1
|
Sato Y, Matsunaga R, Tasumi S, Mizuno N, Nakane M, Hosoya S, Yamamoto A, Nakamura O, Tsutsui S, Shiozaki K, Kikuchi K. l-fucoside localization in the gills of the genus Takifugu and its possible implication in the parasitism of Heterobothrium okamotoi (Monogenea: Diclidophoridae). Biochim Biophys Acta Gen Subj 2023; 1867:130467. [PMID: 37777092 DOI: 10.1016/j.bbagen.2023.130467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND The monogenean parasite Heterobothrium okamotoi only parasitizes the gills of Takifugu rubripes. In this study, we hypothesized that the carbohydrates contribute to high host specificity of H. okamotoi. METHODS T. rubripes, T. niphobles, T. snyderi, and T. pardalis were used for UEA I staining of the gills and an in vivo challenge test against H. okamotoi. To examine the effect of l-fucose, an in vitro detachment test was conducted using the host's gills. Additionally, fucosylated proteins were isolated from the membrane proteins of T. niphobles gills. RESULTS The location of l-fucoside and the infection dynamics in four species were correlated to some extent; H. okamotoi detached relatively quickly from T. niphobles possessing l-fucoside both on the surface of the gills and in certain types of cells, including mucus cells, but detached slowly from T. snyderi possessing l-fucoside in only certain types of cells, including mucus cells. Under the conditions examined, H. okamotoi exhibited minimal detachment from T. rubripes and T. pardalis, and l-fucoside was not detected. The significantly higher detachment rate of H. okamotoi from the host's gills incubated in l-fucose-containing medium compared with the controls suggests that l-fucose in the non-host gills induced detachment of H. okamotoi. Four fucosylated proteins, including mucin5AC-like, were identified as potential factors for the detachment of H. okamotoi. CONCLUSIONS Fucosylated proteins covering the surface of non-host gills might contribute to H. okamotoi detachment. GENERAL SIGNIFICANCE This research shows the possible involvement of oligosaccharides in the host specificity of monogenean parasites.
Collapse
Affiliation(s)
- Yoshiki Sato
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| | - Ryohei Matsunaga
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| | - Satoshi Tasumi
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan.
| | - Naoki Mizuno
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| | - Motoyuki Nakane
- Kumamoto Prefectural Fisheries Research Center, 2450-2 Oyanomachinaka, Amakusa, Kumamoto 869-3603, Japan
| | - Sho Hosoya
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| | - Atsushi Yamamoto
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Osamu Nakamura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shigeyuki Tsutsui
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kazuhiro Shiozaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, Graduate School of Agricultural and Life sciences, The University of Tokyo, 2971-4 Bentenjima, Maisaka, Nishi-ku, Hamamatsu, Shizuoka 431-0214, Japan
| |
Collapse
|
2
|
Herranz-Jusdado JG, Morel E, Ordás MC, Martín D, Docando F, González L, Sanjuán E, Díaz-Rosales P, Saura M, Fouz B, Tafalla C. Yersinia ruckeri infection activates local skin and gill B cell responses in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108989. [PMID: 37549876 DOI: 10.1016/j.fsi.2023.108989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Teleost fish lack organized structures in mucosal tissues such as those of mammals, but instead contain dispersed B and T cells with the capacity to respond to external stimuli. Nonetheless, there is still a great lack of knowledge regarding how B cells differentiate to plasmablasts/plasma cells in these mucosal surfaces. To contribute to a further understanding of the mechanisms through which fish mucosal B cells are activated, in the current study, we have studied the B cell responses in the skin and gills of rainbow trout (Oncorhynchus mykiss) exposed to Yersinia ruckeri. We have first analyzed the transcription levels of genes related to B cell function in both mucosal surfaces, and in spleen and kidney for comparative purposes. In a second experiment, we have evaluated how the infection affects the presence and size of B cells in both skin and gills, as well as the presence of plasmablasts secreting total or specific IgMs. The results obtained in both experiments support the local differentiation of B cells to plasmablasts/plasma cells in the skin and gills of rainbow trout in response to Y. ruckeri. Interestingly, these plasmablasts/plasma cells were shown to secrete specific IgMs as soon as 5 days after the exposure. These findings contribute to a further understanding of how B cells in the periphery respond to immune stimulation in teleost fish.
Collapse
Affiliation(s)
- J G Herranz-Jusdado
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos-Alalpardo, Madrid, Spain
| | - E Morel
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos-Alalpardo, Madrid, Spain
| | - M C Ordás
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos-Alalpardo, Madrid, Spain
| | - D Martín
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos-Alalpardo, Madrid, Spain
| | - F Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos-Alalpardo, Madrid, Spain
| | - L González
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos-Alalpardo, Madrid, Spain
| | - E Sanjuán
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - P Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos-Alalpardo, Madrid, Spain
| | - M Saura
- Animal Breeding Department, National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Madrid, Spain
| | - B Fouz
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, Burjassot, Valencia, Spain
| | - C Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA), National Institute for Agricultural and Food Research and Technology (INIA), Spanish Research Council (CSIC), Valdeolmos-Alalpardo, Madrid, Spain.
| |
Collapse
|
3
|
Scheifler M, Magnanou E, Sanchez-Brosseau S, Desdevises Y. Host specificity of monogenean ectoparasites on fish skin and gills assessed by a metabarcoding approach. Int J Parasitol 2022; 52:559-567. [DOI: 10.1016/j.ijpara.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 11/05/2022]
|
4
|
Morsy K, Al-Malki J, Dajem S, Hamdi H, Ali A, Adel A. Morphology and molecular phylogeny of Heterobothrium lamothei (Monogenea: Diclidophoridae), a gill parasite infecting the tiger puffer fish Lagocephalus sceleratus (Tetraodontidae). ARQ BRAS MED VET ZOO 2021. [DOI: 10.1590/1678-4162-12303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Members of the family Diclidophoridae are potentially dangerous species for the puffer fish aquaculture worldwide. They are parasitic polyopisthocotyleans, with a posterior haptor equipped with clamps for attachment to the host's surface, allowing the worm to resist the flow of water to maintain its position on gills. The anterior body of the worm is deformable, allows the worm to feed on blood sucked from fish gills. The present study is the first description of a Heterobothrium species from the gills of the tiger puffer Lagocephalus sceleratus (Tetraodontidae) from the coasts of the Arabian Gulf at Jubail, Saudi Arabia morphologically by light microscopy as well as by molecular analysis of the parasite partial 28S rRNA through multiple sequence alignments and phylogeny by maximum likelihood analysis which is provided for the first time for the described species. Seventeen tiger puffer fish were captured alive from marine water off Saudi Arabia; gills were separated and further examined for parasitic infection. Nine fish were found infected with a monogenean parasite which was robust, equipped by two buccal organs at the tapered anterior end; the posterior haptor was rectangular with four symmetrically arranged clamps, with no isthmus. Marginal hooks absent. Ovary elongated, U-shaped, testes numerous, irregularly shaped and extended from the posterior part of the ovary to the anterior margin of the haptor. Copulatory organ muscular, as a spherical cup armed with 12 to 15 genital hooks. The molecular analysis of the parasite 28s rRNA and phylogeny revealed a percentage of identities between 87.47-89.09%, with Diclidophoridae species within the monophyletic clade of Mazocraeidea where a maximum percentage of 89.09% were obtained for the morphologically different sister taxon H. okamotoi. The results obtained from molecular analysis are consistent with the conclusions drawn from morphological classification where that the parasite recorded was morphologically similar to H. lamothei which was not characterized by molecular analysis before. The recovered sequences were deposited into the GeneBank under accession number MT322610.
Collapse
Affiliation(s)
- K. Morsy
- King Khalid University, Saudi Arabia; Cairo University, Egypt
| | | | | | | | | | - A. Adel
- South Valley University, Egypt
| |
Collapse
|
5
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Lin Z, Hosoya S, Sato M, Mizuno N, Kobayashi Y, Itou T, Kikuchi K. Genomic selection for heterobothriosis resistance concurrent with body size in the tiger pufferfish, Takifugu rubripes. Sci Rep 2020; 10:19976. [PMID: 33203997 PMCID: PMC7672106 DOI: 10.1038/s41598-020-77069-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/05/2020] [Indexed: 01/09/2023] Open
Abstract
Parasite resistance traits in aquaculture species often have moderate heritability, indicating the potential for genetic improvements by selective breeding. However, parasite resistance is often synonymous with an undesirable negative correlation with body size. In this study, we first tested the feasibility of genomic selection (GS) on resistance to heterobothriosis, caused by the monogenean parasite Heterobothrium okamotoi, which leads to huge economic losses in aquaculture of the tiger pufferfish Takifugu rubripes. Then, using a simulation study, we tested the possibility of simultaneous improvement of parasite resistance, assessed by parasite counts on host fish (HC), and standard length (SL). Each trait showed moderate heritability (square-root transformed HC: h2 = 0.308 ± 0.123, S.E.; SL: h2 = 0.405 ± 0.131). The predictive abilities of genomic prediction among 12 models, including genomic Best Linear Unbiased Predictor (GBLUP), Bayesian regressions, and machine learning procedures, were also moderate for both transformed HC (0.248‒0.344) and SL (0.340‒0.481). These results confirmed the feasibility of GS for this trait. Although an undesirable genetic correlation was suggested between transformed HC and SL (rg = 0.228), the simulation study suggested the desired gains index can help achieve simultaneous genetic improvements in both traits.
Collapse
Affiliation(s)
- Zijie Lin
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Sho Hosoya
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan.
| | - Mana Sato
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Naoki Mizuno
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan
| | - Yuki Kobayashi
- Veterinary Research Center, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takuya Itou
- Veterinary Research Center, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Kiyoshi Kikuchi
- Fisheries Laboratory, University of Tokyo, Hamamatsu, Shizuoka, 431-0214, Japan
| |
Collapse
|