium, Infantis, Virchow, and Hadar. We characterized their phenotypic and genetic variations. Isolates were classified into species and subspecies of the genus Salmonella with a polymerase chain reaction (PCR) assay. The prevalence of selected virulence genes (spvB, spiA, pagC, cdtB, msgA, invA, sipB, prgA, spaN, orgA, tolC, ironN, sitC, ipfC, sifA, sopB, and pefA) among the isolated strains was determined. We categorized all the Salmonella ser. Typhimurium strains with enterobacterial repetitive intergenic consensus (ERIC)-PCR. Results Sixty-four Salmonella isolates were collected from 235 cloacal swabs, 699 fecal samples, and 66 tissue samples (6.4% of 1000 samples) taken from 40 different species of wild birds in Poland between September 2011 and August 2013. The largest numbers of isolates were collected from Eurasian siskin and greenfinch: 33.3% positive samples for both. The collected strains belonged to one of three Salmonella subspecies: enterica (81.25%), salamae (17.19%), or houtenae (1.56%). Eighteen strains belonged to Salmonella ser. Typhimurium (28.13%), one to ser. Infantis (1.56%), one to ser. Virchow (1.56%), and one to ser. Hadar (1.56%). All isolates contained spiA, msgA, invA, lpfC, and sifA genes; 94.45% of isolates also contained sitC and sopB genes. None of the Salmonella ser. Typhimurium strains contained the cdtB gene. The one Salmonella ser. Hadar strain contained all the tested genes, except spvB and pefA; the one Salmonella ser. Infantis strain contained all the tested genes, except tspvB, pefA, and cdtB; and the one Salmonella ser. Virchow strain contained all the tested genes, except spvB, pefA, cdtB, and tolC. The Salmonella ser. Typhimurium strains varied across the same host species, but similarity was observed among strains isolated from the same environment (e.g., the same bird feeder or the same lake). Conclusions Our results confirm that some wild avian species are reservoirs for Salmonella serotypes, especially Salmonella ser. Typhimurium.
Collapse
Affiliation(s)
- Marta Krawiec
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland.
| | - Maciej Kuczkowski
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland.
| | | | - Alina Wieliczko
- Department of Epizootiology and Clinic of Bird and Exotic Animals, Faculty of Veterinary Medicine, Wrocław University of Environmental and Life Sciences, Pl. Grunwaldzki 45, 50-366, Wrocław, Poland.
| |
Collapse
|
7
|
Hoque MA, Burgess GW, Cheam AL, Skerratt LF. Epidemiology of avian influenza in wild aquatic birds in a biosecurity hotspot, North Queensland, Australia. Prev Vet Med 2015; 118:169-81. [DOI: 10.1016/j.prevetmed.2014.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 11/06/2014] [Accepted: 11/11/2014] [Indexed: 11/29/2022]
|
8
|
Wei B, Cha SY, Kang M, Park IJ, Moon OK, Park CK, Jang HK. Development and application of a multiplex PCR assay for rapid detection of 4 major bacterial pathogens in ducks. Poult Sci 2013; 92:1164-70. [DOI: 10.3382/ps.2012-02823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|