1
|
Monjaraz-Ruedas R, Starrett J, Leavitt D, Hedin M. Broken Ring Speciation in California Mygalomorph Spiders (Nemesiidae, Calisoga). Am Nat 2024; 204:55-72. [PMID: 38857341 DOI: 10.1086/730262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractIdealized ring species, with approximately continuous gene flow around a geographic barrier but singular reproductive isolation at a ring terminus, are rare in nature. A broken ring species model preserves the geographic setting and fundamental features of an idealized model but accommodates varying degrees of gene flow restriction over complex landscapes through evolutionary time. Here we examine broken ring species dynamics in Calisoga spiders, which, like the classic ring species Ensatina salamanders, are distributed around the Central Valley of California. Using nuclear and mitogenomic data, we test key predictions of common ancestry, ringlike biogeography, biogeographic timing, population connectivity, and terminal overlap. We show that a ring complex of populations shares a single common ancestor, and from an ancestral area in the Sierra Nevada mountains, two distributional and phylogenomic arms encircle the Central Valley. Isolation by distance occurs along these distributional arms, although gene flow restriction is also evident. Where divergent lineages meet in the South Coast Ranges, we find rare lineage sympatry, without evidence for nuclear gene flow and with clear evidence for morphological and ecological divergence. We discuss general insights provided by broken ring species and how such a model could be explored and extended in other systems and future studies.
Collapse
|
2
|
Miralles A, Puillandre N, Vences M. DNA Barcoding in Species Delimitation: From Genetic Distances to Integrative Taxonomy. Methods Mol Biol 2024; 2744:77-104. [PMID: 38683312 DOI: 10.1007/978-1-0716-3581-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Over the past two decades, DNA barcoding has become the most popular exploration approach in molecular taxonomy, whether for identification, discovery, delimitation, or description of species. The present contribution focuses on the utility of DNA barcoding for taxonomic research activities related to species delimitation, emphasizing the following aspects:(1) To what extent DNA barcoding can be a valuable ally for fundamental taxonomic research, (2) its methodological and theoretical limitations, (3) the conceptual background and practical use of pairwise distances between DNA barcode sequences in taxonomy, and (4) the different ways in which DNA barcoding can be combined with complementary means of investigation within a broader integrative framework. In this chapter, we recall and discuss the key conceptual advances that have led to the so-called renaissance of taxonomy, elaborate a detailed glossary for the terms specific to this discipline (see Glossary in Chap. 35 ), and propose a newly designed step-by-step species delimitation protocol starting from DNA barcode data that includes steps from the preliminary elaboration of an optimal sampling strategy to the final decision-making process which potentially leads to nomenclatural changes.
Collapse
Affiliation(s)
- Aurélien Miralles
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Nicolas Puillandre
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Miguel Vences
- Department of Evolutionary Biology, Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
3
|
Seeholzer GF, Brumfield RT. Speciation-by-Extinction. Syst Biol 2023; 72:1433-1442. [PMID: 37542735 DOI: 10.1093/sysbio/syad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023] Open
Abstract
Extinction is a dominant force shaping patterns of biodiversity through time; however its role as a catalyst of speciation through its interaction with intraspecific variation has been overlooked. Here, we synthesize ideas alluded to by Darwin and others into the model of "speciation-by-extinction" in which speciation results from the extinction of intermediate populations within a single geographically variable species. We explore the properties and distinguishing features of speciation-by-extinction with respect to other established speciation models. We demonstrate its plausibility by showing that the experimental extinction of populations within variable species can result in speciation. The prerequisites for speciation-by-extinction, geographically structured intraspecific variation and local extinction, are ubiquitous in nature. We propose that speciation-by-extinction may be a prevalent, but underappreciated, speciation mechanism.
Collapse
Affiliation(s)
- Glenn F Seeholzer
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
- Macaulay Library, Cornell Lab of Ornithology, Ithaca, NY, 14850, USA
| | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Speciation with gene flow in a narrow endemic West Virginia cave salamander (Gyrinophilus subterraneus). CONSERV GENET 2022. [DOI: 10.1007/s10592-022-01445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Wang Y, Feijó A, Cheng J, Xia L, Wen Z, Ge D, Sun J, Lu L, Li S, Yang Q. Ring distribution patterns-diversification or speciation? Comparative phylogeography of two small mammals in the mountains surrounding the Sichuan Basin. Mol Ecol 2021; 30:2641-2658. [PMID: 33817880 DOI: 10.1111/mec.15913] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/26/2023]
Abstract
Studying the genetic differentiation in a unique geographical area contributes to understanding the process of speciation. Here, we explore the spatial genetic structure and underlying formation mechanism of two congeneric small mammal species (Apodemus draco and A. chevrieri), which are mainly distributed in the mountains surrounding the lowland Sichuan Basin, southwest China. We applied a set of comparative phylogeographical analyses to determine their genetic diversification patterns, combining mitochondrial (Cytb and COI) and nuclear (microsatellite loci) markers, with dense sampling throughout the range (411 A. draco from 21 sites and 191 A. chevrieri from 22 sites). Moreover, we performed three complementary statistical methods to investigate the correlation between genotype and geographical and environmental components, and predicted the potential suitable distributional range under the present and historical climate conditions. Our results suggest that both species have experienced allopatric differentiation and admixture in historical periods, resulting in a ring-shape diversification, under the barrier effect of the Sichuan Basin. We infer that the tectonic events of the Qinghai-Tibetan Plateau and climatic oscillations during the Quaternary played an important role on the genetic divergence of the two species by providing environmental heterogeneity and geographical variation. Our study reveals a case of two sympatric small mammals following a ring-shaped diversification pattern and provides insight into the process of differentiation.
Collapse
Affiliation(s)
- Yanqun Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Animal Science, Xichang College, Xichang, Sichuan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jian Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Liang Lu
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Song Li
- Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, Yunnan, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Bouzid NM, Archie JW, Anderson RA, Grummer JA, Leaché AD. Evidence for ephemeral ring species formation during the diversification history of western fence lizards (Sceloporus occidentalis). Mol Ecol 2021; 31:620-631. [PMID: 33565164 DOI: 10.1111/mec.15836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 12/31/2022]
Abstract
Divergence is often ephemeral, and populations that diverge in response to regional topographic and climatic factors may not remain reproductively isolated when they come into secondary contact. We investigated the geographical structure and evolutionary history of population divergence within Sceloporus occidentalis (western fence lizard), a habitat generalist with a broad distribution that spans the major biogeographical regions of Western North America. We used double digest RAD sequencing to infer population structure, phylogeny and demography. Population genetic structure is hierarchical and geographically structured with evidence for gene flow between biogeographical regions. Consistent with the isolation-expansion model of divergence during Quaternary glacial-interglacial cycles, gene flow and secondary contact are supported as important processes explaining the demographic histories of populations. Although populations may have diverged as they spread northward in a ring-like manner around the Sierra Nevada and southern Cascade Ranges, there is strong evidence for gene flow among populations at the northern terminus of the ring. We propose the concept of an "ephemeral ring species" and contrast S. occidentalis with the classic North American ring species, Ensatina eschscholtzii. Contrary to expectations of lower genetic diversity at northern latitudes following post-Quaternary-glaciation expansion, the ephemeral nature of divergence in S. occidentalis has produced centres of high genetic diversity for different reasons in the south (long-term stability) vs. the north (secondary contact).
Collapse
Affiliation(s)
- Nassima M Bouzid
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| | - James W Archie
- Biological Sciences, California State University, Long Beach, CA, USA
| | - Roger A Anderson
- Biology Department, Western Washington University, Bellingham, WA, USA
| | - Jared A Grummer
- Department of Zoology, University of British Columbia, Beaty Biodiversity Museum, Vancouver, BC, Canada
| | - Adam D Leaché
- Department of Biology and Burke Museum of Natural History and Culture, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Melander SL, Mueller RL. Comprehensive Analysis of Salamander Hybridization Suggests a Consistent Relationship between Genetic Distance and Reproductive Isolation across Tetrapods. COPEIA 2020. [DOI: 10.1643/ch-19-319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Scott Lucas Melander
- Department of Biology, Colorado State University, 251 W Pitkin Street, Fort Collins, Colorado 80523; (SLM) ; and (RLM) . Send reprint requests to SLM
| | - Rachel Lockridge Mueller
- Department of Biology, Colorado State University, 251 W Pitkin Street, Fort Collins, Colorado 80523; (SLM) ; and (RLM) . Send reprint requests to SLM
| |
Collapse
|
8
|
Zheng Y, Dai Q, Guo X, Zeng X. Dynamics behind disjunct distribution, hotspot-edge refugia, and discordant RADseq/mtDNA variability: insights from the Emei mustache toad. BMC Evol Biol 2020; 20:111. [PMID: 32859147 PMCID: PMC7456009 DOI: 10.1186/s12862-020-01675-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 08/20/2020] [Indexed: 12/01/2022] Open
Abstract
Background The distribution of genetic diversity and the underlying processes are important for conservation planning but are unknown for most species and have not been well studied in many regions. In East Asia, the Sichuan Basin and surrounding mountains constitute an understudied region that exhibits a “ring” of high species richness overlapping the eastern edge of the global biodiversity hotspot Mountains of Southwest China. We examine the distributional history and genetic diversification of the Emei mustache toad Leptobrachium boringii, a typical “ring” element characterized by disjunct ranges in the mountains, by integrating time-calibrated gene tree, genetic variability, individual-level clustering, inference of population splitting and mixing from allele frequencies, and paleoclimatic suitability modeling. Results The results reveal extensive range dynamics, including secondary contact after long-term isolation via westward dispersal accompanied by variability loss. They allow the proposal of a model that combines recurrent contractions caused by Quaternary climatic changes and some failed expansions under suitable conditions for explaining the shared disjunct distribution pattern. Providing exceptional low-elevation habitats in the hotspot area, the eastern edge harbors both long-term refugial and young immigrant populations. This finding and a synthesis of evidence from other taxa demonstrate that a certain contributor to biodiversity, one that preserves and receives low-elevation elements of the east in this case, can be significant for only a particular part of a hotspot. By clarifying the low variability of these refugial populations, we show that discordant mitochondrial estimates of diversity can be obtained for populations that experienced admixture, which would have unlikely left proportional immigrant alleles for each locus. Conclusions Dispersal after long-term isolation can explain much of the spatial distribution of genetic diversity in this species, while secondary contact and long-term persistence do not guarantee a large variation. The model for the formation of disjunct ranges may apply to many other taxa isolated in the mountains surrounding the Sichuan Basin. Furthermore, this study provides insights into the heterogeneous nature of hotspots and discordant variability obtained from genome-wide and mitochondrial data.
Collapse
Affiliation(s)
- Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China. .,Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan Province, China.
| | - Qiang Dai
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| | - Xiaomao Zeng
- Chengdu Institute of Biology, Chinese Academy of Sciences, #9 of Section 4, Ren-Min-Nan Road, Wuhou District, Chengdu, 610041, Sichuan Province, China
| |
Collapse
|
9
|
Radomski T, Hantak MM, Brown AD, Kuchta SR. Multilocus Phylogeography of Eastern Red-Backed Salamanders (Plethodon cinereus): Cryptic Appalachian Diversity and Postglacial Range Expansion. HERPETOLOGICA 2020. [DOI: 10.1655/herpetologica-d-19-00045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Tom Radomski
- Ohio Center for Ecological and Evolutionary Studies, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Maggie M. Hantak
- Ohio Center for Ecological and Evolutionary Studies, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Ashley D. Brown
- Ohio Center for Ecological and Evolutionary Studies, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | - Shawn R. Kuchta
- Ohio Center for Ecological and Evolutionary Studies, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| |
Collapse
|
10
|
Species Variation in a Pheromone Complex is Maintained at the Population Level in the Eastern Red-Backed Salamander. J HERPETOL 2019. [DOI: 10.1670/18-061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Cacho NI, Monteverde-Suárez MJ, McIntyre PJ. Convergent evolution in floral morphology in a plant ring species, the Caribbean Euphorbia tithymaloides. AMERICAN JOURNAL OF BOTANY 2019; 106:1032-1045. [PMID: 31281963 DOI: 10.1002/ajb2.1318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
PREMISE Ring species have long fascinated evolutionary biologists for their potential insights into lineage divergence and speciation across space. Few studies have investigated the potential for convergent or parallel evolution along the diverging fronts of ring species. We investigated a potential case of parallel floral variation in the Caribbean spurge Euphorbia tithymaloides, the only plant system with molecular support as a ring species. The terminal populations of each front, despite being the most divergent, exhibit such similar floral traits that they were originally considered each other's closest relative. METHODS We evaluated convergence in floral and leaf traits in relation to geography across 95 populations spanning the distribution of E. tithymaloides. We also reanalyzed available genetic data (from previous phylogenetic analyses) in an explicitly spatial framework. RESULTS Floral morphology appears to have shifted in a convergent fashion along both geographic fronts of E. tithymaloides, resulting in shorter and more compact inflorescences in Antillean populations compared to the typical elongate "slipper-like" cyathia characteristic of the area of origin. Patterns of spatial genetic variation were more consistent with a two-fronted invasion of the Caribbean than with a simpler model of isolation-by-distance. CONCLUSIONS Floral divergence in E. tithymaloides is consistent with convergent evolution along the two fronts of a ring species. We outline several (not mutually exclusive) mechanisms that could be driving patterns in morphology, including shifts toward generalized pollination with reduced reliance on hummingbirds, shifts in floral structure closely matching available hummingbird bill traits, and shifts toward increased selfing.
Collapse
Affiliation(s)
- N Ivalú Cacho
- Instituto de Biología, Universidad Nacional Autónoma de México, CDMX 04510, Mexico
| | | | - Patrick J McIntyre
- NatureServe, Western Regional Office, 1680 38th St., Suite 120, Boulder, Colorado, 80301, USA
| |
Collapse
|
12
|
Kuchta SR. Richard Highton. COPEIA 2019. [DOI: 10.1643/ot-19-224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shawn R. Kuchta
- Ohio Center for Ecological and Evolutionary Studies, Department of Biological Sciences, Ohio University, Irvine 107, Athens, Ohio 45701;
| |
Collapse
|
13
|
Irwin DE. A tree of tree frogs around the Black Sea. Mol Ecol 2019; 25:4093-6. [PMID: 27616352 DOI: 10.1111/mec.13760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/05/2016] [Indexed: 11/30/2022]
Abstract
Speciation, the process by which one species evolves into two or more, is a major focus of ongoing debate, particularly regarding the geographic context in which it occurs. Geographic models of speciation tend to fall into discrete categories, typically referred to as allopatric, parapatric and sympatric speciation, according to whether two groups evolve reproductive isolation while geographically isolated, differentiated but connected by gene flow, or completely co-occurring. Yet molecular studies indicate that full development of reproductive isolation can take very long compared with the timescale at which climatic oscillations occur, such that the geographic context of differentiating forms might change often during the long process to full species. Studies of genetic relationships across the ranges of organisms with low-dispersal distances have the potential to reveal these complex histories. In a particularly elegant example in this issue, Dufresnes et al. () use genetic variation and ecological niche modelling to show that a ring of populations of the eastern tree frog (Hyla orientalis) surrounding the Black Sea had a complex history of geographic differentiation. Alternating phases of geographic fragmentation and phases of gene flow between neighbouring populations have produced a pattern of gradual genetic change connecting the western, southern and eastern sides of the ring, with the northwestern and northeastern forms being most differentiated. In the north, a population in Crimea appears to have been produced through mixture of the two extreme forms. The overall genetic relationships are reminiscent of those found in ring species, which have been used as prime demonstrations of the process of speciation. The difference, however, is that the terminal forms appear to have mixed rather than be reproductively isolated, although more research is needed to infer whether there might be some reproductive isolation on the northern side of the ring.
Collapse
Affiliation(s)
- Darren E Irwin
- Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
14
|
Qiao L, Wen G, Qi Y, Lu B, Hu J, Song Z, Fu J. Evolutionary melting pots and reproductive isolation: A ring-shaped diversification of an odorous frog (Odorrana margaratea
) around the Sichuan Basin. Mol Ecol 2018; 27:4888-4900. [DOI: 10.1111/mec.14899] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/04/2018] [Accepted: 10/03/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Liang Qiao
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Guannan Wen
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Yin Qi
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Bin Lu
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Junhua Hu
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
| | - Zhaobin Song
- College of Life Sciences; Sichuan University; Chengdu Sichuan China
| | - Jinzhong Fu
- Chengdu Institute of Biology; Chinese Academy of Sciences; Chengdu Sichuan China
- Department of Integrative Biology; University of Guelph; Guelph Ontario Canada
| |
Collapse
|
15
|
Lavin BR, Wogan GOU, McGuire JA, Feldman CR. Phylogeography of the Northern Alligator Lizard (Squamata, Anguidae): Hidden diversity in a western endemic. ZOOL SCR 2018. [DOI: 10.1111/zsc.12294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Brian R. Lavin
- Department of Biology; Sonoma State University; Rohnert Park California
| | - Guinevere O. U. Wogan
- Department of Environmental Science, Policy and Management and Museum of Vertebrate Zoology; University of California; Berkeley California
| | - Jimmy A. McGuire
- Department of Integrative Biology and Museum of Vertebrate Zoology; University of California; Berkeley California
| | - Chris R. Feldman
- Department of Biology and Program in Ecology, Evolution and Conservation Biology; University of Nevada; Reno Nevada
| |
Collapse
|
16
|
McEntee JP, Tobias JA, Sheard C, Burleigh JG. Tempo and timing of ecological trait divergence in bird speciation. Nat Ecol Evol 2018; 2:1120-1127. [DOI: 10.1038/s41559-018-0570-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/02/2018] [Indexed: 01/23/2023]
|
17
|
Kuchta SR, Brown AD, Highton R. Disintegrating over space and time: Paraphyly and species delimitation in the Wehrle's Salamander complex. ZOOL SCR 2018. [DOI: 10.1111/zsc.12281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Shawn R. Kuchta
- Department of Biological Sciences; Ohio Center for Ecology and Evolutionary Studies; Ohio University; Athens OH USA
| | - Ashley D. Brown
- Department of Biological Sciences; Ohio Center for Ecology and Evolutionary Studies; Ohio University; Athens OH USA
| | - Richard Highton
- Department of Biology; University of Maryland; College Park MD USA
| |
Collapse
|
18
|
Hantak MM, Kuchta SR. Predator perception across space and time: relative camouflage in a colour polymorphic salamander. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx132] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Affiliation(s)
- David B. Wake
- Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160, USA
| |
Collapse
|
20
|
|