1
|
Gilchrist CA, Campo JJ, Pablo JV, Ma JZ, Teng A, Oberai A, Shandling AD, Alam M, Kabir M, Faruque A, Haque R, Petri WA. Specific Cryptosporidium antigens associate with reinfection immunity and protection from cryptosporidiosis. J Clin Invest 2023; 133:e166814. [PMID: 37347553 PMCID: PMC10425216 DOI: 10.1172/jci166814] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 06/21/2023] [Indexed: 06/24/2023] Open
Abstract
There is no vaccine to protect from cryptosporidiosis, a leading cause of diarrhea in infants in low- and middle-income countries. Here, we comprehensively identified parasite antigens associated with protection from reinfection. A Cryptosporidium protein microarray was constructed by in vitro transcription and translation of 1,761 C. parvum, C. hominis, or C. meleagridis antigens, including proteins with a signal peptide and/or a transmembrane domain. Plasma IgG and/or IgA from Bangladeshi children longitudinally followed for cryptosporidiosis from birth to 3 years of age allowed for identification of 233 seroreactive proteins. Seven of these were associated with protection from reinfection. These included Cp23, Cp17, Gp900, and 4 additional antigens - CpSMP1, CpMuc8, CpCorA and CpCCDC1. Infection in the first year of life, however, often resulted in no detectable antigen-specific antibody response, and antibody responses, when detected, were specific to the infecting parasite genotype and decayed in the months after infection. In conclusion, humoral immune responses against specific parasite antigens were associated with acquired immunity. While antibody decay over time and parasite genotype-specificity may limit natural immunity, this work serves as a foundation for antigen selection for vaccine design.
Collapse
Affiliation(s)
- Carol A. Gilchrist
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Jennie Z. Ma
- Public Health Science, University of Virginia, Charlottesville, Virginia, USA
| | - Andy Teng
- Antigen Discovery Inc, Irvine, California, USA
| | - Amit Oberai
- Antigen Discovery Inc, Irvine, California, USA
| | | | - Masud Alam
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Mamun Kabir
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - A.S.G. Faruque
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Diseases Research, Dhaka, Bangladesh
| | - William A. Petri
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
- Microbiology, Immunology and Cancer Biology, and
- Pathology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Steiner KL, Kabir M, Hossain B, Gilchrist CA, Ma JZ, Ahmed T, Faruque ASG, Haque R, Petri WA. Delayed Time to Cryptosporidiosis in Bangladeshi Children is Associated with Greater Fecal IgA against Two Sporozoite-Expressed Antigens. Am J Trop Med Hyg 2021; 104:229-232. [PMID: 33078702 PMCID: PMC7790099 DOI: 10.4269/ajtmh.20-0657] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cryptosporidiosis is common in early childhood, and both diarrheal and subclinical infections are associated with adverse developmental outcomes. Improved therapeutic medications may help reduce the burden of cryptosporidial diarrhea; however, an effective vaccine would be better able to prevent the detrimental impact of both diarrheal and subclinical disease. A more complete understanding of naturally occurring immunity may further inform strategies to develop an effective vaccine. In this prospective cohort study of Bangladeshi children, greater fecal IgA at 12 months, but not plasma IgG, directed against two sporozoite-expressed, immunodominant and vaccine candidate antigens was associated with delayed time to subsequent cryptosporidiosis to 3 years of life. These findings extend prior work and further support the role of mucosal antibody responses in naturally developing protective immunity to Cryptosporidium.
Collapse
Affiliation(s)
- Kevin L. Steiner
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Mamun Kabir
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Biplob Hossain
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Carol A. Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Jennie Z. Ma
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville, Virginia
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Abu S. G. Faruque
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Rashidul Haque
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia;,Address correspondence to William A. Petri, Jr., Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, PO Box 801340, Charlottesville, VA 22908-1340. E-mail:
| |
Collapse
|
3
|
Steiner KL, Kabir M, Priest JW, Hossain B, Gilchrist CA, Cook H, Ma JZ, Korpe PS, Ahmed T, Faruque ASG, Haque R, Petri WA. Fecal Immunoglobulin A Against a Sporozoite Antigen at 12 Months Is Associated With Delayed Time to Subsequent Cryptosporidiosis in Urban Bangladesh: A Prospective Cohort Study. Clin Infect Dis 2020; 70:323-326. [PMID: 31131855 PMCID: PMC6938969 DOI: 10.1093/cid/ciz430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/24/2019] [Indexed: 11/20/2022] Open
Abstract
In this prospective cohort study of Bangladeshi children, greater fecal immunoglobulin A, but not plasma immunoglobulin G, directed against the Cryptosporidium sporozoite-expressed antigen Cp23 at 12 months of age was associated with delayed time to subsequent cryptosporidiosis. This finding suggests a protective role for mucosal antibody-mediated immunity in naturally exposed children.
Collapse
Affiliation(s)
- Kevin L Steiner
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| | | | - Jeffrey W Priest
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Carol A Gilchrist
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville
| | - Heather Cook
- Department of Statistics, School of Medicine, University of Virginia, Charlottesville
| | - Jennie Z Ma
- Division of Biostatistics, Department of Public Health Sciences, School of Medicine, University of Virginia, Charlottesville
| | - Poonum S Korpe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | - William A Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville,Correspondence: W. A. Petri, Jr, University of Virginia, Department of Medicine, PO Box 801340, Charlottesville, VA 22908-1340 ()
| |
Collapse
|
4
|
Haserick JR, Klein JA, Costello CE, Samuelson J. Cryptosporidium parvum vaccine candidates are incompletely modified with O-linked-N-acetylgalactosamine or contain N-terminal N-myristate and S-palmitate. PLoS One 2017; 12:e0182395. [PMID: 28792526 PMCID: PMC5549699 DOI: 10.1371/journal.pone.0182395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022] Open
Abstract
Cryptosporidium parvum (studied here) and Cryptosporidium hominis are important causes of diarrhea in infants and immunosuppressed persons. C. parvum vaccine candidates, which are on the surface of sporozoites, include glycoproteins with Ser- and Thr-rich domains (Gp15, Gp40, and Gp900) and a low complexity, acidic protein (Cp23). Here we used mass spectrometry to determine that O-linked GalNAc is present in dense arrays on a glycopeptide with consecutive Ser derived from Gp40 and on glycopeptides with consecutive Thr derived from Gp20, a novel C. parvum glycoprotein with a formula weight of ~20 kDa. In contrast, the occupied Ser or Thr residues in glycopeptides from Gp15 and Gp900 are isolated from one another. Gly at the N-terminus of Cp23 is N-myristoylated, while Cys, the second amino acid, is S-palmitoylated. In summary, C. parvum O-GalNAc transferases, which are homologs of host enzymes, densely modify arrays of Ser or Thr, as well as isolated Ser and Thr residues on C. parvum vaccine candidates. The N-terminus of an immunodominant antigen has lipid modifications similar to those of host cells and other apicomplexan parasites. Mass spectrometric demonstration here of glycopeptides with O-glycans complements previous identification C. parvum O-GalNAc transferases, lectin binding to vaccine candidates, and human and mouse antibodies binding to glycopeptides. The significance of these post-translational modifications is discussed with regards to the function of these proteins and the design of serological tests and vaccines.
Collapse
Affiliation(s)
- John R. Haserick
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joshua A. Klein
- Program for Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
5
|
Bedi B, Mead JR. Cryptosporidium parvum antigens induce mouse and human dendritic cells to generate Th1-enhancing cytokines. Parasite Immunol 2013; 34:473-85. [PMID: 22803713 DOI: 10.1111/j.1365-3024.2012.01382.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cryptosporidium parvum is an opportunistic intracellular parasite that causes mild to severe diarrhoea, which can be life-threatening in an immunocompromised host. To increase our understanding of the mechanisms that play a role in host immune responses, we investigated the effects of C. parvum antigens on the phenotype of mouse and human dendritic cells (DCs). Cryptosporidium parvum antigens induced DC activation as indicated by upregulation of the maturation marker CD209, as well as by the production of the cytokines interleukin-12 p70, IL-2, IL-1beta, IL-6. In particular, significant increases in the expression of IL-12 p70 were observed from mouse DCs derived from bone marrow in response to solubilized sporozoite antigen and the recombinant cryptosporidial antigens, Cp40 and Cp23. We observed a small but significant increase in IL-18 expression following the exposure to Cp40. We found that the induction of Th1 cytokines was MyD88 dependent (MyD88 knockout mouse DCs were unresponsive). Additionally, both sporozoite preparations (solubilized and live) significantly induced IL-12 production by human monocytic dendritic cells (MoDCs). This finding indicates that solubilized as well as recombinant antigens can induce the maturation of DCs and subsequently initiate an innate immune response.
Collapse
Affiliation(s)
- B Bedi
- Atlanta VA Medical Center, Decatur, GA 30033, USA
| | | |
Collapse
|
6
|
Borad AJ, Allison GM, Wang D, Ahmed S, Karim MM, Kane AV, Moy J, Hibberd PL, Ajjampur SSR, Kang G, Calderwood SB, Ryan ET, Naumova E, Khan WA, Ward HD. Systemic antibody responses to the immunodominant p23 antigen and p23 polymorphisms in children with cryptosporidiosis in Bangladesh. Am J Trop Med Hyg 2012; 86:214-22. [PMID: 22302851 DOI: 10.4269/ajtmh.2012.11-0273] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Cryptosporidium is a major cause of diarrhea in children in developing countries. However, there is no vaccine available and little is known about immune responses to protective antigens. We investigated antibody responses to p23, a putative vaccine candidate, in children in Bangladesh with cryptosporidiosis and diarrhea (cases) and uninfected children with diarrhea (controls), and p23 gene polymorphisms in infecting species. Serum IgM, IgG, and IgA responses to p23 were significantly greater in cases than controls after three weeks of follow-up. Cases with acute diarrhea had significantly greater serum IgA and IgM responses than those with persistent diarrhea, which suggested an association with protection from prolonged disease. The p23 sequences were relatively conserved among infecting species and subtype families. Although most children were infected with Cryptosporidium hominis, there was a cross-reactive antibody response to C. parvum antigen. These results support further development of p23 as a vaccine candidate.
Collapse
Affiliation(s)
- Anoli J Borad
- Division of Geographic Medicine and Infectious Disease, Tufts Medical Center, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Challenges in understanding the immunopathogenesis of Cryptosporidium infections in humans. Eur J Clin Microbiol Infect Dis 2011; 30:1461-72. [PMID: 21484252 DOI: 10.1007/s10096-011-1246-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 03/22/2011] [Indexed: 12/12/2022]
Abstract
Water and foodborne enteric cryptosporidiosis is a globally emerging public health issue. Although the clinical manifestations of enteric cryptosporidiosis are generally limited to intestinal infection and subsequent diarrhoea, extra-intestinal invasion has also been diagnosed in immunocompromised individuals, particularly in those infected with human immunodeficiency virus (HIV) or AIDS. Due to an inadequate understanding of Cryptosporidium immunopathogenesis in humans, the development of vaccines or therapeutic agents and their application in diseases management is difficult. Current therapeutic measures are not fully effective in the treatment of the disease. Therefore, the implementation of strategies designed to control the chain of cryptosporidiosis transmission (environment ↔ human ↔ food/water ↔ animal) is a critical but challenging issue to public health authorities across the world. Several excellent studies have been done on innate, acquired and mucosal immunity against Cryptosporidium infections using animal models, in vitro human cell lines and human volunteers. However, there are still multiple challenges in understanding the intestinal immune response (immunopathogenesis) to Cryptosporidium infection in humans. This paper reviews recent updates on immunopathogenesis and immune responses to Cryptosporidium infection in humans, while also discussing the current limitations that exist regarding a precise understanding of the immunopathological mechanisms.
Collapse
|
8
|
LIU K, ZAI D, ZHANG D, WEI Q, HAN G, GAO H, HUANG B. Divalent Cp15-23 vaccine enhances immune responses and protection againstCryptosporidium parvuminfection. Parasite Immunol 2010; 32:335-44. [DOI: 10.1111/j.1365-3024.2009.01191.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Cloning and characterization of the acidic ribosomal protein P2 of Cryptosporidium parvum, a new 17-kilodalton antigen. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:954-65. [PMID: 20410328 DOI: 10.1128/cvi.00073-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptosporidium infection is commonly observed among children and immunocompromised individuals in developing countries, but large-scale outbreaks of disease among adults have not been reported. In contrast, outbreaks of cryptosporidiosis in the United States and Canada are increasingly common among patients of all ages. Thus, it seems likely that residents of regions where Cryptosporidium is highly endemic acquire some level of immunity, while residents of the developed world do not. A new immunodominant Cryptosporidium parvum antigen in the 15- to 17-kDa size range was identified as the Cryptosporidium parvum 60S acidic ribosomal protein P2 (CpP2). We developed a recombinant protein-based enzyme-linked immunosorbent assay for serologic population surveillance for antibodies that was 89% sensitive and 92% specific relative to the results of the large-format Western blot assay. The human IgG response is directed almost exclusively toward the highly conserved, carboxy-terminal 15 amino acids of the protein. Although IgG antibody cross-reactivity was documented with sera from patients with acute babesiosis, the development of an anti-CpP2 antibody response in our Peru study population correlated better with Cryptosporidium infection than with infection by any other parasitic protozoan. In Haiti, the prevalence of antibodies to CpP2 plateaus at 11 to 20 years of age. Because anti-CpP2 IgG antibodies were found only among residents of countries in the developing world where Cryptosporidium infection occurs early and often, we propose that this response may be a proxy for the intensity of infection and for acquired immunity.
Collapse
|
10
|
Abstract
Immune responses play a critical role in protection from, and resolution of, cryptosporidiosis. However, the nature of these responses, particularly in humans, is not completely understood. Both innate and adaptive immune responses are important. Innate immune responses may be mediated by Toll-like receptor pathways, antimicrobial peptides, prostaglandins, mannose-binding lectin, cytokines and chemokines. Cell-mediated responses, particularly those involving CD4(+) T cells and IFN-gamma play a dominant role. Mucosal antibody responses may also be involved. Proteins mediating attachment and invasion may serve as putative protective antigens. Further knowledge of human immune responses in cryptosporidiosis is essential in order to develop targeted prophylactic and therapeutic interventions. This review focuses on recent advances and future prospects in the understanding of human immune responses to Cryptosporidium infection.
Collapse
Affiliation(s)
- Anoli Borad
- Division of Internal Medicine, Section of Infectious Diseases, Yale University, 300 Cedar Street, TAC S169, New Haven, CT 06520, USA, Tel.: +1 203 737 5847, Fax: +1 203 785 6815,
| | - Honorine Ward
- Division of Geographic Medicine & Infectious Diseases, Tufts Medical Center, Box 41, 800 Washington Street, Boston, MA 02111, USA, Tel.: +1 617 636 7022, Fax: +1 617 636 5292,
| |
Collapse
|
11
|
Oral immunization with attenuated Salmonella enterica serovar Typhimurium encoding Cryptosporidium parvum Cp23 and Cp40 antigens induces a specific immune response in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1272-8. [PMID: 19605593 DOI: 10.1128/cvi.00089-09] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Attenuated Salmonella enterica serovar Typhimurium vaccine strain SL3261 was used as an antigen delivery system for the oral immunization of mice against two Cryptosporidium parvum antigens, Cp23 and Cp40. Each antigen was subcloned into the pTECH1 vector system, which allows them to be expressed as fusion proteins with highly immunogenic fragment C of tetanus toxin under the control of the anaerobically inducible nirB promoter. The recombinant vector was introduced into Salmonella Typhimurium vaccine strain SL3261, and the stable soluble expression of the chimeric protein was evaluated and confirmed by Western blotting with polyclonal C. parvum antisera. Mice were inoculated orally with a single dose of SL3261/pTECH-Cp23 or Cp40, respectively, and plasmid stability was demonstrated both in vitro and in vivo. Specific serum immunoglobulin G (IgG) antibodies against the Cp23 or Cp40 antigen were detected by enzyme-linked immunosorbent assay 35 days after immunization. Also, serum IgA and mucosal (feces) IgA antibodies were detected in 30% of the mice immunized with Cp23. In addition, prime-boosting with Cp23 and Cp40 DNA vaccine vectors followed by Salmonella immunization significantly increased antibody responses to both antigens. Our data show that a single oral inoculation with recombinant S. Typhimurium SL3261 can induce specific antibody responses to the Cp23 or Cp40 antigen from C. parvum in mice, suggesting that recombinant Salmonella is a feasible delivery system for a vaccine against C. parvum infection.
Collapse
|
12
|
|
13
|
Ehigiator HN, Romagnoli P, Priest JW, Secor WE, Mead JR. Induction of murine immune responses by DNA encoding a 23-kDa antigen of Cryptosporidium parvum. Parasitol Res 2007; 101:943-50. [PMID: 17487508 DOI: 10.1007/s00436-007-0565-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 04/24/2007] [Indexed: 12/01/2022]
Abstract
Cp23 has been identified as one of the immunodominant antigens involved in the immune response to Cryptosporidium parvum infection. Thus, in this study, Cp23 antigen was investigated as a vaccine candidate using the DNA vaccine model in adult interleukin-12 (IL-12) knockout (KO) mice, which are susceptible to C. parvum infection. Our data show that subcutaneous immunization in the ear with DNA encoding Cp23 (Cp23-DNA) cloned into the pUMVCb4 vector induced a significant anti-Cp23 immunoglobulin G1 (IgG1) and IgG2a antibody response and specific in vitro spleen cell proliferation to recombinant Cp23 as compared to control mice. Long-term memory responses were also detected after administration of the Cp23-DNA vaccine. Furthermore, Cp23-DNA vaccination induced a 50-60% reduction in oocysts shedding, indicating a partial protection against C. parvum infection in IL-12 KO mice. However, it is possible that this protective response was nonspecific because mice immunized with vector only also exhibited lower oocyst shedding than the naive controls. These results suggest that DNA encoding for immunodominant C. parvum antigens may provide an effective means of eliciting humoral and cellular responses and possibly in generating protective immunity against C. parvum infections in mammals.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/blood
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cryptosporidiosis/immunology
- Cryptosporidiosis/parasitology
- Cryptosporidiosis/prevention & control
- Cryptosporidium parvum/genetics
- Cryptosporidium parvum/immunology
- DNA, Protozoan/genetics
- DNA, Protozoan/immunology
- Female
- Immunization
- Immunodominant Epitopes/immunology
- Immunoglobulin G/blood
- Immunologic Memory
- Interleukin-12/genetics
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Protozoan Vaccines/administration & dosage
- Protozoan Vaccines/genetics
- Protozoan Vaccines/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Humphrey N Ehigiator
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30033, USA
| | | | | | | | | |
Collapse
|
14
|
Boulter-Bitzer JI, Lee H, Trevors JT. Molecular targets for detection and immunotherapy in Cryptosporidium parvum. Biotechnol Adv 2006; 25:13-44. [PMID: 17055210 DOI: 10.1016/j.biotechadv.2006.08.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 08/14/2006] [Accepted: 08/22/2006] [Indexed: 11/21/2022]
Abstract
Cryptosporidium parvum is an obligate protozoan parasite responsible for the diarrheal illness cryptosporidiosis in humans and animals. Although C. parvum is particularly pathogenic in immunocompromised hosts, the molecular mechanisms by which C. parvum invades the host epithelial cells are not well understood. Characterization of molecular-based antigenic targets of C. parvum is required to improve the specificity of detection, viability assessments, and immunotherapy (treatment). A number of zoite surface (glyco)proteins are known to be expressed during, and believed to be involved in, invasion and infection of host epithelial cells. In the absence of protective treatments for this illness, antibodies targeted against these zoite surface (glyco)proteins offers a rational approach to therapy. Monoclonal, polyclonal and recombinant antibodies represent useful immunotherapeutic means of combating infection, especially when highly immunogenic C. parvum antigens are utilized as targets. Interruption of life cycle stages of this parasite via antibodies that target critical surface-exposed proteins can potentially decrease the severity of disease symptoms and subsequent re-infection of host tissues. In addition, development of vaccines to this parasite based on the same antigens may be a valuable means of preventing infection. This paper describes many of the zoite surface glycoproteins potentially involved in infection, as well as summarizes many of the immunotherapeutic studies completed to date. The identification and characterization of antibodies that bind to C. parvum-specific cell surface antigens of the oocyst and sporozoite will allow researchers to fully realize the potential of molecular-based immunotherapy to this parasite.
Collapse
|
15
|
Wyatt CR, Lindahl S, Austin K, Kapil S, Branch J. Response of T Lymphocytes From Previously Infected Calves to Recombinant Cryptosporidium parvum P23 Vaccine Antigen. J Parasitol 2005; 91:1239-42. [PMID: 16419781 DOI: 10.1645/ge-3446rn.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
We had previously demonstrated that a Type-1-like immune response involving interferon-gamma expression in lamina propria lymphocytes accompanied by IgG2 subclass fecal antibodies to Cryptosporidium parvum p23 emerged in gut mucosa of calves recovering from cryptosporidiosis. Because a recombinant p23 had been shown to protect calves from cryptosporidiosis when administered as a vaccine antigen to late gestation cattle, this study was undertaken to determine if the same vaccine antigen could induce a Type-1-like, in vitro response by T cells from calves that had recovered from C. parvum infection. We isolated peripheral blood mononuclear cells from calves that had been previously infected with C. parvum oocysts and incubated them in the presence or absence of the recombinant C. parvum p23 vaccine antigen. We used flow cytometry to simultaneously detect cells in cell cycle and identify the T cell subset containing cycling cells. We also used flow cytometry to identify interferon-gamma positive cells and 2-dimensional gel electrophoresis to profile proteins made by PBMC stimulated with the recombinant p23 vaccine antigen. The results demonstrated that CD4+ T lymphocytes proliferated and that interferon-gamma was synthesized by a subset of stimulated cells. Two-dimensional gel electrophoresis revealed the presence of several cytoplasmic proteins in a size range of approximately 25-80 kDa that were detected in p23-stimulated, but not in unstimulated, cytoplasmic samples. Together, the results show that the recombinant p23 vaccine antigen can stimulate a Type-1-like immune response by T cells from calves that have recovered from C. parvum infection.
Collapse
Affiliation(s)
- C R Wyatt
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan 66506, USA.
| | | | | | | | | |
Collapse
|
16
|
Wang HF, Swain JB, Besser TE, Jasmer D, Wyatt CR. Detection of antibodies to a recombinant Cryptosporidium parvum p23 in serum and feces from neonatal calves. J Parasitol 2003; 89:918-23. [PMID: 14627138 DOI: 10.1645/ge-3160] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Passive transfer of maternal antibodies via colostrum is important to protect newborn ruminants against microbial pathogens. In this study, 10 sets of calf serum, a sample of the colostrum fed to the calf, and serial fecal samples through the first 6 days after birth were collected from arbitrarily selected newborn Holstein heifers. A recombinant Cryptosporidium parvum p23, termed rC7, was used to determine whether anti-C. parvum antibodies can be detected in clinically normal neonates. The results demonstrated that serum, the associated colostrum, and fecal samples contained anti-rC7 antibodies. IgM and IgG1 anti-rC7 tended to be present in highest titers. The presence of specific antibodies to C. parvum was confirmed using Western blots of purified sporozoite membranes probed with serum and colostral whey. Collectively, the results indicated that neonatal calves had antibodies to C. parvum as early as 1 day after birth and suggested that the antibodies were passively transferred.
Collapse
Affiliation(s)
- Hsu-Fong Wang
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington 99164, USA
| | | | | | | | | |
Collapse
|
17
|
Abstract
An increased understanding of host immune responses to Cryptosporidium parvum which are responsible for clearance of primary infection and resistance to reinfection, and characterization of the parasite molecules to which they are directed, are essential for discovery of effective active and passive immunization strategies against cryptosporidiosis. In this article, recent advances in knowledge of humoral and cellular immune responses to C. parvum, their antigen specificities, and mechanisms of protection are briefly reviewed.
Collapse
Affiliation(s)
- Michael W Riggs
- Department of Veterinary Science and Microbiology, Veterinary Science and Microbiology Building, Room 202, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
18
|
Abstract
Exposure to Cryptosporidium parvum in healthy individuals results in transient infection that may be asymptomatic or can result in self-limited diarrhoea. In contrast, acquired immune deficiency syndrome patients with cryptosporidiosis can experience severe manifestations of disease. Volunteer studies have demonstrated that as few as 10 oocysts can cause infection in otherwise healthy adults and that isolates from geographically diverse regions differ in infectivity and, perhaps, virulence. Variability in isolate pathogenicity and infectivity has also been seen in bovine and murine models, respectively. Furthermore, isolate specific differences in protein composition and in host immunoreactivity have been observed. The molecular basis for differences in pathogenicity is not understood. Determining which factors are responsible for host selectivity and for the initiation, establishment, and perpetuation of infection with Cryptosporidium is key to rational drug design and vaccine development. To date, no specific virulence factors have been unequivocally shown to individually cause direct or indirect damage to host tissues nor have mutant strains been produced that could prove that particular deletions result in less virulent strains. Nevertheless, a number of candidate molecules have been identified by immunological and molecular methods. Here, we review the salient characteristics of some of these putative virulence determinants, including molecules that are involved in adhesion, protein degradation and the modulation of the host responses.
Collapse
Affiliation(s)
- Pablo C Okhuysen
- Department of Medicine, Division of Infectious Diseases and The School of Public Health, The University of Texas Health Science Center at Houston Medical School, 6431 Fannin, 1.728 JFB, Houston, TX 77030, USA.
| | | |
Collapse
|