1
|
Visvanathan N, Lim JYA, Chng HT, Xie S. A Critical Review on the Dosing and Safety of Antifungals Used in Exotic Avian and Reptile Species. J Fungi (Basel) 2023; 9:810. [PMID: 37623581 PMCID: PMC10455840 DOI: 10.3390/jof9080810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
Antifungals are used in exotic avian and reptile species for the treatment of fungal diseases. Dose extrapolations across species are common due to lack of species-specific pharmacological data. This may not be ideal because interspecies physiological differences may result in subtherapeutic dosing or toxicity. This critical review aims to collate existing pharmacological data to identify antifungals with the most evidence to support their safe and effective use. In the process, significant trends and gaps are also identified and discussed. An extensive search was conducted on PubMed and JSTOR, and relevant data were critically appraised. Itraconazole or voriconazole showed promising results in Japanese quails, racing pigeons and inland bearded dragons for the treatment of aspergillosis and CANV-related infections. Voriconazole neurotoxicity manifested as seizures in multiple penguins, but as lethargy or torticollis in cottonmouths. Itraconazole toxicity was predominantly hepatotoxicity, observed as liver abnormalities in inland bearded dragons and a Parson's chameleon. Differences in formulations of itraconazole affected various absorption parameters. Non-linearities in voriconazole due to saturable metabolism and autoinduction showed opposing effects on clearance, especially in multiple-dosing regimens. These differences in pharmacokinetic parameters across species resulted in varying elimination half-lives. Terbinafine has been used in dermatomycoses, especially in reptiles, due to its keratinophilic nature, and no significant adverse events were observed. The use of fluconazole has declined due to resistance or its narrow spectrum of activity.
Collapse
Affiliation(s)
- Naresh Visvanathan
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore
| | - Jolise Yi An Lim
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore
| | - Hui Ting Chng
- Department of Pharmacy, National University of Singapore, Singapore 117559, Singapore
| | - Shangzhe Xie
- Mandai Wildlife Group, 80 Mandai Lake Road, Singapore 729826, Singapore
| |
Collapse
|
2
|
Gamaletsou MN, Rammaert B, Brause B, Bueno MA, Dadwal SS, Henry MW, Katragkou A, Kontoyiannis DP, McCarthy MW, Miller AO, Moriyama B, Pana ZD, Petraitiene R, Petraitis V, Roilides E, Sarkis JP, Simitsopoulou M, Sipsas NV, Taj-Aldeen SJ, Zeller V, Lortholary O, Walsh TJ. Osteoarticular Mycoses. Clin Microbiol Rev 2022; 35:e0008619. [PMID: 36448782 PMCID: PMC9769674 DOI: 10.1128/cmr.00086-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Osteoarticular mycoses are chronic debilitating infections that require extended courses of antifungal therapy and may warrant expert surgical intervention. As there has been no comprehensive review of these diseases, the International Consortium for Osteoarticular Mycoses prepared a definitive treatise for this important class of infections. Among the etiologies of osteoarticular mycoses are Candida spp., Aspergillus spp., Mucorales, dematiaceous fungi, non-Aspergillus hyaline molds, and endemic mycoses, including those caused by Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species. This review analyzes the history, epidemiology, pathogenesis, clinical manifestations, diagnostic approaches, inflammatory biomarkers, diagnostic imaging modalities, treatments, and outcomes of osteomyelitis and septic arthritis caused by these organisms. Candida osteomyelitis and Candida arthritis are associated with greater events of hematogenous dissemination than those of most other osteoarticular mycoses. Traumatic inoculation is more commonly associated with osteoarticular mycoses caused by Aspergillus and non-Aspergillus molds. Synovial fluid cultures are highly sensitive in the detection of Candida and Aspergillus arthritis. Relapsed infection, particularly in Candida arthritis, may develop in relation to an inadequate duration of therapy. Overall mortality reflects survival from disseminated infection and underlying host factors.
Collapse
Affiliation(s)
- Maria N. Gamaletsou
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Blandine Rammaert
- Université de Poitiers, Faculté de médecine, CHU de Poitiers, INSERM U1070, Poitiers, France
| | - Barry Brause
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Marimelle A. Bueno
- Far Eastern University-Dr. Nicanor Reyes Medical Foundation, Manilla, Philippines
| | | | - Michael W. Henry
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Aspasia Katragkou
- Nationwide Children’s Hospital, Columbus, Ohio, USA
- The Ohio State University School of Medicine, Columbus, Ohio, USA
| | | | - Matthew W. McCarthy
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
| | - Andy O. Miller
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
| | | | - Zoi Dorothea Pana
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Ruta Petraitiene
- Weill Cornell Medicine of Cornell University, New York, New York, USA
| | | | - Emmanuel Roilides
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | | | - Maria Simitsopoulou
- Hippokration General Hospital, Aristotle University School of Health Sciences, Thessaloniki, Greece
- Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece
| | - Nikolaos V. Sipsas
- Laiko General Hospital of Athens and Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Valérie Zeller
- Groupe Hospitalier Diaconesses-Croix Saint-Simon, Paris, France
| | - Olivier Lortholary
- Université de Paris, Faculté de Médecine, APHP, Hôpital Necker-Enfants Malades, Paris, France
- Institut Pasteur, Unité de Mycologie Moléculaire, CNRS UMR 2000, Paris, France
| | - Thomas J. Walsh
- Hospital for Special Surgery, Weill Cornell Medicine, New York, New York, USA
- Weill Cornell Medicine of Cornell University, New York, New York, USA
- New York Presbyterian Hospital, New York, New York, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, Virginia, USA
| |
Collapse
|
3
|
Galosi L, Falcaro C, Danesi P, Zanardello C, Berardi S, Biagini L, Attili AR, Rossi G. Atypical Mycosis in Psittacine Birds: A Retrospective Study. Front Vet Sci 2022; 9:883276. [PMID: 35647088 PMCID: PMC9135461 DOI: 10.3389/fvets.2022.883276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
A retrospective study was conducted on parrots submitted from necropsy to the Department of Veterinary Pathology, School of Biosciences and Veterinary, University of Camerino, Italy, from 2007 to 2018. From a total of 2,153 parrots examined at post-mortem, four cases were diagnosed with atypical mycosis and were considered for determination of the fungus species by PCR. A Fischer's lovebird (Agapornis fischeri), Peach-faced lovebirds (Agapornis roseicollis), and two Blue and Gold Macaws (Ara ararauna) from four different aviaries died after some days of lethargy and ruffled feathers. Records of gross necropsy and histopathological exams (H&E, PAS, and Grocott stain) were described and biomolecular analyses were carried out. No specific gross lesions were appreciated at necropsy, while histopathology evidenced a systemic mycosis in several organs, particularly in the lungs. In affected organs, broad and non-septate hyphae, suggestive of mycoses, were observed. Molecularly, Mucor racemosus (Fischer's lovebird) and M. circinelloides (Peach-faced lovebirds) were identified from formalin-fixed and paraffin-embedded (FFPE) lung and liver tissue. In addition, Alternaria alternata and Fusicladium spp. (respectively in male and female Blue and Gold macaws) were identified in FFPE tissue from several organs; whereas the role of Mucor spp. as true pathogens is well-demonstrated, and the behavior of A. alternata and Fusicladium spp. in macaws as opportunistic pathogens have been discussed. To our knowledge, this report is the first one reporting mucormycosis caused by M. racemosus and M. circinelloides in lovebirds, and A. alternata and Fusicladium spp. in macaws.
Collapse
Affiliation(s)
- Livio Galosi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
- *Correspondence: Livio Galosi
| | - Christian Falcaro
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Patrizia Danesi
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Claudia Zanardello
- Laboratory of Parasitology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Sara Berardi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Lucia Biagini
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Anna-Rita Attili
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica, Italy
| |
Collapse
|
4
|
Tang M, Huang J, Zeng W, Huang Y, Lei Y, Qiu Y, Zhang J. Retrospective Analysis of 10 Cases of Disseminated Nontuberculous Mycobacterial Disease with Osteolytic Lesions. Infect Drug Resist 2021; 14:4667-4679. [PMID: 34785914 PMCID: PMC8590513 DOI: 10.2147/idr.s337956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/26/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Disseminated nontuberculous mycobacterial (DNTM) infection can involve multiple organs, including the lungs, skin and soft tissues and lymph nodes. However, NTM infection leading to osteolysis has been rarely reported. Here, we analyzed the clinical features, osteolytic mechanisms, treatment and prognosis of patients with DNTM disease with osteolytic lesions. Patients and Methods This retrospective study was conducted between January 1, 2011, and December 31, 2020, at the First Affiliated Hospital of Guangxi Medical University and the Fourth People’s Hospital of Nanning City. Patients who had culture and/or histopathological proof of DNTM disease with osteolytic lesions were included. Results Ten HIV-negative patients with DNTM disease with osteolytic lesions were enrolled. Five of these patients had underlying diseases. Seven and three of the patients were positive and negative for anti-interferon-γ autoantibodies (AIGAs), respectively. The AIGA positivity rate was 70% (7/10). Ostealgia and anemia were the most common symptoms, followed by fever, emaciation, cough, expectoration, anorexia, subcutaneous abscesses and lymphadenopathy. Leukocyte and neutrophil counts were increased. The most common sites were the vertebrae, sternum, clavicle and ribs, although the femur, ilium, humerus, and scapula were also involved. Radiography and computed tomography (CT) showed moth-eaten or irregular destruction of bone, bone defects, pathological fracture, periosteal proliferation and surrounding abscesses. Emission CT (ECT) bone scans showed significantly increased uptake in many skeletal regions. Positron emission tomography(PET)/CT showed metabolic activity in multiple bones. All patients received anti-nontuberculous therapy, and five underwent surgery. Two died during treatment. Conclusion DNTM infection of bone and leading to osteolysis usually occurs in patients with AIGA-positive antibodies. DNTM disease with osteolysis is characterized by increased leukocytes and neutrophil counts, focal suppurative granulomas, and multiple areas with moth-eaten or irregular destruction of bone with increased radioactive concentrations. Early diagnosis and timely, effective combination anti-NTM therapy can improve the prognosis.
Collapse
Affiliation(s)
- Mengxin Tang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jie Huang
- Department of Tuberculosis Ward, Nanning Fourth People's Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Wen Zeng
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Yanmei Huang
- Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, People's Republic of China
| | - Yaoqiang Lei
- Department of Infectious Diseases, Yongning District People's Hospital, Nanning, Guangxi, 530021, People's Republic of China
| | - Ye Qiu
- Department of Comprehensive Internal Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China
| | - Jianquan Zhang
- Department of Respiratory and Critical Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Guangxi Medical University, Nanning, Guangxi, 530021, People's Republic of China.,Department of Respiratory and Critical Medicine, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, 518000, People's Republic of China
| |
Collapse
|
5
|
Martínez-Pérez PA, Fleming PA, Hyndman TH. Isolation of Cryptococcus neoformans var. grubii (serotype A) and C. magnus from the nasal lining of free-ranging quokkas (Setonix brachyurus). Aust Vet J 2020; 98:610-615. [PMID: 32935332 DOI: 10.1111/avj.13019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 08/03/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Cryptococcus species are environmental yeasts, with a worldwide distribution and remarkable environmental adaptation. Although many species do not cause disease, C. neoformans and C. gattii are causative agents of cryptococcosis, a life threatening infection and a significant public health problem worldwide. Infection especially affects immunocompromised animals and humans. In wildlife, cryptococcosis appears to be more prevalent in captive populations. The objective of this study was to assess whether apparently healthy quokkas (Setonix brachyurus) harbor Cryptococcus spp. Using cultural and molecular methods, we studied yeasts isolated from nasal swabs collected from 130 free-ranging quokkas on Rottnest Island (RI, n = 97) and the mainland (n = 33) of Western Australia. Unspeciated Cryptococcus spp. (from four quokkas), C. neoformans var. grubii (serotype A) (two quokkas) and C. magnus (one quokka) were isolated from the nasal lining of apparently healthy quokkas from RI. Cryptococcus neoformans var. grubii was isolated from animals captured in a human-populated area on RI. There was no significant effect of the presence of Cryptococcus on the results of haematology, blood chemistry, peripheral blood cell morphology or clinical examination. To the best of our knowledge, this is the first documented isolation of C. neoformans var. grubii (serotype A) and C. magnus in a free-ranging macropod in Western Australia. The public health implications of this finding should be further explored.
Collapse
Affiliation(s)
- P A Martínez-Pérez
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - P A Fleming
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - T H Hyndman
- Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia.,School of Veterinary Medicine, Murdoch University, Murdoch, Western Australia, 6150, Australia
| |
Collapse
|
6
|
Bond R, Morris DO, Guillot J, Bensignor EJ, Robson D, Mason KV, Kano R, Hill PB. Biology, diagnosis and treatment of Malassezia dermatitis in dogs and cats Clinical Consensus Guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2020; 31:28-74. [PMID: 31957204 DOI: 10.1111/vde.12809] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The genus Malassezia is comprised of a group of lipophilic yeasts that have evolved as skin commensals and opportunistic cutaneous pathogens of a variety of mammals and birds. OBJECTIVES The objective of this document is to provide the veterinary community and other interested parties with current information on the ecology, pathophysiology, diagnosis, treatment and prevention of skin diseases associated with Malassezia yeasts in dogs and cats. METHODS AND MATERIAL The authors served as a Guideline Panel (GP) and reviewed the literature available prior to October 2018. The GP prepared a detailed literature review and made recommendations on selected topics. The World Association of Veterinary Dermatology (WAVD) Clinical Consensus Guideline committee provided guidance and oversight for this process. The document was presented at two international meetings of veterinary dermatology societies and one international mycology workshop; it was made available for comment on the WAVD website for a period of six months. Comments were shared with the GP electronically and responses incorporated into the final document. CONCLUSIONS AND CLINICAL IMPORTANCE There has been a remarkable expansion of knowledge on Malassezia yeasts and their role in animal disease, particularly since the early 1990's. Malassezia dermatitis in dogs and cats has evolved from a disease of obscurity and controversy on its existence, to now being a routine diagnosis in general veterinary practice. Clinical signs are well recognised and diagnostic approaches are well developed. A range of topical and systemic therapies is known to be effective, especially when predisposing factors are identified and corrected.
Collapse
Affiliation(s)
- Ross Bond
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Daniel O Morris
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 3900 Delancy Street, Philadelphia, PA, 19104, USA
| | - Jacques Guillot
- École nationale vétérinaire d'Alfort, BioPôle Alfort, EA 7380 Dynamyc, UPEC, EnvA, Maisons Alfort, Ile-de-France, France
| | | | - David Robson
- Animal Skin and Ear Specialists, Melbourne Veterinary Specialist Centre, 70 Blackburn Road, Glen Waverley, Victoria, 3150, Australia
| | - Kenneth V Mason
- Dermcare-vet PTY LTD, 7 Centenary Road, Slacks Creek, Queensland, 4127, Australia
| | - Rui Kano
- Department of Veterinary Pathobiology, Nihon University College of Bioresource Sciences, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Peter B Hill
- Department of Veterinary Science, University of Adelaide, Adelaide, South Australia, 5005, Australia
| |
Collapse
|
7
|
Scott G, Field CL, Papich MG, Harms CA. Plasma concentrations of itraconazole following a single oral dose in juvenile California sea lions (Zalophus californianus). J Vet Pharmacol Ther 2020; 43:377-380. [PMID: 32286696 DOI: 10.1111/jvp.12865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/25/2020] [Accepted: 03/19/2020] [Indexed: 11/26/2022]
Abstract
The objective of this study was to establish a single-dose pharmacokinetic profile for orally administered itraconazole in California sea lions (Zalophus californianus). Twenty healthy rehabilitated juvenile California sea lions were included in this study. Itraconazole capsules were administered orally with food at a target dose of 5-10 mg/kg. Blood samples were collected from each animal at 0 hr and at two of the following timepoints: 0.5, 1, 2, 4, 6, 8, 12, 24, 48, and 72 hr. Quantitative analysis of itraconazole in plasma samples was performed by high-performance liquid chromatography. An average maximum concentration of 0.22 µg/ml ± 0.11 was detected 4 hr after administration. The average concentration fell to 0.12 µg/ml ± 0.11 by 6 hr and 0.02 µg/ml ± 0.02 at 12 hr. At no point did concentrations reach 0.5 µg/ml, the concentration commonly accepted for therapeutic efficacy. While this formulation was well tolerated by the sea lions, oral absorption was poor and highly variable among individuals. These data indicate that a single oral dose of itraconazole given as a capsule at 5-10 mg/kg, under the conditions used in this study, does not achieve therapeutic plasma concentrations in California sea lions.
Collapse
Affiliation(s)
- Gregory Scott
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC, USA
| | - Cara L Field
- Veterinary Science Department, The Marine Mammal Center, Sausalito, CA, USA
| | - Mark G Papich
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Craig A Harms
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC, USA
| |
Collapse
|
8
|
Schmertmann LJ, Bodley K, Meyer W, Malik R, Krockenberger MB. Multi-locus sequence typing as a tool to investigate environmental sources of infection for cryptococcosis in captive birds. Med Mycol 2019; 57:653-657. [PMID: 30329084 DOI: 10.1093/mmy/myy098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/27/2018] [Accepted: 10/05/2018] [Indexed: 11/12/2022] Open
Abstract
A systematic investigation into environmental sources of infection was conducted at an Australian zoological park after cryptococcosis, caused by Cryptococcus gattii VGI, was diagnosed in a red-tailed black cockatoo (Calyptorhynchus banksii) residing in a large aviary with a diverse range of other avian species. A single tree with an extensive hollow was identified as the likely source of infection based on heavy culture of C. gattii VGI, multi-locus sequence typing and phylogenetic analysis of environmental and disease-related isolates. This led to the careful removal of the tree to reduce the risk of future cases of cryptococcosis in this aviary.
Collapse
Affiliation(s)
- Laura J Schmertmann
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, The University of Sydney - Westmead Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Kate Bodley
- Zoos Victoria, Parkville, Victoria, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, The University of Sydney - Westmead Clinical School, Faculty of Medicine and Health, Sydney, New South Wales, Australia
- The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
- Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006
| |
Collapse
|
9
|
Greenacre CB, Dowling M, Nobrega-Lee M. Diagnosis and Treatment of Histoplasmosis in a Group of Four Domestic Ferrets (Mustela Putorius Furo) and a Review of Histoplasmosis. J Exot Pet Med 2019. [DOI: 10.1053/j.jepm.2018.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
10
|
Schmertmann LJ, Stalder K, Hudson D, Martin P, Makara M, Meyer W, Malik R, Krockenberger MB. Cryptococcosis in the koala (Phascolarctos cinereus): pathogenesis and treatment in the context of two atypical cases. Med Mycol 2019. [PMID: 29529308 DOI: 10.1093/mmy/myx146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Disseminated cryptococcosis caused by Cryptococcus gattii (molecular type VGI) was diagnosed in an adult free-ranging female koala (Phascolarctos cinereus). Subclinical cryptococcosis was later diagnosed in this koala's joey. In the adult koala, a pathological fracture of the tibia was associated with the bone lysis of marked focal cryptococcal osteomyelitis. Limb-sparing orthopedic intervention, in the setting of disseminated cryptococcosis, was judged to have a poor prognosis, and the adult koala was euthanized. The joey was removed and hand-reared. Serological testing revealed persistent and increasing cryptococcal capsular antigenemia in the absence of clinical signs of disease and it was subsequently treated with oral fluconazole for approximately 16 months, rehabilitated and released into the wild. It was sighted 3 months post-release in a good state of health and again at 18 months post-release but was not recaptured on either occasion. This is the first published report of cryptococcal appendicular osteomyelitis in a koala. It is also the first report of concurrent disease in a dependent juvenile and the successful treatment of subclinical cryptococcosis to full resolution of the cryptococcal antigenemia in a free-ranging koala. This paper provides a discussion of cryptococcal osteomyelitis in animals, host-pathogen-environment interactions and treatment and monitoring protocols for cryptococcosis in koalas. Published reports describing the treatment of cryptococcosis in koalas are also collated and summarised.
Collapse
Affiliation(s)
- Laura J Schmertmann
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Kathryn Stalder
- Noah's Ark Veterinary Services, Nelson Bay, New South Wales, Australia
| | - Donald Hudson
- Noah's Ark Veterinary Services, Nelson Bay, New South Wales, Australia
| | - Patricia Martin
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006
| | - Mariano Makara
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Westmead Clinical School, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard Malik
- Centre for Veterinary Education, The University of Sydney, Sydney, New South Wales, Australia
| | - Mark B Krockenberger
- Sydney School of Veterinary Science, The University of Sydney, Sydney, New South Wales, Australia.,Veterinary Pathology Diagnostic Services, B14, The University of Sydney, Sydney, New South Wales, Australia 2006.,Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Renschler J, Albers A, Sinclair-Mackling H, Wheat LJ. Comparison of Compounded, Generic, and Innovator-Formulated Itraconazole in Dogs and Cats. J Am Anim Hosp Assoc 2018; 54:195-200. [PMID: 29757665 DOI: 10.5326/jaaha-ms-6591] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The triazole antifungal itraconazole may be cost prohibitive in brand name form; therefore, compounded and generic products are often used as alternatives. Itraconazole blood concentrations have not been studied in clinical patients receiving these formulations. Itraconazole bioassay was performed on serum/plasma from 95 dogs and 20 cats receiving itraconazole (compounded from bulk powder, generic pelletized, or brand name) for systemic mycosis treatment. Mean itraconazole concentration was lower in the compounded group (n = 42) as compared with the generic (n = 40) or brand name (n = 33) groups (0.5 µg/mL versus 8.3 µg/mL and 6.5 µg/mL, respectively; P < .001). No statistical difference was observed between itraconazole concentrations in the generic and brand name groups. Forty animals (95.2%) in the compounded group had subtherapeutic (<1.0 µg/mL) values. All cats in this group (n = 10) had undetectable itraconazole concentrations. Some animals in the generic and brand name groups had subtherapeutic values (12.5 and 12.1%, respectively) or potentially toxic values (>10 µg/mL; 37.5 and 24%, respectively). Compounded itraconazole should be avoided, but generic itraconazole appears to serve as a reasonable alternative to brand name itraconazole. Therapeutic drug monitoring may be beneficial in all cases.
Collapse
|
12
|
Mawby DI, Whittemore JC, Fowler LE, Papich MG. Comparison of absorption characteristics of oral reference and compounded itraconazole formulations in healthy cats. J Am Vet Med Assoc 2018; 252:195-200. [DOI: 10.2460/javma.252.2.195] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Schunk RSK, Sitinas NE, Quesenberry KE, Grodio JL. Multicentric Cryptococcosis in a Congo African Grey Parrot (Psittacus erithacus erithacus). J Avian Med Surg 2017; 31:373-381. [DOI: 10.1647/2017-259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Maccolini ÉO, Dufresne PJ, Aschenbroich SA, McHale B, Fairbrother JH, Bédard C, Hébert JA. A DisseminatedCryptococcus gattiiVGIIa Infection in a Citron-Crested Cockatoo (Cacatua sulphurea citrinocristata) in Québec, Canada. J Avian Med Surg 2017. [DOI: 10.1647/2016-193] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Demonstration of Therapeutic Equivalence of Fluconazole Generic Products in the Neutropenic Mouse Model of Disseminated Candidiasis. PLoS One 2015; 10:e0141872. [PMID: 26536105 PMCID: PMC4633286 DOI: 10.1371/journal.pone.0141872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/14/2015] [Indexed: 11/25/2022] Open
Abstract
Some generics of antibacterials fail therapeutic equivalence despite being pharmaceutical equivalents of their innovators, but data are scarce with antifungals. We used the neutropenic mice model of disseminated candidiasis to challenge the therapeutic equivalence of three generic products of fluconazole compared with the innovator in terms of concentration of the active pharmaceutical ingredient, analytical chemistry (liquid chromatography/mass spectrometry), in vitro susceptibility testing, single-dose serum pharmacokinetics in infected mice, and in vivo pharmacodynamics. Neutropenic, five week-old, murine pathogen free male mice of the strain Udea:ICR(CD-2) were injected in the tail vein with Candida albicans GRP-0144 (MIC = 0.25 mg/L) or Candida albicans CIB-19177 (MIC = 4 mg/L). Subcutaneous therapy with fluconazole (generics or innovator) and sterile saline (untreated controls) started 2 h after infection and ended 24 h later, with doses ranging from no effect to maximal effect (1 to 128 mg/kg per day) divided every 3 or 6 hours. The Hill’s model was fitted to the data by nonlinear regression, and results from each group compared by curve fitting analysis. All products were identical in terms of concentration, chromatographic and spectrographic profiles, MICs, mouse pharmacokinetics, and in vivo pharmacodynamic parameters. In conclusion, the generic products studied were pharmaceutically and therapeutically equivalent to the innovator of fluconazole.
Collapse
|
16
|
Qiu Y, Zhang J, Liu G, Zhong X, Deng J, He Z, Jing B. Retrospective analysis of 14 cases of disseminated Penicillium marneffei infection with osteolytic lesions. BMC Infect Dis 2015; 15:47. [PMID: 25656710 PMCID: PMC4322545 DOI: 10.1186/s12879-015-0782-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Penicillium marneffei disseminates hematogenously and can infect most organs, though infection leading to osteolysis is extremely rare. We describe the clinical and laboratory features, management, and outcomes of patients with penicilliosis marneffei (PSM) with osteolytic lesions. METHODS This retrospective study was conducted between January 1, 2003 and May 1, 2014 at the First Affiliated Hospital of Guangxi Medical University. Patients who presented with culture and/or histopathologic proof of disseminated PSM within osteolytic lesions were included. RESULTS P. marneffei infection was diagnosed in 100 patients (65 HIV-infected and 35 HIV-negative). Fourteen patients, all HIV-negative, (14/35, 40%) had osteolytic lesions. The most common comorbidity was diabetes mellitus, though previous glucocorticoid therapy, β-thalassemia, breast cancer, and Langerhans cell histiocytosis also occurred. Five patients had no comorbidity. Fever, malaise, ostealgia, weight loss, and anemia were the most common symptoms, followed by cutaneous lesions, lymphadenopathy, hepatosplenomegaly, cough, sputum, and stethalgia. Ostealgia, joint pain, and joint disorders were also recorded. White blood cell and neutrophil counts were increased (mean 22.3 ± 7.4 × 10(9) cells/L; mean 18.84 ± 4.5 × 10(9) cells/L, respectively). The most common sites were the vertebrae, skull and femur, ribs and ilium, though the clavicle, scapula, humerus, and tibia were also involved. Radiography and computed tomography (CT) showed multiple radiolucencies with moth-eaten bone destruction, periosteal proliferation, bone fracture, and surrounding soft-tissue swelling. Emission CT showed significantly increased uptake in many skeletal regions. Positron emission tomography/CT showed generalized lymphadenopathy, bone metabolic activity, and bone destruction. The (18) F-FDG standard uptake value was increased in the entire skeleton (mean 6.16). Twelve patients received antifungal therapy, four of whom died during treatment, and eight recovered, though four of these eight relapsed within 3-24 months. Two patients discontinued treatment because of severe multiple organ failure and died. CONCLUSIONS Osteolysis is often overlooked in HIV-negative individuals with disseminated P. marneffei infection. However, P. marneffei involving the bone and leading to osteolysis may indicate severe systemic disturbance, and is characterized by a poor prognosis, high recurrence rate, and the need for prolonged antifungal treatment.
Collapse
Affiliation(s)
- Ye Qiu
- Department of Integrated Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Jianquan Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Guangnan Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Xiaoning Zhong
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Jingmin Deng
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Zhiyi He
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Bai Jing
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|