1
|
Wirdnam CD, Warmus D, Faso C. Nourseothricin as a novel drug for selection of transgenic Giardia lamblia. Int J Parasitol Drugs Drug Resist 2024; 25:100543. [PMID: 38685159 PMCID: PMC11067369 DOI: 10.1016/j.ijpddr.2024.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Functional gene and protein characterizations in parasitic protists are often limited by their genetic tractability. Despite the development of CRISPR-Cas9-derived or inspired approaches for a handful of protist parasites, the overall genetic tractability of these organisms remains limited. The intestinal parasite Giardia lamblia is one such species, with the added challenge of a paucity of reliable selection markers. To address this limitation, we tested the feasibility of using Nourseothricin as an effective selection agent in Giardia. Here, we report that axenically-grown WB Giardia cells are sensitive to Nourseothricin and that engineering expression of the streptothricin acetyltransferase (SAT-1) gene from Streptomyces rochei in transgenic parasites confers resistance to this antibiotic. Furthermore, we determine that SAT-1-expressing parasites are cross-resistant neither to Neomycin nor Puromycin, which are widely used to select for transgenic parasites. Consequently, we show that Nourseothricin can be used in sequential combination with both Neomycin and Puromycin to select for dual transfection events. This work increases the number of reliable selection agents and markers for Giardia genetic manipulation, expanding the limited molecular toolbox for this species of global medical importance.
Collapse
Affiliation(s)
- Corina D Wirdnam
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3006 Bern, Switzerland
| | - Dawid Warmus
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3006 Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland
| | - Carmen Faso
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3006 Bern, Switzerland; Multidisciplinary Center for Infectious Diseases, University of Bern, Hallerstrasse 6, 3012 Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 25, 3001 Bern, Switzerland.
| |
Collapse
|
2
|
Hagen KD, Hart CJS, McInally SG, Dawson SC. Harnessing the power of new genetic tools to illuminate Giardia biology and pathogenesis. Genetics 2024; 227:iyae038. [PMID: 38626297 PMCID: PMC11151923 DOI: 10.1093/genetics/iyae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/19/2024] [Indexed: 04/18/2024] Open
Abstract
Giardia is a prevalent single-celled microaerophilic intestinal parasite causing diarrheal disease and significantly impacting global health. Double diploid (essentially tetraploid) Giardia trophozoites have presented a formidable challenge to the development of molecular genetic tools to interrogate gene function. High sequence divergence and the high percentage of hypothetical proteins lacking homology to proteins in other eukaryotes have limited our understanding of Giardia protein function, slowing drug target validation and development. For more than 25 years, Giardia A and B assemblages have been readily amenable to transfection with plasmids or linear DNA templates. Here, we highlight the utility and power of genetic approaches developed to assess protein function in Giardia, with particular emphasis on the more recent clustered regularly interspaced palindromic repeats/Cas9-based methods for knockdowns and knockouts. Robust and reliable molecular genetic approaches are fundamental toward the interrogation of Giardia protein function and evaluation of druggable targets. New genetic approaches tailored for the double diploid Giardia are imperative for understanding Giardia's unique biology and pathogenesis.
Collapse
Affiliation(s)
- Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Christopher J S Hart
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Shane G McInally
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Jex AR, Svärd S, Hagen KD, Starcevich H, Emery-Corbin SJ, Balan B, Nosala C, Dawson SC. Recent advances in functional research in Giardia intestinalis. ADVANCES IN PARASITOLOGY 2020; 107:97-137. [PMID: 32122532 PMCID: PMC7878119 DOI: 10.1016/bs.apar.2019.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review considers current advances in tools to investigate the functional biology of Giardia, it's coding and non-coding genes, features and cellular and molecular biology. We consider major gaps in current knowledge of the parasite and discuss the present state-of-the-art in its in vivo and in vitro cultivation. Advances in in silico tools, including for the modelling non-coding RNAs and genomic elements, as well as detailed exploration of coding genes through inferred homology to model organisms, have provided significant, primary level insight. Improved methods to model the three-dimensional structure of proteins offer new insights into their function, and binding interactions with ligands, other proteins or precursor drugs, and offer substantial opportunities to prioritise proteins for further study and experimentation. These approaches can be supplemented by the growing and highly accessible arsenal of systems-based methods now being applied to Giardia, led by genomic, transcriptomic and proteomic methods, but rapidly incorporating advanced tools for detection of real-time transcription, evaluation of chromatin states and direct measurement of macromolecular complexes. Methods to directly interrogate and perturb gene function have made major leaps in recent years, with CRISPr-interference now available. These approaches, coupled with protein over-expression, fluorescent labelling and in vitro and in vivo imaging, are set to revolutionize the field and herald an exciting time during which the field may finally realise Giardia's long proposed potential as a model parasite and eukaryote.
Collapse
Affiliation(s)
- Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.
| | - Staffan Svärd
- Centre for Biomedicine, Uppsala University, Uppsala, Sweden
| | - Kari D Hagen
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Hannah Starcevich
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Samantha J Emery-Corbin
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC, Australia
| | - Chris Nosala
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| | - Scott C Dawson
- College of Biological Sciences, University of California-Davis, Davis, CA, United States
| |
Collapse
|
4
|
Exosome Biogenesis in the Protozoa Parasite Giardia lamblia: A Model of Reduced Interorganellar Crosstalk. Cells 2019; 8:cells8121600. [PMID: 31835439 PMCID: PMC6953089 DOI: 10.3390/cells8121600] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
: Extracellular vesicles (EVs) facilitate intercellular communication and are considered a promising therapeutic tool for the treatment of infectious diseases. These vesicles involve microvesicles (MVs) and exosomes and selectively transfer proteins, lipids, mRNAs, and microRNAs from one cell to another. While MVs are formed by extrusion of the plasma membrane, exosomes are a population of vesicles of endosomal origin that are stored inside the multivesicular bodies (MVBs) as intraluminal vesicles (ILVs) and are released when the MVBs fuse with the plasma membrane. Biogenesis of exosomes may be driven by the endosomal sorting complex required for transport (ESCRT) machinery or may be ESCRT independent, and it is still debated whether these are entirely separate pathways. In this manuscript, we report that the protozoan parasite, Giardia lamblia, although lacking a classical endo-lysosomal pathway, is able to produce and release exosome-like vesicles (ElV). By using a combination of biochemical and cell biology analyses, we found that the ElVs have the same size, shape, and protein and lipid composition as exosomes described for other eukaryotic cells. Moreover, we established that some endosome/lysosome peripheral vacuoles (PVs) contain ILV during the stationary phase. Our results indicate that ILV formation and ElV release depend on the ESCRT-associated AAA+-ATPase Vps4a, Rab11, and ceramide in this parasite. Interestingly, EIV biogenesis and release seems to occur in Giardia despite the fact that this parasite has lost most of the ESCRT machinery components during evolution and is unable to produce ceramide de novo. The differences in protozoa parasite EV composition, origin, and release may reveal functional and structural properties of EVs and, thus, may provide information on cell-to-cell communication and on survival mechanisms.
Collapse
|
5
|
Müller J, Braga S, Heller M, Müller N. Resistance formation to nitro drugs in Giardia lamblia: No common markers identified by comparative proteomics. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2019; 9:112-119. [PMID: 30889439 PMCID: PMC6423486 DOI: 10.1016/j.ijpddr.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023]
Abstract
In order to elucidate the question whether resistance to nitro drugs in G. lamblia is due to common resistance markers, trophozoites of three resistant G. lamblia strains, namely C4, 1062ID10, and 713M3 were grown in the presence of the two nitro drugs metronidazole and nitazoxanide and compared to their corresponding wild-types WBC6, 106, and 713 by mass spectometry shotgun analysis of their proteomes. Depending on the strain and the nitro drug, more than 200 to 500 differentially expressed proteins were identified, but there were no common patterns across strains and drugs. All resistant strains underwent antigenic variation with distinct surface antigens like variant surface proteins or cysteine rich proteins depending on strain and nitro compound. A closer look on enzymes involved in nitroreduction and detoxification of nitro radicals, NO or O2 suggested the existence of distinct strategies for each drug and each strain. Therefore, we conclude that resistance to nitro drugs in G. lamblia is not correlated with a specific pattern of differentially expressed proteins and therefore seems not to be the result of a directed process. Is resistance to nitro drugs in G. lamblia due to common resistance markers? Three resistant strains were grown in the presence of two nitro drugs separately and compared to wild-types by MS shotgun analysis. More than 200 to 500 differentially expressed proteins identified depending on strain and drug. No common patterns across strains and drugs. Strain specific antigenic variation and strategies linked to nitro reduction.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland.
| | - Sophie Braga
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010, Berne, Switzerland.
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Berne, Freiburgstrasse 15, CH-3010, Berne, Switzerland.
| | - Norbert Müller
- Institute of Parasitology, Vetsuisse Faculty, University of Berne, Länggass-Strasse 122, CH-3012, Berne, Switzerland.
| |
Collapse
|
6
|
Faso C, Hehl AB. A cytonaut's guide to protein trafficking in Giardia lamblia. ADVANCES IN PARASITOLOGY 2019; 106:105-127. [PMID: 31630756 DOI: 10.1016/bs.apar.2019.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Over the past years, the subcellular organization of the Excavata member Giardia lamblia (syn. duodenalis, intestinalis) has been investigated in considerable detail. There are several reasons for this endeavour which go beyond this parasite's medical importance and are mostly concerned with its reduced subcellular complexity and debated evolutionary status. One may say that simplification has emerged as a paradigm for the evolution of Giardia's subcellular architecture. However, a complete appreciation of the evolutionary and ecological significance of this phenomenon is far from complete. In this chapter, we present and discuss the most recent data on the main trafficking pathways in G. lamblia which include endo- and exo-cytosis, organellar import and function. We provide perspectives on open questions concerning organelle replication and inheritance and include a technical outlook on methods and approaches to genetic manipulations in G. lamblia. A better understanding of G. lamblia subcellular organization at the morphological and molecular level complements any effort aimed at elucidating this parasitic species' evolutionary status and could provide us with the basis for novel strategies to interfere with parasite transmission and/or pathogenesis.
Collapse
Affiliation(s)
- Carmen Faso
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich (ZH), Zürich, Switzerland
| | - Adrian B Hehl
- Laboratory of Molecular Parasitology, Institute of Parasitology, University of Zurich (ZH), Zürich, Switzerland.
| |
Collapse
|
7
|
McInally SG, Hagen KD, Nosala C, Williams J, Nguyen K, Booker J, Jones K, Dawson SC. Robust and stable transcriptional repression in Giardia using CRISPRi. Mol Biol Cell 2018; 30:119-130. [PMID: 30379614 PMCID: PMC6337905 DOI: 10.1091/mbc.e18-09-0605] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Giardia lamblia is a binucleate protistan parasite causing significant diarrheal disease worldwide. An inability to target Cas9 to both nuclei, combined with the lack of nonhomologous end joining and markers for positive selection, has stalled the adaptation of CRISPR/Cas9-mediated genetic tools for this widespread parasite. CRISPR interference (CRISPRi) is a modification of the CRISPR/Cas9 system that directs catalytically inactive Cas9 (dCas9) to target loci for stable transcriptional repression. Using a Giardia nuclear localization signal to target dCas9 to both nuclei, we developed efficient and stable CRISPRi-mediated transcriptional repression of exogenous and endogenous genes in Giardia. Specifically, CRISPRi knockdown of kinesin-2a and kinesin-13 causes severe flagellar length defects that mirror defects with morpholino knockdown. Knockdown of the ventral disk MBP protein also causes severe structural defects that are highly prevalent and persist in the population more than 5 d longer than defects associated with transient morpholino-based knockdown. By expressing two guide RNAs in tandem to simultaneously knock down kinesin-13 and MBP, we created a stable dual knockdown strain with both flagellar length and disk defects. The efficiency and simplicity of CRISPRi in polyploid Giardia allows rapid evaluation of knockdown phenotypes and highlights the utility of CRISPRi for emerging model systems.
Collapse
Affiliation(s)
- S G McInally
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K D Hagen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - C Nosala
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - J Williams
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K Nguyen
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - J Booker
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - K Jones
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616
| |
Collapse
|
8
|
Giardipain-1, a protease secreted by Giardia duodenalis trophozoites, causes junctional, barrier and apoptotic damage in epithelial cell monolayers. Int J Parasitol 2018; 48:621-639. [DOI: 10.1016/j.ijpara.2018.01.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/23/2017] [Accepted: 01/01/2018] [Indexed: 12/11/2022]
|
9
|
RNAi-Mediated Specific Gene Silencing as a Tool for the Discovery of New Drug Targets in Giardia lamblia; Evaluation Using the NADH Oxidase Gene. Genes (Basel) 2017; 8:genes8110303. [PMID: 29099754 PMCID: PMC5704216 DOI: 10.3390/genes8110303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/12/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022] Open
Abstract
The microaerophilic protozoan Giardia lamblia is the agent causing giardiasis, an intestinal parasitosis of worldwide distribution. Different pharmacotherapies have been employed against giardiasis; however, side effects in the host and reports of drug resistant strains generate the need to develop new strategies that identify novel biological targets for drug design. To support this requirement, we have designed and evaluated a vector containing a cassette for the synthesis of double-stranded RNA (dsRNA), which can silence expression of a target gene through the RNA interference (RNAi) pathway. Small silencing RNAs were detected and quantified in transformants expressing dsRNA by a stem-loop RT-qPCR approach. The results showed that, in transformants expressing dsRNA of 100-200 base pairs, the level of NADHox mRNA was reduced by around 30%, concomitant with a decrease in enzyme activity and a reduction in the number of trophozoites with respect to the wild type strain, indicating that NADHox is indeed an important enzyme for Giardia viability. These results suggest that it is possible to induce the G. lamblia RNAi machinery for attenuating the expression of genes encoding proteins of interest. We propose that our silencing strategy can be used to identify new potential drug targets, knocking down genes encoding different structural proteins and enzymes from a wide variety of metabolic pathways.
Collapse
|
10
|
Abstract
Giardia lamblia, a major parasite, is an emerging model organism due to its compact genomic arrangement and composition. The most popular reverse genetic technique, RNAi, is ineffective in Giardia. In contrast, protein depletion by translation blocking morpholinos is suitable for most gene targets and provides up to 80% depletion of the target protein. The method is fast, reliable, and specific. After antisense morpholino oligomer delivery into Giardia trophozoites by electroporation, the cells can be used for many subsequent analyses 8-48 h after treatment. In this chapter, suitable gene tags, plasmids, and techniques necessary for proper morpholino targeting are described.
Collapse
Affiliation(s)
- Jana Krtková
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague 2, Czech Republic
| | | |
Collapse
|
11
|
Di Genova BM, da Silva RC, da Cunha JPC, Gargantini PR, Mortara RA, Tonelli RR. Protein SUMOylation is Involved in Cell-cycle Progression and Cell Morphology in Giardia lamblia. J Eukaryot Microbiol 2016; 64:491-503. [PMID: 27864857 DOI: 10.1111/jeu.12386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/13/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.
Collapse
Affiliation(s)
- Bruno M Di Genova
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, RuaBotucatu 862, 04023-062, Vila Clementino, São Paulo, SP, Brazil
| | - Richard C da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, RuaBotucatu 862, 04023-062, Vila Clementino, São Paulo, SP, Brazil
| | - Júlia P C da Cunha
- Laboratório Especial de Ciclo Celular, Centro de Toxinas, Resposta Imune e Sinalização Celular - CeTICS, Instituto Butantan, Avenida Vital Brasil 1500, 05503-900, Butantã, São Paulo, SP, Brazil
| | - Pablo R Gargantini
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Católica de Córdoba (UCC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Armada Argentina 3555., X5016DHK, Cordoba, Argentina
| | - Renato A Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, RuaBotucatu 862, 04023-062, Vila Clementino, São Paulo, SP, Brazil
| | - Renata R Tonelli
- Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Rua São Nicolau 210, 09913-030, Diadema, SP, Brazil
| |
Collapse
|
12
|
Ebneter JA, Heusser SD, Schraner EM, Hehl AB, Faso C. Cyst-Wall-Protein-1 is fundamental for Golgi-like organelle neogenesis and cyst-wall biosynthesis in Giardia lamblia. Nat Commun 2016; 7:13859. [PMID: 27976675 PMCID: PMC5171811 DOI: 10.1038/ncomms13859] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/04/2016] [Indexed: 12/11/2022] Open
Abstract
The genome of the protozoan parasite Giardia lamblia is organized in two diploid nuclei, which has so far precluded complete analysis of gene function. Here we use a previously developed Cre/loxP-based knock-out and selection marker salvage strategy in the human-derived isolate WB-C6 to eliminate all four copies of the Cyst-Wall-Protein-1 locus (CWP1). Because these loci are silenced in proliferating trophozoites and highly expressed only in encysting cells, CWP1 ablation allows functional characterization of a conditional phenotype in parasites induced to encyst. We show that encysting Δcwp1 cells are unable to establish the stage-regulated trafficking machinery with Golgi-like encystation-specific vesicles required for cyst-wall formation but show morphological hallmarks of cyst development and karyokinesis. This ‘pseudocyst' phenotype is rescued by transfection of Δcwp1 cells with an episomally maintained CWP1 expression vector. Genome editing in genera Giardia and Trypanosoma are the only reported examples addressing questions on pathogen transmission within the Excavata supergroup. Giardia lamblia is a human protozoan parasite with two diploid nuclei, which makes complete knock-out of a gene of interest challenging. Here the authors use a Cre/loxP-based approach to knock-out cyst-wall protein 1 (cwp1) and show that CWP1 is essential for cyst-wall biosynthesis.
Collapse
Affiliation(s)
- Jacqueline A Ebneter
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - Sally D Heusser
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - Elisabeth M Schraner
- Institute of Veterinary Anatomy, University of Zurich, Winterthurerstrasse 266b, CH-8057 Zurich, Switzerland
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| | - Carmen Faso
- Institute of Parasitology, University of Zurich, Winterthurerstrasse 266a, CH-8057 Zurich, Switzerland
| |
Collapse
|
13
|
Feliziani C, Zamponi N, Gottig N, Rópolo AS, Lanfredi-Rangel A, Touz MC. The giardial ENTH protein participates in lysosomal protein trafficking and endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:646-59. [PMID: 25576518 DOI: 10.1016/j.bbamcr.2014.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 12/18/2014] [Accepted: 12/30/2014] [Indexed: 12/01/2022]
Abstract
In the protozoa parasite Giardia lamblia, endocytosis and lysosomal protein trafficking are vital parasite-specific processes that involve the action of the adaptor complexes AP-1 and AP-2 and clathrin. In this work, we have identified a single gene in Giardia encoding a protein containing an ENTH domain that defines monomeric adaptor proteins of the epsin family. This domain is present in the epsin or epsin-related (epsinR) adaptor proteins, which are implicated in endocytosis and Golgi-to-endosome protein trafficking, respectively, in other eukaryotic cells. We found that GlENTHp (for G. lamblia ENTH protein) localized in the cytosol, strongly interacted with PI3,4,5P3, was associated with the alpha subunit of AP-2, clathrin and ubiquitin and was involved in receptor-mediated endocytosis. It also bonded PI4P, the gamma subunit of AP-1 and was implicated in ER-to-PV trafficking. Alteration of the GlENTHp function severely affected trophozoite growth showing an unusual accumulation of dense material in the lysosome-like peripheral vacuoles (PVs), indicating that GlENTHp might be implicated in the maintenance of PV homeostasis. In this study, we showed evidence suggesting that GlENTHp might function as a monomeric adaptor protein supporting the findings of other group indicating that GlENTHp might be placed at the beginning of the ENTH family.
Collapse
Affiliation(s)
- Constanza Feliziani
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC, CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, Argentina
| | - Nahuel Zamponi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC, CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, Argentina
| | - Natalia Gottig
- Molecular Biology Division, Facultad de Ciencias Bioquímicas y Farmacéuticas, Instituto de Biología Molecular y Celular de Rosario, CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Andrea S Rópolo
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC, CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, Argentina
| | | | - Maria C Touz
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC, CONICET, Universidad Nacional de Córdoba, Friuli 2434, Córdoba, Argentina.
| |
Collapse
|
14
|
Vranych CV, Rivero MR, Merino MC, Mayol GF, Zamponi N, Maletto BA, Pistoresi-Palencia MC, Touz MC, Rópolo AS. SUMOylation and deimination of proteins: two epigenetic modifications involved in Giardia encystation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1805-17. [PMID: 24751693 DOI: 10.1016/j.bbamcr.2014.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/26/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
SUMOylation, a posttranslational modification of proteins, has been recently described as vital in eukaryotic cells. In a previous work, we analyzed the role of SUMO protein and the genes encoding the putative enzymes of the SUMOylation pathway in the parasite Giardia lamblia. Although we observed several SUMOylated proteins, only the enzyme Arginine Deiminase (ADI) was confirmed as a SUMOylated substrate. ADI is involved in the survival of the parasite and, besides its role in ATP production, it also catalyzes the modification of arginine residues to citrulline in the cytoplasmic tail of surface proteins. During encystation, however, ADI translocates to the nuclei and downregulates the expression of the Cyst Wall Protein 2 (CWP2). In this work, we made site-specific mutation of the ADI SUMOylation site (Lys101) and observed that transgenic trophozoites did not translocate to the nuclei at the first steps of encystation but shuttled in the nuclei late during this process through classic nuclear localization signals. Inside the nuclei, ADI acts as a peptidyl arginine deiminase, being probably involved in the downregulation of CWPs expression and cyst wall formation. Our results strongly indicate that ADI plays a regulatory role during encystation in which posttranslational modifications of proteins are key players.
Collapse
Affiliation(s)
- Cecilia V Vranych
- Laboratorio de Microbiología e Inmunología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5000 Córdoba, Argentina
| | - María R Rivero
- Laboratorio de Microbiología e Inmunología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5000 Córdoba, Argentina
| | - María C Merino
- Laboratorio de Microbiología e Inmunología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5000 Córdoba, Argentina
| | - Gonzalo F Mayol
- Laboratorio de Microbiología e Inmunología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5000 Córdoba, Argentina
| | - Nahuel Zamponi
- Laboratorio de Microbiología e Inmunología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5000 Córdoba, Argentina
| | - Belkys A Maletto
- Departamento de Bioquímica Clínica, CIBICI-CONICET, Facultad de Ciencias Químicas, Haya de la Torre y Medina Allende, UNC, 5000 Córdoba, Argentina
| | - María C Pistoresi-Palencia
- Departamento de Bioquímica Clínica, CIBICI-CONICET, Facultad de Ciencias Químicas, Haya de la Torre y Medina Allende, UNC, 5000 Córdoba, Argentina
| | - María C Touz
- Laboratorio de Microbiología e Inmunología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5000 Córdoba, Argentina
| | - Andrea S Rópolo
- Laboratorio de Microbiología e Inmunología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Friuli 2434, 5000 Córdoba, Argentina.
| |
Collapse
|
15
|
Wampfler PB, Faso C, Hehl AB. The Cre/loxP system in Giardia lamblia: genetic manipulations in a binucleate tetraploid protozoan. Int J Parasitol 2014; 44:497-506. [PMID: 24747534 DOI: 10.1016/j.ijpara.2014.03.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/11/2014] [Accepted: 03/16/2014] [Indexed: 11/16/2022]
Abstract
The bacteriophage-derived Cre/loxP system is a valuable tool that has revolutionised genetic and cell biological research in many organisms. We implemented this system in the intestinal parasite Giardia lamblia, an evolutionarily diverged protozoan whose binucleate and tetraploid genome organisation severely limits the application of reverse genetic approaches. We show that Cre-recombinase is functionally expressed in G. lamblia and demonstrate "recycling" of selectable markers. Providing the means for more complex and versatile genetic modifications, this technique massively increases the scope of functional investigations in G. lamblia and other protozoa with similar limitations with respect to genetic manipulation.
Collapse
Affiliation(s)
- Petra B Wampfler
- Laboratory of Molecular Parasitology, Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | - Carmen Faso
- Laboratory of Molecular Parasitology, Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland
| | - Adrian B Hehl
- Laboratory of Molecular Parasitology, Institute of Parasitology-University of Zurich, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| |
Collapse
|
16
|
Tolba MEM, Kobayashi S, Imada M, Suzuki Y, Sugano S. Giardia lamblia transcriptome analysis using TSS-Seq and RNA-Seq. PLoS One 2013; 8:e76184. [PMID: 24116096 PMCID: PMC3792122 DOI: 10.1371/journal.pone.0076184] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/21/2013] [Indexed: 11/19/2022] Open
Abstract
Giardia lamblia is a protozoan parasite that is found worldwide and has both medical and veterinary importance. We applied the transcription start sequence (TSS-seq) and RNA sequence (RNA-seq) techniques to study the transcriptome of the assemblage A WB strain trophozoite. We identified 8000 transcription regions (TR) with significant transcription. Of these regions, 1881 TRs were more than 500 nucleotides upstream of an annotated ORF. Combining both techniques helped us to identify 24 ORFs that should be re-annotated and 60 new ORFs. From the 8000 TRs, we were able to identify an AT-rich consensus that includes the transcription initiation site. It is possible that transcription that was previously thought to be bidirectional is actually unidirectional.
Collapse
Affiliation(s)
- Mohammed E. M. Tolba
- Department of Medical Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Department of Parasitology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Seiki Kobayashi
- Department of Infectious Diseases, School of Medicine, Keio University, Tokyo, Japan
| | - Mihoko Imada
- Department of Infectious Diseases, School of Medicine, Keio University, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Sumio Sugano
- Department of Medical Genomics, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Collins LJ. Characterizing ncRNAs in Human Pathogenic Protists Using High-Throughput Sequencing Technology. Front Genet 2011; 2:96. [PMID: 22303390 PMCID: PMC3268645 DOI: 10.3389/fgene.2011.00096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 12/07/2011] [Indexed: 11/16/2022] Open
Abstract
ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.
Collapse
Affiliation(s)
- Lesley Joan Collins
- Institute of Fundamental Sciences, Massey University Palmerston North, New Zealand
| |
Collapse
|
18
|
Saraiya AA, Li W, Wang CC. A microRNA derived from an apparent canonical biogenesis pathway regulates variant surface protein gene expression in Giardia lamblia. RNA (NEW YORK, N.Y.) 2011; 17:2152-64. [PMID: 22033329 PMCID: PMC3222128 DOI: 10.1261/rna.028118.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/13/2011] [Indexed: 05/19/2023]
Abstract
We have previously shown that a snoRNA-derived microRNA, miR2, in Giardia lamblia potentially regulates the expression of 22 variant surface protein (VSP) genes. Here, we identified another miRNA, miR4, also capable of regulating the expression of several VSPs but derived from an unannotated open reading frame (ORF) rather than a snoRNA, suggesting a canonical miRNA biogenesis pathway in Giardia. miR4 represses expression of a reporter containing two miR4 antisense sequences at the 3' UTR without causing a corresponding decrease in the mRNA level. This repression requires the presence of the Giardia Argonaute protein (GlAgo) and is reversed by 2' O-methylated antisense oligo to miR4, suggesting an RNA-induced silencing complex (RISC)-mediated mechanism. Furthermore, in vivo and in vitro evidence suggested that the Giardia Dicer protein (GlDcr) is required for miR4 biogenesis. Coimmunoprecipitation of miR4 with GlAgo further verified miR4 as a miRNA. A total of 361 potential target sites for miR4 were bioinformatically identified in Giardia, out of which 69 (32.7%) were associated with VSP genes. miR4 reduces the expression of a reporter containing two copies of the target site from VSP (GL50803_36493) at the 3' UTR. Sixteen of the 69 VSP genes were further found to contain partially overlapping miR2 and miR4 targeting sites. Expression of a reporter carrying the two overlapping sites was inhibited by either miR2 or miR4, but the inhibition was neither synergistic nor additive, suggesting a complex mechanism of miRNA regulation of VSP expression and the presence of a rich miRNAome in Giardia.
Collapse
Affiliation(s)
- Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2280, USA
| | - Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2280, USA
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California 94158-2280, USA
- Corresponding author.E-mail .
| |
Collapse
|
19
|
Affiliation(s)
- César G. Prucca
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Fernando D. Rivero
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| | - Hugo D. Luján
- Laboratory of Biochemistry and Molecular Biology, School of Medicine, Catholic University of Cordoba, CP X5004ASK Cordoba, Argentina;
| |
Collapse
|
20
|
Li W, Saraiya AA, Wang CC. Gene regulation in Giardia lambia involves a putative microRNA derived from a small nucleolar RNA. PLoS Negl Trop Dis 2011; 5:e1338. [PMID: 22028939 PMCID: PMC3196473 DOI: 10.1371/journal.pntd.0001338] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/15/2011] [Indexed: 12/21/2022] Open
Abstract
Two core microRNA (miRNA) pathway proteins, Dicer and Argonaute, are found in Giardia lamblia, a deeply branching parasitic protozoan. There are, however, no apparent homologues of Drosha or Exportin5 in the genome. Here, we report a 26 nucleotide (nt) RNA derived from a 106 nt Box C/D snoRNA, GlsR2. This small RNA, designated miR5, localizes to the 3' end of GlsR2 and has a 75 nt hairpin precursor. GlsR2 is processed by the Dicer from Giardia (GlDcr) and generated miR5. Immunoprecipitation of the Argonaute from Giardia (GlAgo) brought down miR5. When a Renilla Luciferase transcript with a 26 nt miR5 antisense sequence at the 3'-untranslated region (3' UTR) was introduced into Giardia trophozoites, Luciferase expression was reduced ∼25% when synthetic miR5 was also introduced. The Luciferase mRNA level remained, however, unchanged, suggesting translation repression by miR5. This inhibition was fully reversed by introducing also a 2'-O-methylated antisense inhibitor of miR5, suggesting that miR5 acts by interacting specifically with the antisense sequence in the mRNA. A partial antisense knock down of GlDcr or GlAgo in Giardia indicated that the former is needed for miR5 biogenesis whereas the latter is required for miR5-mediated translational repression. Potential targets for miR5 with canonical seed sequences were predicted bioinformatically near the stop codon of Giardia mRNAs. Four out of the 21 most likely targets were tested in the Luciferase reporter assay. miR5 was found to inhibit Luciferase expression (∼20%) of transcripts carrying these potential target sites, indicating that snoRNA-derived miRNA can regulate the expression of multiple genes in Giardia.
Collapse
Affiliation(s)
- Wei Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ashesh A. Saraiya
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
21
|
RNA interference in protozoan parasites: achievements and challenges. EUKARYOTIC CELL 2011; 10:1156-63. [PMID: 21764910 DOI: 10.1128/ec.05114-11] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Protozoan parasites that profoundly affect mankind represent an exceptionally diverse group of organisms, including Plasmodium, Toxoplasma, Entamoeba, Giardia, trypanosomes, and Leishmania. Despite the overwhelming impact of these parasites, there remain many aspects to be discovered about mechanisms of pathogenesis and how these organisms survive in the host. Combined with the ever-increasing availability of sequenced genomes, RNA interference (RNAi), discovered a mere 13 years ago, has enormously facilitated the analysis of gene function, especially in organisms that are not amenable to classical genetic approaches. Here we review the current status of RNAi in studies of parasitic protozoa, with special emphasis on its use as a postgenomic tool.
Collapse
|
22
|
The emerging world of small silencing RNAs in protozoan parasites. Trends Parasitol 2011; 27:321-7. [PMID: 21497553 DOI: 10.1016/j.pt.2011.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/15/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
A new RNA world has emerged in the past 10 years with the discovery of a plethora of 20- to 30-nucleotide long small RNAs that are involved in various gene silencing mechanisms. These small RNAs have considerably changed our view of the regulation of gene expression in eukaryotic organisms, with a major shift towards epigenetic and post-transcriptional mechanisms. In this article, we focus on the striking diversity of small silencing RNAs that have been identified in several protozoan parasites and their potential biological role.
Collapse
|