1
|
Tóth AV, Berta P, Harrach B, Ursu K, Jejesky de Oliveira AP, Vicentini F, Rossi JL, Papp T, Kaján GL. Discovery of the first sea turtle adenovirus and turtle associated circoviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 125:105677. [PMID: 39362392 DOI: 10.1016/j.meegid.2024.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Turtles are an evolutionarily unique and morphologically distinctive order of reptiles, and many species are globally endangered. Although a high diversity of adenoviruses in scaled reptiles is well-documented, turtle adenoviruses remain largely understudied. To investigate their molecular diversity, we focused on the identification and characterisation of adenoviruses in turtle-derived organ, swab and egg samples. Since reptile circoviruses have been scarcely reported and no turtle circoviruses have been documented to date, we also screened our samples for circoviruses. Host-virus coevolution is a common feature of these viral families, so we aimed to investigate possible signs of this as well. Two screening projects were conducted: one on Brazilian samples collected from animals in their natural habitat, and the other on Hungarian pet shop samples. Nested PCR systems were used for the detection of adeno- and circoviruses and purified PCR products were Sanger sequenced. Phylogenetic trees for the viruses were reconstructed based on the adenoviral DNA polymerase and hexon genes, circoviral Rep genes, and for the turtle hosts based on mitochondrial cytochrome b amino acid sequences. During the screening, testadeno-, siadeno-, and circovirus strains were detected. The circovirus strains were classified into the genus Circovirus, exhibiting significant evolutionary divergence but forming a monophyletic clade within a group of fish circoviruses. The phylogenetic tree of turtles reflected their taxonomic relationships, showing a deep bifurcation between suborders and distinct monophyletic clades corresponding to families. A similar clustering pattern was observed among the testadenovirus strains in their phylogenetic tree. As a result, this screening of turtle samples revealed at least three new testadenoviruses, including the first sea turtle adenovirus, evidence of coevolution between testadenoviruses and their hosts, and the first turtle associated circoviruses. These findings underscore the need for further research on viruses in turtles, and more broadly in reptiles, to better understand their viral diversity and the evolutionary processes shaping host-virus interactions.
Collapse
Affiliation(s)
- Alexandra V Tóth
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungária krt. 21, Hungary.
| | - Péter Berta
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungária krt. 21, Hungary
| | - Balázs Harrach
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungária krt. 21, Hungary.
| | - Krisztina Ursu
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, 1143 Budapest, Tábornok u. 2, Hungary.
| | - Ana Paula Jejesky de Oliveira
- Laboratory of Wildlife Health, Department of Ecosystem Ecology, University of Vila Velha, 29102-920 Vila Velha, Espírito Santo, Av. Comissário José Dantas de Melo 21, Boa Vista, Brazil
| | - Fernando Vicentini
- Health Sciences Center, Federal University of Recôncavo da Bahia, 44574-490 Santo Antônio de Jesus, Bahia, Avenida Carlos Amaral, 1015, Brazil.
| | - João Luiz Rossi
- Laboratory of Wildlife Health, Department of Ecosystem Ecology, University of Vila Velha, 29102-920 Vila Velha, Espírito Santo, Av. Comissário José Dantas de Melo 21, Boa Vista, Brazil
| | - Tibor Papp
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungária krt. 21, Hungary
| | - Győző L Kaján
- HUN-REN Veterinary Medical Research Institute, 1143 Budapest, Hungária krt. 21, Hungary.
| |
Collapse
|
2
|
El-Shall NA, El-Hamid HSA, Elkady MF, Ellakany HF, Elbestawy AR, Gado AR, Geneedy AM, Hasan ME, Jaremko M, Selim S, El-Tarabily KA, El-Hack MEA. Epidemiology, pathology, prevention, and control strategies of inclusion body hepatitis and hepatitis-hydropericardium syndrome in poultry: A comprehensive review. Front Vet Sci 2022; 9:963199. [PMID: 36304412 PMCID: PMC9592805 DOI: 10.3389/fvets.2022.963199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/15/2022] [Indexed: 11/04/2022] Open
Abstract
Infection with fowl adenoviruses (FAdVs) can result in a number of syndromes in the production of chicken, including inclusion body hepatitis (IBH), hepatitis-hydropericardium syndrome (HHS), and others, causing enormous economic losses around the globe. FAdVs are divided into 12 serotypes and five species (A-E; 1-8a and 8b-11). Most avian species are prone to infection due to the widespread distribution of FAdV strains. The genus aviadenovirus, which is a member of the adenoviridae family, is responsible for both IBH and HHS. The most popular types of transmission are mechanical, vertical, and horizontal. Hepatitis with basophilic intranuclear inclusion bodies distinguishes IBH, but the buildup of translucent or straw-colored fluid in the pericardial sac distinguishes HHS. IBH and HHS require a confirmatory diagnosis because their clinical symptoms and postmortem abnormalities are not unique to those conditions. Under a microscope, the presence of particular lesions and inclusion bodies may provide clues. Traditional virus isolation in avian tissue culture is more delicate than in avian embryonated eggs. Additionally, aviadenovirus may now be quickly and precisely detected using molecular diagnostic tools. Preventive techniques should rely on efficient biosecurity controls and immunize breeders prior to production in order to protect progeny. This current review gives a general overview of the current local and global scenario of IBH, and HHS brought on by FAdVs and covers both their issues and preventative vaccination methods.
Collapse
Affiliation(s)
- Nahed A. El-Shall
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Hatem S. Abd El-Hamid
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Magdy F. Elkady
- Poultry Disease Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Hany F. Ellakany
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed R. Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Ahmed R. Gado
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Amr M. Geneedy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Mohamed E. Hasan
- Bioinformatic Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, El Sadat City, Egypt
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | | |
Collapse
|
3
|
Kraberger S, Oswald SA, Arnold JM, Schmidlin K, Custer JM, Levi G, Benkő M, Harrach B, Varsani A. Novel adenovirus associated with common tern (Sterna hirundo) chicks. Arch Virol 2022; 167:659-663. [DOI: 10.1007/s00705-021-05324-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
|
4
|
Gainor K, Becker AAMJ, Malik YS, Ghosh S. First Report on Detection and Molecular Characterization of Adenoviruses in the Small Indian Mongoose ( Urva auropunctata). Viruses 2021; 13:v13112194. [PMID: 34835000 PMCID: PMC8622525 DOI: 10.3390/v13112194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
Using a broad-range nested PCR assay targeting the DNA-dependent DNA polymerase (pol) gene, we detected adenoviruses in 17 (20.48%) out of 83 fecal samples from small Indian mongooses (Urva auropunctata) on the Caribbean island of St. Kitts. All 17 PCR amplicons were sequenced for the partial pol gene (~300 bp, hereafter referred to as Mon sequences). Fourteen of the 17 Mon sequences shared maximum homology (98.3-99.6% and 97-98.9% nucleotide (nt) and deduced amino acid (aa) sequence identities, respectively) with that of bovine adenovirus-6 (species Bovine atadenovirus E). Mongoose-associated adenovirus Mon-39 was most closely related (absolute nt and deduced aa identities) to an atadenovirus from a tropical screech owl. Mon-66 shared maximum nt and deduced aa identities of 69% and 71.4% with those of atadenoviruses from a spur-thighed tortoise and a brown anole lizard, respectively. Phylogenetically, Mon-39 and Mon-66 clustered within clades that were predominated by atadenoviruses from reptiles, indicating a reptilian origin of these viruses. Only a single mongoose-associated adenovirus, Mon-34, was related to the genus Mastadenovirus. However, phylogenetically, Mon-34 formed an isolated branch, distinct from other mastadenoviruses. Since the fecal samples were collected from apparently healthy mongooses, we could not determine whether the mongoose-associated adenoviruses infected the host. On the other hand, the phylogenetic clustering patterns of the mongoose-associated atadenoviruses pointed more towards a dietary origin of these viruses. Although the present study was based on partial pol sequences (~90 aa), sequence identities and phylogenetic analysis suggested that Mon-34, Mon-39, and Mon-66 might represent novel adenoviruses. To our knowledge, this is the first report on the detection and molecular characterization of adenoviruses from the mongoose.
Collapse
Affiliation(s)
- Kerry Gainor
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Anne A. M. J. Becker
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
| | - Yashpal S. Malik
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Science University, 141004 Ludhiana, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, P.O. Box 334, 00265 Basseterre, St. Kitts and Nevis, West Indies; (K.G.); (A.A.M.J.B.)
- Correspondence: or ; Tel.: +1-(869)-4654161 (ext. 401-1202)
| |
Collapse
|
5
|
Donald HCF, Foster J, Wilkinson JW, Hill P, Barber M, Mee G, Edgar P, Marschang RE, Sainsbury AW. Two Novel Adenoviruses in Free-Living British lizards. ECOHEALTH 2021; 18:297-300. [PMID: 34613507 DOI: 10.1007/s10393-021-01560-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 08/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
In this study, we describe two novel adenoviruses isolated from (i) a common lizard (Zootoca vivipara) found dead and examined post-mortem and (ii) pooled samples from free-living sand lizards (Lacerta agilis agilis). Sequencing indicated the two were closely related atadenovirus strains which were distinct from previously recorded adenoviruses in lizards. Adenoviruses are not always associated with disease in squamates, but morbidity and mortality have been reported. These are the first known cases of adenovirus infection in free-living native British lizards, and further monitoring will be necessary to elucidate the implications of these possible pathogens for vulnerable populations of native reptiles.
Collapse
Affiliation(s)
- Helen C F Donald
- Institute of Zoology, Zoological Society of London, Outer Circle, Regents Park, London, NW1 4RY, England.
| | - Jim Foster
- Amphibian and Reptile Conservation, 744 Christchurch Road, Boscombe, Bournemouth, Dorset, BH7 6BZ, England
| | - John W Wilkinson
- Amphibian and Reptile Conservation, 744 Christchurch Road, Boscombe, Bournemouth, Dorset, BH7 6BZ, England
| | - Peter Hill
- Amphibian and Reptile Conservation, 744 Christchurch Road, Boscombe, Bournemouth, Dorset, BH7 6BZ, England
| | - Mark Barber
- Amphibian and Reptile Conservation, 744 Christchurch Road, Boscombe, Bournemouth, Dorset, BH7 6BZ, England
| | - George Mee
- Amphibian and Reptile Conservation, 744 Christchurch Road, Boscombe, Bournemouth, Dorset, BH7 6BZ, England
| | - Paul Edgar
- Formerly Natural England, Now Amphibian and Reptile Conservation, 744 Christchurch Road, Boscombe, Bournemouth, Dorset, BH7 6BZ, England
| | | | - Anthony W Sainsbury
- Institute of Zoology, Zoological Society of London, Outer Circle, Regents Park, London, NW1 4RY, England
| |
Collapse
|