1
|
Shirzad Saghavaz N, Haseli M. Calliobothrium Narsisae n. sp. (Tetraphyllidea: Calliobothriidae) from the Triakid Shark Mustelus mosis Hemprich and Ehrenberg from the Persian Gulf, with a Note on Its Specific Proglottisation Process and a Key to the Species of the Genus. Acta Parasitol 2024; 69:1331-1337. [PMID: 38819701 DOI: 10.1007/s11686-024-00855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 05/05/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE The members of the tetraphyllidean genus Calliobothrium exhibit a high degree of host specificity in the shark genus Mustelus. In the Indian Ocean, where M. mosis occurs dominantly, there is no information on Calliobothrium. The purpose of this study was the evaluation of the Calliobothrium species in M. mosis in the Persian Gulf, northwestern Indian Ocean. METHODS Nine specimens of Mustelus mosis were caught from the Persian Gulf. The tapeworms isolated were stained, measured, and the line drawings were made. RESULTS Calliobothrium narsisae n. sp. is described and differs from C. creeveyae in the intact, rather than the three-lobed, posterior bothridial margins, from C. tylotocephalum in possessing three, rather than one, suckers per bothridial muscular pad, from C. nodosum in possessing the elongated, rather than robust and thorn-like, hooks, from C. shirozame in a maximum number of four, rather than three, dorsal and four, rather than three, ventral laciniations along the strobila, and from its other congeners in possessing three, rather than two, dorsal and three, rather than two, ventral laciniations in the anteriormost immature proglottids. A key to the species of the genus is presented and the proglottisation process, by the germinative zone placed in the terminal part of the worm at least in some stages of growth to maturity, is discussed. CONCLUSION The description of C. narsisae n. sp., which brings the total number of valid species of Calliobothrium to 10, also indicates that the germinative zone is not always at the anterior to strobila and in this new species it is placed in the terminal part of the worm at least in some stages of growth to maturity.
Collapse
Affiliation(s)
| | - Mohammad Haseli
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| |
Collapse
|
2
|
Franzese S, Facal GG, Menoret A. Tapeworms (Platyhelminthes, Cestoda) from marine chondrichthyans of the Southwestern Atlantic Ocean, and the sub-Antarctic and Antarctic islands: a checklist. Zookeys 2023; 1163:78-119. [PMID: 37250366 PMCID: PMC10220498 DOI: 10.3897/zookeys.1163.100485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/23/2023] [Indexed: 05/31/2023] Open
Abstract
A parasite-host list of cestodes parasitizing chondrichthyans in the Southwest Atlantic off Argentina and surrounding waters of Antarctica is compiled based on the available literature. The list is based on published descriptions and redescriptions of species, and newly collected worms during the current study. A total of 57 valid species belonging to 28 genera of the orders Cathetocephalidea, Diphyllidea, Gyrocotylidea, Lecanicephalidea, Onchoproteocephalidea, Phyllobothriidea, Rhinebothriidea, "Tetraphyllidea", and Trypanorhyncha is listed. Information on hosts, localities, specimens in collections and comments on tapeworms are also included. A host-parasite list including chimaeras (1 order, 1 genus), batoids (4 orders, 10 genera), and sharks (3 orders, 5 genera) is provided. Tapeworm diversity, distribution range, and host associations are discussed. The cestodes orders Phyllobothriidea and Rhinebothriidea exhibit the highest species richness, with 13 and 12 species, respectively. Onchoproteocephalideans and rhinebothriideans have the broadest geographic distribution in the study area. Regarding hosts, arhynchobatid skates are the group most frequently associated with cestodes. However, further collecting efforts are necessary to understand whether this data reflect the real diversity and host association of these parasites or is a result of a bias in sampling.
Collapse
Affiliation(s)
- Sebastián Franzese
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Sistemática y Biología de Parásitos de Organismos Acuáticos, Ciudad Universitaria, C1428EGA, Buenos Aires, ArgentinaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Guillermina García Facal
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Sistemática y Biología de Parásitos de Organismos Acuáticos, Ciudad Universitaria, C1428EGA, Buenos Aires, ArgentinaUniversidad de Buenos AiresBuenos AiresArgentina
| | - Adriana Menoret
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Sistemática y Biología de Parásitos de Organismos Acuáticos, Ciudad Universitaria, C1428EGA, Buenos Aires, ArgentinaUniversidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
3
|
Caira JN, Jensen K, Pickering M, Ruhnke TR, Gallagher KA. Intrigue surrounding the life-cycles of species of Clistobothrium (Cestoda: Phyllobothriidea) parasitising large pelagic sharks. Int J Parasitol 2020; 50:1043-1055. [PMID: 32979336 DOI: 10.1016/j.ijpara.2020.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 11/19/2022]
Abstract
This study aimed to locate the adults, and thus also the definitive hosts, of three species of marine mammal-parasitising larval cestodes that have molecular affinities with Clistobothrium. New collections led to the discovery of adults of two new species of Clistobothrium, one from the longfin mako shark and one from the salmon shark. New material of Clistobothrium tumidum was collected from the great white shark and new material of a previously reported undescribed species of Clistobothrium was collected from the porbeagle shark. Larvae of Clistobothrium were opportunistically collected from sockeye salmon and four species of small squaliform sharks. Sequence data for the D1-D3 region of the 28S rDNA gene were generated for all but one of these taxa. The tree resulting from maximum likelihood analysis of those data, in combination with comparable data from GenBank, indicates that squaliform sharks can serve as intermediate hosts for the species from the porbeagle shark. The larvae from salmon exhibit a unique molecular signature and, based on diet data, may be conspecific with adults from the salmon shark. Informed by sequence data for new material of Monorygma and existing data for Phyllobothrium, the larvae provisionally identified as Monorygma grimaldii and Phyllobothrium delphini were formally transferred to Clistobothrium. Especially puzzling was that the molecular signatures of none of the eight species of Clistobothrium match those of the three marine mammal-parasitising larval forms. We are at a loss as to where else to look for the three corresponding adult forms. The great white shark remains the most likely candidate given it consumes marine mammals with some regularity, but seems unlikely to host five species of Clistobothrium. Alternatively, we are left wondering if the large marine mammal predator Carcharocles megalodon may not be extinct after all.
Collapse
Affiliation(s)
- Janine N Caira
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., Storrs, CT 06269-3043, USA.
| | - Kirsten Jensen
- Department of Ecology & Evolutionary Biology and the Biodiversity Institute, University of Kansas, 1200 Sunnyside Ave, Lawrence, KS 66045, USA
| | - Maria Pickering
- Department of Biological Sciences, Meredith College, 3800 Hillsborough St., Raleigh, NC 27607, USA
| | - Timothy R Ruhnke
- Department of Biology, West Virginia State University, Barron Drive, Institute, WV 25112-1000, USA
| | - Kaitlin A Gallagher
- Bamfield Marine Sciences Centre, 100 Pachena Road, Bamfield, British Columbia VOR 1B0, Canada
| |
Collapse
|
4
|
Bernot JP, Caira JN. Site specificity and attachment mode of Symcallio and Calliobothrium species (Cestoda: "Tetraphyllidea") in smoothhound sharks of the genus Mustelus (Carcharhiniformes: Triakidae). PeerJ 2019; 7:e7264. [PMID: 31338258 PMCID: PMC6628880 DOI: 10.7717/peerj.7264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 06/06/2019] [Indexed: 11/20/2022] Open
Abstract
Previous studies suggest that cestodes (i.e., tapeworms) of the sister genera Symcallio and Calliobothrium attach in different specific regions of the spiral intestine of their triakid shark hosts, with species of Symcallio attaching in the anterior region of the spiral intestine and species of Calliobothrium attaching with a broader distribution centered around the middle of the spiral intestine. In the present study, we tested the generality of this pattern of site specificity in two additional species pairs: Symcallio peteri and Calliobothrium euzeti in Mustelus palumbes and S. leuckarti and C. wightmanorum in M. asterias. Finding that these cestodes also exhibit the aforementioned pattern, we investigated a series of functional explanations that might account for this phylogenetically conserved pattern of site specificity. The mucosal surface of the spiral intestine of both shark species was characterized, as were the attachment mechanisms of all four cestode species. Although anatomical differences in mucosal surface were seen along the length of the spiral intestine in both shark species, these differences do not appear to correspond to the attachment mode of these cestodes. We find that while species of Symcallio, like most cestodes, attach using their scolex, species of Calliobothrium attach with their scolex and, to a much greater extent, also with their strobila. Furthermore, attachment of Calliobothrium species appears to be enhanced by laciniations (flap-like extensions on the posterior margins of the proglottids) that interdigitate with elements of the mucosal surface of the spiral intestine. The role of proglottid laciniations in attachment in species of Calliobothrium helps reconcile a number of morphological features that differ between these two closely related cestode genera.
Collapse
Affiliation(s)
- James P. Bernot
- Institute for Biomedical Sciences, George Washington University, Washington, D.C., USA
| | - Janine N. Caira
- Department of Ecology & Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
5
|
Schaeffner BC, Smit NJ. Parasites of cartilaginous fishes (Chondrichthyes) in South Africa - a neglected field of marine science. Folia Parasitol (Praha) 2019; 66. [PMID: 30919826 DOI: 10.14411/fp.2019.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/03/2018] [Indexed: 01/12/2023]
Abstract
Southern Africa is considered one of the world's 'hotspots' for the diversity of cartilaginous fishes (Chondrichthyes), with currently 204 reported species. Although numerous literature records and treatises on chondrichthyan fishes are available, a paucity of information exists on the biodiversity of their parasites. Chondrichthyan fishes are parasitised by several groups of protozoan and metazoan organisms that live either permanently or temporarily on and within their hosts. Reports of parasites infecting elasmobranchs and holocephalans in South Africa are sparse and information on most parasitic groups is fragmentary or entirely lacking. Parasitic copepods constitute the best-studied group with currently 70 described species (excluding undescribed species or nomina nuda) from chondrichthyans. Given the large number of chondrichthyan species present in southern Africa, it is expected that only a mere fraction of the parasite diversity has been discovered to date and numerous species await discovery and description. This review summarises information on all groups of parasites of chondrichthyan hosts and demonstrates the current knowledge of chondrichthyan parasites in South Africa. Checklists are provided displaying the host-parasite and parasite-host data known to date.
Collapse
Affiliation(s)
- Bjoern C Schaeffner
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| | - Nico J Smit
- Water Research Group, Unit for Environmental Sciences and Management, Potchefstroom Campus, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Cutmore SC, Bennett MB, Miller TL, Cribb TH. Patterns of specificity and diversity in species of Paraorygmatobothrium Ruhnke, 1994 (Cestoda: Phyllobothriidae) in Moreton Bay, Queensland, Australia, with the description of four new species. Syst Parasitol 2017; 94:941-970. [DOI: 10.1007/s11230-017-9759-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/10/2017] [Indexed: 11/30/2022]
|
7
|
Trevisan B, Primon JF, Marques FPL. Systematics and diversification of Anindobothrium Marques, Brooks & Lasso, 2001 (Eucestoda: Rhinebothriidea). PLoS One 2017; 12:e0184632. [PMID: 28953933 PMCID: PMC5617167 DOI: 10.1371/journal.pone.0184632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
Tapeworms of the genus Anindobothrium Marques, Brooks & Lasso, 2001 are found in both marine and Neotropical freshwater stingrays of the family Potamotrygonidae. The patterns of host association within the genus support the most recent hypothesis about the history of diversification of potamotrygonids, which suggests that the ancestor of freshwater lineages of the Potamotrygonidae colonized South American river systems through marine incursion events. Despite the relevance of the genus Anindobothrium to understand the history of colonization and diversification of potamotrygonids, no additional efforts were done to better investigate the phylogenetic relationship of this taxon with other lineages of cestodes since its erection. This study is a result of recent collecting efforts to sample members of the genus in marine and freshwater potamotrygonids that enabled the most extensive documentation of the fauna of Anindobothrium parasitizing species of Styracura de Carvalho, Loboda & da Silva, Potamotrygon schroederi Fernández-Yépez, P. orbignyi (Castelnau) and P. yepezi Castex & Castello from six different countries, representing the eastern Pacific Ocean, Caribbean Sea, and river basins in South America (Rio Negro, Orinoco, and Maracaibo). The newly collected material provided additional specimens for morphological studies and molecular samples for subsequent phylogenetic analyses that allowed us to address the phylogenetic position of Anindobothrium and provide molecular and morphological evidence to recognize two additional species for the genus. The taxonomic actions that followed our analyses included the proposition of a new family, Anindobothriidae fam. n., to accommodate the genus Anindobothrium in the order Rhinebothriidea Healy, Caira, Jensen, Webster & Littlewood, 2009 and the description of two new species-one from the eastern Pacific Ocean, A. carrioni sp. n., and the other from the Caribbean Sea, A. inexpectatum sp. n. In addition, we also present a redescription of the type species of the genus, A. anacolum (Brooks, 1977) Marques, Brooks & Lasso, 2001, and of A. lisae Marques, Brooks & Lasso, 2001. Finally, we discuss the paleogeographical events mostly linked with the diversification of the genus and the protocols adopted to uncover cryptic diversity in Anindobothrium.
Collapse
Affiliation(s)
- Bruna Trevisan
- Curso de Pós-graduação/Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- Departamento de Zoologia/Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Juliana F. Primon
- Departamento de Zoologia/Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fernando P. L. Marques
- Departamento de Zoologia/Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Alves PV, de Chambrier A, Scholz T, Luque JL. Annotated checklist of fish cestodes from South America. Zookeys 2017; 650:1-205. [PMID: 28331385 PMCID: PMC5345339 DOI: 10.3897/zookeys.650.10982] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/21/2016] [Indexed: 01/18/2023] Open
Abstract
An exhaustive literature search supplemented by a critical examination of records made it possible to present an annotated checklist of tapeworms (Cestoda) that, as adults or larvae (metacestodes), parasitize freshwater, brackish water and marine fishes, i.e. cartilaginous and bony fishes, in South America. The current knowledge of their species diversity, host associations and geographical distribution is reviewed. Taxonomic problems are discussed based on a critical evaluation of the literature and information on DNA sequences of individual taxa is provided to facilitate future taxonomic and phylogenetic studies. As expected, the current knowledge is quite uneven regarding the number of taxa and host-associations reported from the principal river basins and marine ecoregions. These differences may not only reflect the actual cestode richness but may also be due to the research effort that has been devoted to unravelling the diversity of these endoparasitic helminths in individual countries. A total of 297 valid species, 61 taxa identified to the generic level, in addition to unidentified cestodes, were recorded from 401 species of fish hosts. Among the recognized cestode orders, 13 have been recorded in South America, with the Onchoproteocephalidea displaying the highest species richness, representing c. 50% of all species diversity. The majority of records include teleost fish hosts (79%) that harbour larval and adult stages of cestodes, whereas stingrays (Myliobatiformes) exhibit the highest proportion of records (39%) among the elasmobranch hosts. Fish cestodes are ubiquitous in South America, being mostly recorded from the Warm Temperate Southeastern Pacific (WTSP; 31%) for marine hosts and the Amazon River basin (45%) for freshwater ones. The following problems were detected during the compilation of literary data: (i) unreliability of many records; (ii) poor taxonomic resolution, i.e. identification made only to the genus or even family level; (iii) doubtful host identification; and (iv) the absence of voucher specimens that would enable us to verify identification. It is thus strongly recommended to always deposit representative specimens in any type of studies, including faunal surveys and ecological studies. An analysis of the proportion of three basic types of studies, i.e. surveys, taxonomic and ecological papers, has shown a considerable increase of ecological studies over the last decade.
Collapse
Affiliation(s)
- Philippe V. Alves
- Programa de Pós-Graduação em Biologia Animal, Universidade Federal Rural do Rio de Janeiro, BR 465, Km 7, 23851-970, Seropédica, Rio de Janeiro, Brazil
| | - Alain de Chambrier
- Natural History Museum of Geneva, CP 6434, CH - 1211 Geneva 6, Switzerland
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - José L. Luque
- Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, CP 74.540, BR 465, Km 7, 23851-970, Seropédica, Rio de Janeiro, Brazil
| |
Collapse
|
9
|
Merlo-Serna AI, García-Prieto L. A checklist of helminth parasites of Elasmobranchii in Mexico. Zookeys 2016; 563:73-128. [PMID: 27047240 PMCID: PMC4797213 DOI: 10.3897/zookeys.563.6067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 12/04/2015] [Indexed: 11/22/2022] Open
Abstract
A comprehensive and updated summary of the literature and unpublished records contained in scientific collections on the helminth parasites of the elasmobranchs from Mexico is herein presented for the first time. At present, the helminth fauna associated with Elasmobranchii recorded in Mexico is composed of 132 (110 named species and 22 not assigned to species), which belong to 70 genera included in 27 families (plus 4 incertae sedis families of cestodes). These data represent 7.2% of the worldwide species richness. Platyhelminthes is the most widely represented, with 128 taxa: 94 of cestodes, 22 of monogeneans and 12 of trematodes; Nematoda and Annelida: Hirudinea are represented by only 2 taxa each. These records come from 54 localities, pertaining to 15 states; Baja California Sur (17 sampled localities) and Baja California (10), are the states with the highest species richness: 72 and 54 species, respectively. Up to now, 48 elasmobranch species have been recorded as hosts of helminths in Mexico; so, approximately 82% of sharks and 67% of rays distributed in Mexican waters lack helminthological studies. The present list provides the host, distribution (with geographical coordinates), site of infection, accession number in scientific collections, and references for the parasites. A host-parasite list is also provided.
Collapse
Affiliation(s)
- Aldo Iván Merlo-Serna
- Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Ap. Postal 70-153, C.P. 04510, México D.F., México
| | - Luis García-Prieto
- Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Ap. Postal 70-153, C.P. 04510, México D.F., México
| |
Collapse
|
10
|
Bernot JP, Caira JN, Pickering M. Diversity, phylogenetic relationships and host associations of Calliobothrium and Symcallio (Cestoda: ‘Tetraphyllidea') parasitising triakid sharks. INVERTEBR SYST 2016. [DOI: 10.1071/is15040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The laciniate, relatively large-bodied tetraphyllidean tapeworm genus Calliobothrium van Beneden, 1850 parasitises triakid sharks with all but one species found parasitising sharks of the genus Mustelus Linck, 1790. Historically, species of this genus were thought to exhibit a relaxed degree of host specificity relative to species of their sister genus Symcallio Bernot, Caira, & Pickering, 2015. However, several more recent studies have begun to question this difference and, in particular, the conspecificity of specimens identified as the types species, C. verticillatum (Rudolphi, 1819) van Beneden, 1850, from multiple host species. Our results suggest that diversity in the genus Calliobothrium has been under-reported. To explore this situation, specimens previously identified as C. verticillatum were collected from Mustelus asterias Cloquet, 1819 off the United Kingdom and Mustelus canis (Mitchell, 1815) off Connecticut, USA; these sharks each were found to host distinct species both of which are described here. Mustelus asterias was also confirmed to host Symcallio leuckarti (van Beneden, 1850) Bernot, Caira & Pickering, 2015, which is redescribed. In combination with newly collected material from Mustelus palumbes Smith, 1957 off South Africa and data available from GenBank, molecular phylogenetic analyses based on 28S rDNA data for four of the seven known species of Calliobothrium, including both new species and five of the 11 known species of Symcallio, were conducted. The resulting phylogeny supports the mutual monophyly of the two genera, which are readily distinguished based on whether they exhibit proglottid laciniations, and supports subclades of Symcallio with and without hook accessory pieces. These subclades of Symcallio appear to exhibit an intriguing congruence with two known subclades of their host genus, Mustelus.
Collapse
|