1
|
Guzman A, Miller O, Gabor CR. Elevated water temperature initially affects reproduction and behavior but not cognitive performance or physiology in Gambusia affinis. Gen Comp Endocrinol 2023; 340:114307. [PMID: 37172618 DOI: 10.1016/j.ygcen.2023.114307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023]
Abstract
Warming temperatures associated with climate change and urbanization affect both terrestrial and aquatic populations with freshwater fish being especially vulnerable. As fish rely on water temperature to regulate their body temperature, elevated temperatures can alter physiology and in turn behavioral and cognitive skills. We examined whether reproduction, physiology, behavior, and cognitive skills were altered by exposure to elevated water temperatures during one reproductive cycle in the live-bearing fish, Gambusia affinis. We found that within four days of exposure to a higher temperature (31°C), females were more likely to drop underdeveloped offspring than females maintained at 25°C. However, females did not show a change in cortisol release rates over time or altered fecundity and reproductive allotment, despite increased growth at the higher temperature. But in the heat treatment fish that started the experiment with higher baseline cortisol dropped their offspring sooner than fish with lower cortisol release rates. We used a detour test to explore behavior and cognitive skills at three time points after exposure to the heat treatments: early, midway, and at the end (day 7, 20 and 34). We found that on day 7, females were less likely to exit the starting chamber when maintained at 31°C but did not differ in their time to exit the starting chamber or in their motivation (reach the clear barrier). Similarly, females did not differ in their time to swim around the barrier to reach a female fish reward (solving skill). Nonetheless, we found a link between behavior and cognition, where females who were slower to exit the start chamber got around the barrier faster, indicating that they learned from prior experience. Together our results indicate that G. affinis is initially affected by elevated water temperatures but may partially cope with higher temperatures by not altering their hypothalamus-interrenal axis (baseline cortisol), and at the same time this might act to buffer their young. Acclimation may reduce costs for this species and potentially explain why they are successful invaders and tolerant species despite climate change.
Collapse
Affiliation(s)
- Alex Guzman
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States; The Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| | - Olivia Miller
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States; The Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666 United States
| | - Caitlin R Gabor
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 United States; The Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive, San Marcos, TX 78666 United States.
| |
Collapse
|
2
|
Pereira AC, Nardoto GB, Colli GR. Sources of intraspecific variation in the isotopic niche of a semi-aquatic predator in a human-modified landscape. PeerJ 2023; 11:e15915. [PMID: 37663285 PMCID: PMC10474837 DOI: 10.7717/peerj.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Intraspecific variation modulates patterns of resource use by species, potentially affecting the structure and stability of food webs. In human-modified landscapes, habitat disturbance modifies trophic interactions and intraspecific niche variation, impacting population persistence. Here, we investigated the relationship of sex, ontogeny, and habitat factors with the trophic niche of Caiman crocodilus in an agricultural landscape. We evaluated temporal variation in the trophic niche parameters using carbon and nitrogen stable isotope analysis from different body tissues. We found that caimans exploit the same carbon and nitrogen pools through time, with low isotopic variability between seasons, partly due to the slow isotope turnover rates of tissues in crocodilians. Conversely, the trophic niche of caimans varied across habitats, but with no evidence of a difference between natural and anthropogenic habitats. It apparently results from the influence of habitat suitability, connectivity, and caiman movements during the foraging. Our findings highlight the broader niches of juvenile caimans relative to adults, possibly in response of territorialism and opportunistic foraging strategy. Although using similar resources, females had a larger niche than males, probably associated with foraging strategies during nesting. Considering the sex and body size categories, caimans occupied distinct isotopic regions in some habitats, indicating apparent niche segregation. Ontogenetic trophic shifts in the isotopes (δ13C and δ15N) depended on sex, leading to resource partitioning that can potentially reduce intraspecific competition. Decision-makers and stakeholders should consider the trophic dynamics of sex and body size groups for the sustainable management and conservation of caiman populations, which implies in the maintenance of wetland habitats and landscape heterogeneity in the Formoso River floodplain.
Collapse
Affiliation(s)
- André Costa Pereira
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil
| | - Gabriela Bielefeld Nardoto
- Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil
| | - Guarino Rinaldi Colli
- Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
3
|
Ismail S, Farner J, Couper L, Mordecai E, Lyberger K. Temperature and intraspecific variation affect host-parasite interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.24.554680. [PMID: 37662401 PMCID: PMC10473705 DOI: 10.1101/2023.08.24.554680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Parasites play key roles in regulating aquatic ecosystems, yet the impact of climate warming on their ecology and disease transmission remains poorly understood. Isolating the effect of warming is challenging as transmission involves multiple interacting species and potential intraspecific variation in temperature responses of one or more of these species. Here, we leverage a wide-ranging mosquito species and its facultative parasite as a model system to investigate the impact of temperature on host-parasite interactions and disease transmission. We conducted a common garden experiment measuring parasite growth and infection rates at seven temperatures using 12 field-collected parasite populations and a single mosquito population. We find that both free-living growth rates and infection rates varied with temperature, which were highest at 18-24.5°C and 13°C, respectively. Further, we find intraspecific variation in peak performance temperature reflecting patterns of local thermal adaptation-parasite populations from warmer source environments typically had higher thermal optima for free-living growth rates. For infection rates, we found a significant interaction between parasite population and nonlinear effects of temperature. These findings underscore the need to consider both host and parasite thermal responses, as well as intraspecific variation in thermal responses, when predicting the impacts of climate change on disease in aquatic ecosystems.
Collapse
|
4
|
Raffard A, Cucherousset J, Santoul F, Di Gesu L, Blanchet S. Climate and intraspecific variation in a consumer species drive ecosystem multifunctionality. OIKOS 2023. [DOI: 10.1111/oik.09286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Allan Raffard
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
- Laboratoire d'Ecologie Fonctionelle et Environnement CNRS‐INPT‐UPS, Univ. Paul Sabatier Toulouse France
| | - Julien Cucherousset
- Laboratoire Évolution et Diversité Biologique (EDB), UMR 5174, Univ. de Toulouse 3 Paul Sabatier, CNRS, IRD Toulouse France
| | - Frédéric Santoul
- Laboratoire d'Ecologie Fonctionelle et Environnement CNRS‐INPT‐UPS, Univ. Paul Sabatier Toulouse France
| | - Lucie Di Gesu
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
| | - Simon Blanchet
- Centre National de la Recherche Scientifique (CNRS), Station d’Écologie Théorique et Expérimentale (UAR2029) Moulis France
| |
Collapse
|
5
|
Moffett ER, Fryxell DC, Simon KS. Multigenerational exposure to increased temperature reduces metabolic rate but increases boldness in
Gambusia affinis. Ecol Evol 2022; 12:e8853. [PMID: 35462979 PMCID: PMC9019145 DOI: 10.1002/ece3.8853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Acute exposure to warming temperatures increases minimum energetic requirements in ectotherms. However, over and within multiple generations, increased temperatures may cause plastic and evolved changes that modify the temperature sensitivity of energy demand and alter individual behaviors. Here, we aimed to test whether populations recently exposed to geothermally elevated temperatures express an altered temperature sensitivity of metabolism and behavior. We expected that long‐term exposure to warming would moderate metabolic rate, reducing the temperature sensitivity of metabolism, with concomitant reductions in boldness and activity. We compared the temperature sensitivity of metabolic rate (acclimation at 20 vs. 30°C) and allometric slopes of routine, standard, and maximum metabolic rates, in addition to boldness and activity behaviors, across eight recently divergent populations of a widespread fish species (Gambusia affinis). Our data reveal that warm‐source populations express a reduced temperature sensitivity of metabolism, with relatively high metabolic rates at cool acclimation temperatures and relatively low metabolic rates at warm acclimation temperatures compared to ambient‐source populations. Allometric scaling of metabolism did not differ with thermal history. Across individuals from all populations combined, higher metabolic rates were associated with higher activity rates at 20°C and bolder behavior at 30°C. However, warm‐source populations displayed relatively bolder behavior at both acclimation temperatures compared to ambient‐source populations, despite their relatively low metabolic rates at warm acclimation temperatures. Overall, our data suggest that in response to warming, multigenerational exposure (e.g., plasticity, adaptation) may not result in trait change directed along a simple “pace‐of‐life syndrome” axis, instead causing relative decreases in metabolism and increases in boldness. Ultimately, our data suggest that multigenerational warming may produce a novel combination of physiological and behavioral traits, with consequences for animal performance in a warming world.
Collapse
Affiliation(s)
- Emma R. Moffett
- School of Environment The University of Auckland Auckland New Zealand
| | - David C. Fryxell
- School of Environment The University of Auckland Auckland New Zealand
| | - Kevin S. Simon
- School of Environment The University of Auckland Auckland New Zealand
| |
Collapse
|
6
|
Wood ZT, Lopez LK, Symons CC, Robinson RR, Palkovacs EP, Kinnison MT. Drivers and cascading ecological consequences of Gambusia affinis trait variation. Am Nat 2021; 199:E91-E110. [DOI: 10.1086/717866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Rettig JE, Smith GR. Relative strength of top-down effects of an invasive fish and bottom-up effects of nutrient addition in a simple aquatic food web. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5845-5853. [PMID: 32975750 DOI: 10.1007/s11356-020-10933-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
Introduction of exotic predators or runoff of fertilizers can alter aquatic food webs, in particular zooplankton communities, through top-down and bottom-up effects. In a mesocosm experiment, we manipulated the density of Western Mosquitofish (Gambusia affinis) and nutrient levels (nitrate and phosphate independently) and observed effects on zooplankton and phytoplankton in a fall, temperate zone system. If top-down regulation were important, we expected mosquitofish predation to reduce zooplankton abundance, which would indirectly benefit phytoplankton. If bottom-up regulation were important, we expected nutrient addition to increase both primary producers and zooplankton. Western Mosquitofish predation significantly decreased the abundance of several zooplankton taxa, resulting in a trophic cascade with increased chlorophyll a (i.e., primary productivity). This effect did not differ between mesocosms with 5 or 10 fish. Nutrient addition had no significant effects on zooplankton; however, chlorophyll a was positively affected by both nitrogen addition and phosphorus addition. Our results suggest weak bottom-up regulation in our experimental community, but strong top-down regulation, emphasizing the potential consequences of introducing non-native Western Mosquitofish to native aquatic ecosystems.
Collapse
Affiliation(s)
- Jessica E Rettig
- Department of Biology, Denison University, Granville, OH, 43023, USA.
| | - Geoffrey R Smith
- Department of Biology, Denison University, Granville, OH, 43023, USA
| |
Collapse
|
8
|
Fryxell DC, Hoover AN, Alvarez DA, Arnesen FJ, Benavente JN, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. Recent warming reduces the reproductive advantage of large size and contributes to evolutionary downsizing in nature. Proc Biol Sci 2020; 287:20200608. [PMID: 32486974 PMCID: PMC7341922 DOI: 10.1098/rspb.2020.0608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Body size is a key functional trait that is predicted to decline under warming. Warming is known to cause size declines via phenotypic plasticity, but evolutionary responses of body size to warming are poorly understood. To test for warming-induced evolutionary responses of body size and growth rates, we used populations of mosquitofish (Gambusia affinis) recently established (less than 100 years) from a common source across a strong thermal gradient (19–33°C) created by geothermal springs. Each spring is remarkably stable in temperature and is virtually closed to gene flow from other thermal environments. Field surveys show that with increasing site temperature, body size distributions become smaller and the reproductive advantage of larger body size decreases. After common rearing to reveal recently evolved trait differences, warmer-source populations expressed slowed juvenile growth rates and increased reproductive effort at small sizes. These results are consistent with an adaptive basis of the plastic temperature–size rule, and they suggest that temperature itself can drive the evolution of countergradient variation in growth rates. The rapid evolution of reduced juvenile growth rates and greater reproduction at a small size should contribute to substantial body downsizing in populations, with implications for population dynamics and for ecosystems in a warming world.
Collapse
Affiliation(s)
- David C Fryxell
- School of Environment, University of Auckland, Auckland 1010, New Zealand.,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Alexander N Hoover
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Daniel A Alvarez
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | - Finn J Arnesen
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| | | | - Emma R Moffett
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | | | - Kevin S Simon
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz 95060, CA, USA
| |
Collapse
|
9
|
Diaz Pauli B, Edeline E, Evangelista C. Ecosystem consequences of multi-trait response to environmental changes in Japanese medaka, Oryzias latipes. CONSERVATION PHYSIOLOGY 2020; 8:coaa011. [PMID: 32274061 PMCID: PMC7125048 DOI: 10.1093/conphys/coaa011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 01/21/2020] [Accepted: 02/02/2020] [Indexed: 06/01/2023]
Abstract
Intraspecific trait variation has large effects on the ecosystem and is greatly affected by human activities. To date, most studies focused on single-trait analyses, while considering multiple traits is expected to better predict how an individual interacts with its environment. Here, we used a mesocosm experiment with fish Oryzias latipes to test whether individual growth, boldness and functional traits (feeding rate and stoichiometric traits) formed one functional pace-of-life syndrome (POLS). We then tested the effects of among-individual mean and variance of fish functional POLSs within mesocosms on invertebrate community (e.g. zoobenthos and zooplankton abundances) and ecosystem processes (e.g. ecosystem metabolism, algae stock, nutrient concentrations). Stoichiometric traits correlated with somatic growth and behaviours, forming two independent functional POLS (i.e. two major covariance axes). Mean values of the first syndrome were sex- and environment-dependent and were associated with (i) long-term (10 generations; 4 years) selection for small or large body size resulting in contrasting life histories and (ii) short-term (6 weeks) effects of experimental treatments on resource availability (through manipulation of light intensity and interspecific competition). Specifically, females and individuals from populations selected for a small body size presented fast functional POLS with faster growth rate, higher carbon body content and lower boldness. Individuals exposed to low resources (low light and high competition) displayed a slow functional POLS. Higher mesocosm mean and variance values in the second functional POLS (i.e. high feeding rate, high carbon:nitrogen body ratio, low ammonium excretion rate) were associated to decreased prey abundances, but did not affect any of the ecosystem processes. We highlighted the presence of functional multi-trait covariation in medaka, which were affected by sex, long-term selection history and short-term environmental conditions, that ultimately had cascading ecological consequences. We stressed the need for applying this approach to better predict ecosystem response to anthropogenic global changes.
Collapse
Affiliation(s)
- Beatriz Diaz Pauli
- Department of Biosciences, Centre for Ecological and Evolutionary Syntheses (CEES), University of Oslo, Blindernveien 31, N-0316 Oslo, Norway
| | - Eric Edeline
- ESE Ecology and Ecosystem Health, INRAE, Agocampus Ouest, 65 rue de Saint-Brieuc 35042 Rennes, France
| | - Charlotte Evangelista
- Department of Biosciences, Centre for Ecological and Evolutionary Syntheses (CEES), University of Oslo, Blindernveien 31, N-0316 Oslo, Norway
| |
Collapse
|
10
|
Wood ZT, Fryxell DC, Moffett ER, Kinnison MT, Simon KS, Palkovacs EP. Prey adaptation along a competition-defense tradeoff cryptically shifts trophic cascades from density- to trait-mediated. Oecologia 2020; 192:767-778. [PMID: 31989320 DOI: 10.1007/s00442-020-04610-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022]
Abstract
Trophic cascades have become a dominant paradigm in ecology, yet considerable debate remains about the relative strength of density- (consumptive) and trait-mediated (non-consumptive) effects in trophic cascades. This debate may, in part, be resolved by considering prey experience, which shapes prey traits (through genetic and plastic change) and influences prey survival (and therefore density). Here, we investigate the cascading role of prey experience through the addition of mosquitofish (Gambusia affinis) from predator-experienced or predator-naïve sources to mesocosms containing piscivorous largemouth bass (Micropterus salmoides), zooplankton, and phytoplankton. These two sources were positioned along a competition-defense tradeoff. Results show that predator-naïve mosquitofish suffered higher depredation rates, which drove a density-mediated cascade, whereas predator-experienced mosquitofish exhibited higher survival but fed less, which drove a trait-mediated cascade. Both cascades were similar in strength, leading to indistinguishable top-down effects on lower trophic levels. Therefore, the accumulation of prey experience with predators can cryptically shift cascade mechanisms from density- to trait-mediated.
Collapse
Affiliation(s)
- Zachary T Wood
- School of Biology and Ecology, Ecology and Environmental Sciences Program, University of Maine, Orono, ME, 04469, USA.
| | - David C Fryxell
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Emma R Moffett
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Michael T Kinnison
- School of Biology and Ecology, Ecology and Environmental Sciences Program, University of Maine, Orono, ME, 04469, USA
| | - Kevin S Simon
- School of Environment, University of Auckland, Auckland, 1142, New Zealand
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| |
Collapse
|
11
|
Contolini GM, Reid K, Palkovacs EP. Climate shapes population variation in dogwhelk predation on foundational mussels. Oecologia 2020; 192:553-564. [PMID: 31932922 DOI: 10.1007/s00442-019-04591-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/30/2019] [Indexed: 11/25/2022]
Abstract
Trait variation among populations is important for shaping ecological dynamics. In marine intertidal systems, seawater temperature, low tide emersion temperature, and pH can drive variation in traits and affect species interactions. In western North America, Nucella dogwhelks are intertidal drilling predators of the habitat-forming mussel Mytilus californianus. Nucella exhibit local adaptation, but it is not known to what extent environmental factors and genetic structure contribute to variation in prey selectivity among populations. We surveyed drilled mussels at sites across Oregon and California, USA, and used multiple regression and Mantel tests to test the effects of abiotic factors and Nucella neutral genetic relatedness on the size of mussels drilled across sites. Our results show that Nucella at sites characterized by higher and less variable temperature and pH drilled larger mussels. Warmer temperatures appear to induce faster handling time, and more stable pH conditions may prolong opportunities for active foraging by reducing exposure to repeated stressful conditions. In contrast, there was no significant effect of genetic relatedness on prey size selectivity. Our results emphasize the role of climate in shaping marine predator selectivity on a foundation species. As coastal climates change, predator traits will respond to localized environmental conditions, changing ecological interactions.
Collapse
Affiliation(s)
- Gina M Contolini
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, USA.
| | - Kerry Reid
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA, 95060, USA
| |
Collapse
|
12
|
Wood ZT, Fryxell DC, Robinson RR, Palkovacs EP, Kinnison MT. Phenotypic and community consequences of captive propagation in mosquitofish. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zachary T. Wood
- School of Biology and Ecology and Ecology and Environmental Sciences Program University of Maine Orono Maine
| | - David C. Fryxell
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Rebecca R. Robinson
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Eric P. Palkovacs
- Department of Ecology and Evolutionary Biology University of California, Santa Cruz Santa Cruz California
| | - Michael T. Kinnison
- School of Biology and Ecology and Ecology and Environmental Sciences Program University of Maine Orono Maine
| |
Collapse
|
13
|
Ware IM, Fitzpatrick CR, Senthilnathan A, Bayliss SLJ, Beals KK, Mueller LO, Summers JL, Wooliver RC, Van Nuland ME, Kinnison MT, Palkovacs EP, Schweitzer JA, Bailey JK. Feedbacks link ecosystem ecology and evolution across spatial and temporal scales: Empirical evidence and future directions. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ian M. Ware
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | | | | | - Shannon L. J. Bayliss
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Kendall K. Beals
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Liam O. Mueller
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Jennifer L. Summers
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Rachel C. Wooliver
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | | | | | - Eric P. Palkovacs
- Department of Ecology and Evolutionary Biology University of California Santa Cruz California
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| |
Collapse
|
14
|
Reznick DN, Losos J, Travis J. From low to high gear: there has been a paradigm shift in our understanding of evolution. Ecol Lett 2018; 22:233-244. [PMID: 30478871 DOI: 10.1111/ele.13189] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/10/2018] [Accepted: 10/25/2018] [Indexed: 01/08/2023]
Abstract
Experimental studies of evolution performed in nature and the associated demonstration of rapid evolution, observable on a time scale of months to years, were an acclaimed novelty in the 1980-1990s. Contemporary evolution is now considered ordinary and is an integrated feature of many areas of research. This shift from extraordinary to ordinary reflects a change in the perception of evolution. It was formerly thought of as a historical process, perceived through the footprints left in the fossil record or living organisms. It is now seen as a contemporary process that acts in real time. Here we review how this shift occurred and its consequences for fields as diverse as wildlife management, conservation biology, and ecosystems ecology. Incorporating contemporary evolution in these fields has caused old questions to be recast, changed the answers, caused new and previously inconceivable questions to be addressed, and inspired the development of new subdisciplines. We argue further that the potential of contemporary evolution has yet to be fulfilled. Incorporating evolutionary dynamics in any research program can provide a better assessment of how and why organisms and communities came to be as they are than is attainable without an explicit treatment of these dynamics.
Collapse
Affiliation(s)
- David N Reznick
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, 92521
| | - Jonathan Losos
- Department of Biology, Washington University, St. Louis, MO, 63130
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306-4340
| |
Collapse
|
15
|
Moffett ER, Fryxell DC, Palkovacs EP, Kinnison MT, Simon KS. Local adaptation reduces the metabolic cost of environmental warming. Ecology 2018; 99:2318-2326. [PMID: 30030930 DOI: 10.1002/ecy.2463] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/15/2018] [Accepted: 07/05/2018] [Indexed: 11/07/2022]
Abstract
Metabolism shapes the ecosystem role of organisms by dictating their energy demand and nutrient recycling potential. Metabolic theory (MTE) predicts consumer metabolic and recycling rates will rise with warming, especially if body size declines, but it ignores potential for adaptation. We measured metabolic and nutrient excretion rates of individuals from populations of a globally invasive fish that colonized sites spanning a wide temperature range (19-37°C) on two continents within the last 100 yr. Fish body size declined across our temperature gradient and MTE predicted large rises in population energy demand and nutrient recycling. However, we found that the allometry and temperature dependency of metabolism varied in a countergradient pattern with local temperature in a way that offset predictions of MTE. Scaling of nutrient excretion was more variable and did not track temperature. Our results suggest that adaptation can reduce the metabolic cost of warming, increasing the prospects for population persistence under extreme warming scenarios.
Collapse
Affiliation(s)
- Emma R Moffett
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| | - David C Fryxell
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95060, USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, 95060, USA
| | - Michael T Kinnison
- School of Biology and Ecology, The University of Maine, Orono, Maine, 04469, USA
| | - Kevin S Simon
- School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
| |
Collapse
|
16
|
Ingram T, Burns ZD. Top-down control by an aquatic invertebrate predator increases with temperature but does not depend on individual behavioral type. Ecol Evol 2018; 8:8256-8265. [PMID: 30250700 PMCID: PMC6144970 DOI: 10.1002/ece3.4367] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022] Open
Abstract
Variation in behavioral traits among individuals within a population can have implications for food webs and ecosystems. Temperature change also alters food web structure and function, but potential interactions between warming and intraspecific behavioral variation are largely unexplored. We aimed to test how increased temperature, individual activity level of a predatory backswimmer (Anisops assimilis), and their interaction influenced the strength of top-down control of zooplankton and phytoplankton. We used stable isotopes to support our assumption that the study population of A. assimilis is zooplanktivorous, and behavioral trials to confirm that activity level is a repeatable trait. We established freshwater microcosms to test for effects of warming, backswimmer presence, and backswimmer behavioral type on zooplankton density, zooplankton composition, and phytoplankton chlorophyll a. Top-down control was present and was generally stronger at increased temperature. There was no indication that predator behavioral type influenced the strength of top-down control either on its own or interactively with temperature. Predator behavioral type may not be associated with ecologically important function in this species at the temporal and spatial scales addressed in this study, but the links between behavior, temperature, and food web processes are worthy of broader exploration.
Collapse
Affiliation(s)
- Travis Ingram
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| | - Zuri D. Burns
- Department of ZoologyUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
17
|
El-Sabaawi RW. How Fishes Can Help Us Answer Important Questions about the Ecological Consequences of Evolution. COPEIA 2017. [DOI: 10.1643/ot-16-530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Lundsgaard-Hansen B, Matthews B, Aebischer T, Seehausen O. The Legacy of Ecosystem Effects Caused by Adaptive Radiation. COPEIA 2017. [DOI: 10.1643/ce-16-514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Urban MC, Richardson JL, Freidenfelds NA, Drake DL, Fischer JF, Saunders PP. Microgeographic Adaptation of Wood Frog Tadpoles to an Apex Predator. COPEIA 2017. [DOI: 10.1643/cg-16-534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
|
21
|
Tuckett QM, Simon KS, Kinnison MT. Cultural Eutrophication Mediates Context-Dependent Eco-Evolutionary Feedbacks of a Fish Invader. COPEIA 2017. [DOI: 10.1643/ot-16-540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Kindsvater HK, Palkovacs EP. Predicting Eco-evolutionary Impacts of Fishing on Body Size and Trophic Role of Atlantic Cod. COPEIA 2017. [DOI: 10.1643/ot-16-533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|