1
|
Currie-Olsen D, Leander BS. Novel cytoskeletal traits in the intestinal parasites (Squirmida, Platyproteum vivax) of Pacific peanut worms (Sipuncula, Phascolosoma agassizii). J Eukaryot Microbiol 2024; 71:e13023. [PMID: 38402546 DOI: 10.1111/jeu.13023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/26/2024]
Abstract
The cytoskeletal organization of a squirmid, namely Platyproteum vivax, was investigated with confocal laser scanning microscopy (CLSM) to refine inferences about convergent evolution among intestinal parasites of marine invertebrates. Platyproteum inhabits Pacific peanut worms (Phascolosoma agassizii) and has traits that are similar to other lineages of myzozoan parasites, namely gregarine apicomplexans within Selenidium, such as conspicuous feeding stages, called "trophozoites," capable of dynamic undulations. SEM and CLSM of P. vivax revealed an inconspicuous flagellar apparatus and a uniform array of longitudinal microtubules organized in bundles (LMBs). Extreme flattening of the trophozoites and a consistently oblique morphology of the anterior end provided a reliable way to distinguish dorsal and ventral surfaces. CLSM revealed a novel system of microtubules oriented in the flattened dorsoventral plane. Most of these dorsoventral microtubule bundles (DVMBs) had a punctate distribution and were evenly spaced along a curved line spanning the longitudinal axis of the trophozoites. This configuration of microtubules is inferred to function in maintaining the flattened shape of the trophozoites and facilitate dynamic undulations. The novel traits in Platyproteum are consistent with phylogenomic data showing that this lineage is only distantly related to Selenidium and other marine gregarine apicomplexans with dynamic intestinal trophozoites.
Collapse
Affiliation(s)
- Danja Currie-Olsen
- Department of Zoology, Beaty Biodiversity Research Centre and Museum, University of British Columbia, Vancouver, British Columbia, Canada
- Hakai Institute, Heriot Bay, Quadra Island, British Columbia, Canada
| | - Brian S Leander
- Department of Zoology, Beaty Biodiversity Research Centre and Museum, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Schall JJ, Nouri-Aiin M, Görres J. APOLOCYSTIS BOSANQUETI N. SP. (APICOMPLEXA: EUGREGARINORIDA) FROM THE INVASIVE EARTHWORM AMYNTHAS AGRESTIS (ANNELIDA: MEGASCOLECIDAE), WITH SIGNIFICANCE FOR THE MONOPHYLY OF THE FAMILY MONOCYSTIDAE. J Parasitol 2023; 109:56-64. [PMID: 36930698 DOI: 10.1645/22-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Apolocystis bosanqueti n. sp., a parasite of an important invasive earthworm in North America, Amynthas agrestis, is described from a site in northern Vermont. The earthworm host follows an annual life cycle in Vermont, so the entire life cycle of the parasite can be observed in 7 mo. In spring, the parasites were first seen in juvenile worms as paired gamonts (suggesting precocious association). These paired gamonts mature into gametocytes that form an opaque structure, with a thick gelatinous envelope (epicyst), that becomes full of zygotes. The resulting gametocyst becomes packed with ∼105 fusiform oocysts. The mature orbicular gametocysts are large (∼1 mm in diameter) and visible to the naked eye through the body wall of the host's anterior segments. The new species most resembles Apolocystis herculea described from many lumbricid earthworm species in Europe but differs from that parasite because Ap. herculea infects the intestinal wall in the posterior of the host rather than the anterior segments. A survey of 9 other earthworm species sympatric with Am. agrestis revealed that only Amynthas tokioensis, also an invasive species, was infected with Ap. bosanqueti, albeit much less commonly. Diagnosis for the family Monocystidae is problematic because cardinal characters are lacking, and the commonly cited character, a trophozoite with no anterior differentiation, is violated in most genera placed in the family. For the first time, a molecular phylogeny is presented that includes 3 genera of monocystids with diverse cell morphology (including the new species) and supports the monophyly of the family. The only morphological character that may be used to diagnose the Monocystidae is the morphology of oocysts, which are fusiform with extended terminal tips. A comparison of oocysts from 7 parasites recovered from local earthworms, including from 3 monocystid species in the phylogeny, confirms the utility of this diagnostic trait. The 2 hosts of the new species were most likely introduced from Japan, so the range of Apolocystis likely extends into East Asia.
Collapse
Affiliation(s)
- Jos J Schall
- Department of Biology, University of Vermont, Burlington, Vermont 05405
| | - Maryam Nouri-Aiin
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont 05405
| | - Josef Görres
- Department of Plant and Soil Science, University of Vermont, Burlington, Vermont 05405
| |
Collapse
|
3
|
Pan Y, Li G, Su L, Zheng P, Wang Y, Shen Z, Chen Z, Han Q, Gong J. Seagrass Colonization Alters Diversity, Abundance, Taxonomic, and Functional Community Structure of Benthic Microbial Eukaryotes. Front Microbiol 2022; 13:901741. [PMID: 35770161 PMCID: PMC9234489 DOI: 10.3389/fmicb.2022.901741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
Seagrass form high productive ecosystems in coastal environments. However, the effects of these coastal plants on the structure and function of the belowground eukaryotic microbiome remain elusive. In this study, we characterized the community of microbial eukaryotes (microeukaryotes) in both vegetated and unvegetated sediments using 18S rRNA gene amplicon sequencing and quantitative PCR. Analysis of sequencing data showed that the eelgrass (Zostera marina) colonization decreased the alpha diversity indices of benthic microeukaryotes. Apicomplexa represented an average of 83% of reads across all samples, with a higher proportion at the vegetated sites. The taxonomic community structure was significantly different between these two types of sediments, for which the concentration ofNH 4 + in sediment porewater and salinity could account. Phylogenetic analyses of long 18S rRNA genes (around 1,030 bp) indicated these apicomplexan parasites are closely related to gregarine Lecudina polymorpha. Determination of 18S rRNA gene abundances provided evidence that the eelgrass markedly promoted the biomass of the gregarine and all microeukaryotes in the seagrass-colonized sediments and confirmed that the gregarine was hosted by a polychaete species. Significantly higher gene abundances of heterotrophs and mixotrophs were found at the vegetated sites, which could be explained by the finer sediments and short supply of dissolved inorganic nitrogen, respectively. The pigmented protists were more abundant in 18S rRNA gene copies at the lower and higher pH levels than at the intermediate. Nevertheless, the fractions of heterotrophs and phototrophs in the community were significantly related to porewater N:P ratio. These results indicate that seagrass colonization significantly induces an increase in overall biomass and a decrease in diversity of benthic microeukaryotes, making them more heterotrophic. This study also highlights that the hotspot of eukaryotic parasites could be linked with the high productivity of a natural ecosystem.
Collapse
Affiliation(s)
- Ying Pan
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Guihao Li
- Laboratory of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Lei Su
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Pengfei Zheng
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Yaping Wang
- Laboratory of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zhuo Shen
- Laboratory of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Zigui Chen
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Qiuying Han
- College of Ecology and Environment, Hainan Tropical Ocean University, Sanya, China
| | - Jun Gong
- Laboratory of Microbial Ecology and Matter Cycle, School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, China
| |
Collapse
|
4
|
Phua YH, Roy MC, Lemer S, Husnik F, Wakeman KC. Diversity and toxicity of Pacific strains of the benthic dinoflagellate Coolia (Dinophyceae), with a look at the Coolia canariensis species complex. HARMFUL ALGAE 2021; 109:102120. [PMID: 34815025 DOI: 10.1016/j.hal.2021.102120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/26/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Coolia Meunier 1919 from benthic assemblages of Hawai'i and Guam were isolated and clonal cultures were established from single cells. Cultures were identified to species-level based on 28S rRNA and ITS-5.8S rRNA genes and tested for toxicity. In Hawai'i, two strains of C. malayensis were isolated. In Guam, a high biodiversity was identified: four strains of C. malayensis, one strain of C. palmyrensis, one strain of C. tropicalis, one strain of C. canariensis phylogroup III, and two strains forming a new phylogroup (phylogroup IV) of nontoxic C. canariensis. Morphology of the new C. canariensis phylogroup was described using light microscopy and scanning electron microscopy. Mass cultures and methanol extracts of representative cultures (C. malayensis, C. palmyrensis, C. canariensis, C. tropicalis) from Guam were prepared for liquid chromatography-mass spectrometry analysis. Chemical analyses revealed yessotoxin analogue C56H78O18S2 is produced by C. malayensis, C. canariensis phylogroup IV and C. palmyrensis, but other analogues, C57H80O18S2 and C58H86O18S2, were only found in C. malayensis (Okinawa) and C. canariensis phylogroup IV. Individual toxin profiles were also different over time for an Okinawa strain of C. malayensis (NIES-3637), highlighting intra and inter-species variation in Yessotoxin-analogue expression. Biological activity was tested using Artemia bioassay and toxicity was observed in Guam and Okinawa strains of C. malayensis. Strong support of four distinct clades within the C. canariensis species complex was recovered in phylogenetic analyses, despite morphological similarities.
Collapse
Affiliation(s)
- Yong Heng Phua
- School of Science, Hokkaido University, North 10, West 8, Sapporo 060-0810, Hokkaido, Japan
| | - Michael C Roy
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Sarah Lemer
- University of Guam Marine Laboratory, 303 University Drive, UOG Station, Mangilao, Guam 96923, USA
| | - Filip Husnik
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Kevin C Wakeman
- Institute for the Advancement of Higher Education, Hokkaido University, North 10, West 8, Sapporo 060-0810, Hokkaido, Japan.
| |
Collapse
|
5
|
Del Campo J, Heger TJ, Rodríguez-Martínez R, Worden AZ, Richards TA, Massana R, Keeling PJ. Corrigendum: Assessing the Diversity and Distribution of Apicomplexans in Host and Free-Living Environments Using High-Throughput Amplicon Data and a Phylogenetically Informed Reference Framework. Front Microbiol 2020; 11:576322. [PMID: 33133045 PMCID: PMC7578665 DOI: 10.3389/fmicb.2020.576322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/31/2020] [Indexed: 11/26/2022] Open
Affiliation(s)
- Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Thierry J Heger
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Soil Science Group, CHANGINS, University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Raquel Rodríguez-Martínez
- Department of Biosciences, Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Thomas A Richards
- Department of Biosciences, Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
6
|
Del Campo J, Heger TJ, Rodríguez-Martínez R, Worden AZ, Richards TA, Massana R, Keeling PJ. Assessing the Diversity and Distribution of Apicomplexans in Host and Free-Living Environments Using High-Throughput Amplicon Data and a Phylogenetically Informed Reference Framework. Front Microbiol 2019; 10:2373. [PMID: 31708883 PMCID: PMC6819320 DOI: 10.3389/fmicb.2019.02373] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
Apicomplexans are a group of microbial eukaryotes that contain some of the most well-studied parasites, including the causing agents of toxoplasmosis and malaria, and emergent diseases like cryptosporidiosis or babesiosis. Decades of research have illuminated the pathogenic mechanisms, molecular biology, and genomics of model apicomplexans, but we know little about their diversity and distribution in natural environments. In this study we analyze the distribution of apicomplexans across a range of both host-associated and free-living environments. Using publicly available small subunit (SSU) rRNA gene databases, high-throughput environmental sequencing (HTES) surveys, and our own generated HTES data, we developed an apicomplexan reference database, which includes the largest apicomplexan SSU rRNA tree available to date and encompasses comprehensive sampling of this group and their closest relatives. This tree allowed us to identify and correct incongruences in the molecular identification of apicomplexan sequences. Analyzing the diversity and distribution of apicomplexans in HTES studies with this curated reference database also showed a widespread, and quantitatively important, presence of apicomplexans across a variety of free-living environments. These data allow us to describe a remarkable molecular diversity of this group compared with our current knowledge, especially when compared with that identified from described apicomplexan species. This is most striking in marine environments, where potentially the most diverse apicomplexans apparently exist, but have not yet been formally recognized. The new database will be useful for microbial ecology and epidemiological studies, and provide valuable reference for medical and veterinary diagnosis especially in cases of emerging, zoonotic, and cryptic infections.
Collapse
Affiliation(s)
- Javier Del Campo
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, United States
| | - Thierry J Heger
- Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Soil Science Group, CHANGINS, University of Applied Sciences and Arts Western Switzerland, Nyon, Switzerland
| | - Raquel Rodríguez-Martínez
- Department of Biosciences, Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | | | - Thomas A Richards
- Department of Biosciences, Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Muñoz-Gómez SA, Durnin K, Eme L, Paight C, Lane CE, Saffo MB, Slamovits CH. Nephromyces Represents a Diverse and Novel Lineage of the Apicomplexa That Has Retained Apicoplasts. Genome Biol Evol 2019; 11:2727-2740. [PMID: 31328784 PMCID: PMC6777426 DOI: 10.1093/gbe/evz155] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
A most interesting exception within the parasitic Apicomplexa is Nephromyces, an extracellular, probably mutualistic, endosymbiont found living inside molgulid ascidian tunicates (i.e., sea squirts). Even though Nephromyces is now known to be an apicomplexan, many other questions about its nature remain unanswered. To gain further insights into the biology and evolutionary history of this unusual apicomplexan, we aimed to 1) find the precise phylogenetic position of Nephromyces within the Apicomplexa, 2) search for the apicoplast genome of Nephromyces, and 3) infer the major metabolic pathways in the apicoplast of Nephromyces. To do this, we sequenced a metagenome and a metatranscriptome from the molgulid renal sac, the specialized habitat where Nephromyces thrives. Our phylogenetic analyses of conserved nucleus-encoded genes robustly suggest that Nephromyces is a novel lineage sister to the Hematozoa, which comprises both the Haemosporidia (e.g., Plasmodium) and the Piroplasmida (e.g., Babesia and Theileria). Furthermore, a survey of the renal sac metagenome revealed 13 small contigs that closely resemble the genomes of the nonphotosynthetic reduced plastids, or apicoplasts, of other apicomplexans. We show that these apicoplast genomes correspond to a diverse set of most closely related but genetically divergent Nephromyces lineages that co-inhabit a single tunicate host. In addition, the apicoplast of Nephromyces appears to have retained all biosynthetic pathways inferred to have been ancestral to parasitic apicomplexans. Our results shed light on the evolutionary history of the only probably mutualistic apicomplexan known, Nephromyces, and provide context for a better understanding of its life style and intricate symbiosis.
Collapse
Affiliation(s)
- Sergio A Muñoz-Gómez
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Keira Durnin
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Laura Eme
- Unité d'Ecologie, Sistématique et Evolution, CNRS, Université Paris-Sud, France
| | | | | | - Mary B Saffo
- Smithsonian National Museum of Natural History, Washington, District of Columbia
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
8
|
Motility and cytoskeletal organisation in the archigregarine Selenidium pygospionis (Apicomplexa): observations on native and experimentally affected parasites. Parasitol Res 2019; 118:2651-2667. [PMID: 31270680 DOI: 10.1007/s00436-019-06381-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Representatives of Apicomplexa perform various kinds of movements that are linked to the different stages of their life cycle. Ancestral apicomplexan lineages, including gregarines, represent organisms suitable for research into the evolution and diversification of motility within the group. The vermiform trophozoites and gamonts of the archigregarine Selenidium pygospionis perform a very active type of bending motility. Experimental assays and subsequent light, electron, and confocal microscopic analyses demonstrated the fundamental role of the cytoskeletal proteins actin and tubulin in S. pygospionis motility and allowed us to compare the mechanism of its movement to the gliding machinery (the so-called glideosome concept) described in apicomplexan zoites. Actin-modifying drugs caused a reduction in the movement speed (cytochalasin D) or stopped the motility of archigregarines completely (jasplakinolide). Microtubule-disrupting drugs (oryzalin and colchicine) had an even more noticeable effect on archigregarine motility. The fading and disappearance of microtubules were documented in ultrathin sections, along with the formation of α-tubulin clusters visible after the immunofluorescent labelling of drug-treated archigregarines. The obtained data indicate that subpellicular microtubules most likely constitute the main motor structure involved in S. pygospionis bending motility, while actin has rather a supportive function.
Collapse
|
9
|
Iritani D, Horiguchi T, Wakeman KC. Molecular Phylogenetic Positions and Ultrastructure of Marine Gregarines (Apicomplexa) Cuspisella ishikariensis n. gen., n. sp. and Loxomorpha cf. harmothoe from Western Pacific scaleworms (Polynoidae). J Eukaryot Microbiol 2018; 65:637-647. [PMID: 29399925 DOI: 10.1111/jeu.12509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 01/21/2023]
Abstract
Marine gregarines are unicellular parasites of invertebrates commonly found infecting the intestine and coelomic spaces of their hosts. Situated at the base of the apicomplexan tree, marine gregarines offer an opportunity to explore the earliest stages of apicomplexan evolution. Classification of marine gregarines is often based on the morphological traits of the conspicuous feeding stages (trophozoites) in combination with host affiliation and molecular phylogenetic data. Morphological characters of other life stages such as the spore are also used to inform taxonomy when such stages can be found. The reconstruction of gregarine evolutionary history is challenging, due to high levels of intraspecific variation of morphological characters combined with relatively few traits that are taxonomically unambiguous. The current study combined morphological data with a phylogenetic analysis of small subunit rDNA sequences to describe and establish a new genus and species (Cuspisella ishikariensis n. gen., n. sp.) of marine gregarine isolated from the intestine of a polynoid host (Lepidonotus helotypus) collected from Hokkaido, Japan. This new species possesses a set of unusual morphological traits including a spiked attachment apparatus and sits on a long branch on the molecular phylogeny. Furthermore, this study establishes a molecular phylogenetic position for Loxomorpha cf. harmothoe, a previously described marine gregarine, and reveals a new group of gregarines that infect polynoid hosts.
Collapse
Affiliation(s)
- Davis Iritani
- Faculty of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan
| | - Takeo Horiguchi
- Faculty of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan
| | - Kevin C Wakeman
- Graduate School of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan.,Institute for International Collaboration, Hokkaido University, Sapporo, 060-0815, Japan
| |
Collapse
|
10
|
Wakeman KC, Yabuki A, Fujikura K, Tomikawa K, Horiguchi T. Molecular Phylogeny and Surface Morphology of Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp. (Gregarinasina, Apicomplexa) Isolated from a Deep Sea Oradarea sp. (Amphipoda) in the West Pacific. J Eukaryot Microbiol 2017; 65:372-381. [PMID: 29044924 DOI: 10.1111/jeu.12480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/02/2017] [Accepted: 10/06/2017] [Indexed: 11/26/2022]
Abstract
In an effort to broaden our understanding of the biodiversity and distribution of gregarines infecting crustaceans, this study describes two new species of gregarines, Thiriotia hyperdolphinae n. sp. and Cephaloidophora oradareae n. sp., parasitizing a deep sea amphipod (Oradarea sp.). Amphipods were collected using the ROV Hyper-Dolphin at a depth of 855 m while on a cruise in Sagami Bay, Japan. Gregarine trophozoites and gamonts were isolated from the gut of the amphipod and studied with light and scanning electron microscopy, and phylogenetic analysis of 18S rDNA. Thiriotia hyperdolphinae n. sp. was distinguished from existing species based on morphology, phylogenetic position, as well as host niche and geographic locality. Cephaloidophora oradareae n. sp. distinguished itself from existing Cephaloidophora, based on a difference in host (Oradarea sp.), geographic location, and to a certain extent morphology. We established this latter new species with the understanding that a more comprehensive examination of diversity at the molecular level is necessary within Cephaloidophora. Results from the 18S rDNA molecular phylogeny showed that T. hyperdolphinae n. sp. was positioned within a clade consisting of Thiriotia spp., while C. oradareae n. sp. grouped within the Cephaloidophoridae. Still, supplemental genetic information from gregarines infecting crustaceans will be needed to better understand relationships within this group of apicomplexans.
Collapse
Affiliation(s)
- Kevin C Wakeman
- Institute for International Collaboration, Hokkaido University, Sapporo, 060-0808, Japan.,Faculty of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 2370061, Japan
| | - Katsunori Fujikura
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa, 2370061, Japan
| | - Ko Tomikawa
- Graduate School of Higher Education, Hiroshima University, Higashihiroshima, 739-8524, Japan
| | - Takeo Horiguchi
- Faculty of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan
| |
Collapse
|
11
|
Iritani D, Wakeman KC, Leander BS. Molecular Phylogenetic Positions of Two New Marine Gregarines (Apicomplexa)-Paralecudina anankea n. sp. and Lecudina caspera n. sp.-from the Intestine of Lumbrineris inflata (Polychaeta) Show Patterns of Co-evolution. J Eukaryot Microbiol 2017; 65:211-219. [PMID: 28833883 DOI: 10.1111/jeu.12462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 11/30/2022]
Abstract
Gregarine apicomplexans are unicellular parasites commonly found in the intestines and coeloms of invertebrate hosts. Traits associated with the conspicuous feeding stage of gregarines, known as the trophozoite, have been used in combination with molecular phylogenetic data for species delimitation and the reconstruction of evolutionary history. Trophozoite morphology alone is often inadequate for inferring phylogenetic relationships and delimiting species due to frequent cases of high intraspecific variation combined with relatively low interspecific variation. The current study combined morphological data with small subunit (SSU) rDNA sequences to describe and establish two novel marine gregarine species isolated from the intestine of a polychaete host Lumbrineris inflata collected in British Columbia (Canada): Paralecudina anankea n. sp. and Lecudina caspera n. sp. The sister species to the host is Lumbrineris japonica, which can be found on the opposite side of the Pacific Ocean (Japan) and contains two different species of gregarine parasites: Paralecudina polymorpha and Lecudina longissima. Molecular phylogenetic analyses placed P. anankea n. sp. as the sister species to P. polymorpha and L. caspera n. sp. as the sister species to L. longissima. This phylogenetic pattern demonstrates a co-evolutionary history whereby speciation of the host (Lumbrineris) corresponds with simultaneous speciation of the two different lineages of intestinal gregarines (Paralecudina and Lecudina).
Collapse
Affiliation(s)
- Davis Iritani
- Department of Botany and Zoology, University of British Columbia, #3529 - 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Kevin C Wakeman
- Office of International Affairs, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan.,Faculty of Science, Hokkaido University, North 10, West 8, Sapporo, 060-0810, Japan
| | - Brian S Leander
- Department of Botany and Zoology, University of British Columbia, #3529 - 6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
12
|
Simdyanov TG, Guillou L, Diakin AY, Mikhailov KV, Schrével J, Aleoshin VV. A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbé, 1899 (Apicomplexa: Eugregarinida). PeerJ 2017; 5:e3354. [PMID: 28584702 PMCID: PMC5452951 DOI: 10.7717/peerj.3354] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 04/26/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Gregarines are a group of early branching Apicomplexa parasitizing invertebrate animals. Despite their wide distribution and relevance to the understanding the phylogenesis of apicomplexans, gregarines remain understudied: light microscopy data are insufficient for classification, and electron microscopy and molecular data are fragmentary and overlap only partially. METHODS Scanning and transmission electron microscopy, PCR, DNA cloning and sequencing (Sanger and NGS), molecular phylogenetic analyses using ribosomal RNA genes (18S (SSU), 5.8S, and 28S (LSU) ribosomal DNAs (rDNAs)). RESULTS AND DISCUSSION We present the results of an ultrastructural and molecular phylogenetic study on the marine gregarine Ancora sagittata from the polychaete Capitella capitata followed by evolutionary and taxonomic synthesis of the morphological and molecular phylogenetic evidence on eugregarines. The ultrastructure of Ancora sagittata generally corresponds to that of other eugregarines, but reveals some differences in epicytic folds (crests) and attachment apparatus to gregarines in the family Lecudinidae, where Ancora sagittata has been classified. Molecular phylogenetic trees based on SSU (18S) rDNA reveal several robust clades (superfamilies) of eugregarines, including Ancoroidea superfam. nov., which comprises two families (Ancoridae fam. nov. and Polyplicariidae) and branches separately from the Lecudinidae; thus, all representatives of Ancoroidea are here officially removed from the Lecudinidae. Analysis of sequence data also points to possible cryptic species within Ancora sagittata and the inclusion of numerous environmental sequences from anoxic habitats within the Ancoroidea. LSU (28S) rDNA phylogenies, unlike the analysis of SSU rDNA alone, recover a well-supported monophyly of the gregarines involved (eugregarines), although this conclusion is currently limited by sparse taxon sampling and the presence of fast-evolving sequences in some species. Comparative morphological analyses of gregarine teguments and attachment organelles lead us to revise their terminology. The terms "longitudinal folds" and "mucron" are restricted to archigregarines, whereas the terms "epicystic crests" and "epimerite" are proposed to describe the candidate synapomorphies of eugregarines, which, consequently, are considered as a monophyletic group. Abolishing the suborders Aseptata and Septata, incorporating neogregarines into the Eugregarinida, and treating the major molecular phylogenetic lineages of eugregarines as superfamilies appear as the best way of reconciling recent morphological and molecular evidence. Accordingly, the diagnosis of the order Eugregarinida Léger, 1900 is updated.
Collapse
Affiliation(s)
- Timur G. Simdyanov
- Faculty of Biology, Department of Invertebrate Zoology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Laure Guillou
- UMR 7144, Laboratoire Adaptation et Diversité en Milieu Marin, CNRS, Paris, Roscoff, France
- UMR 7144, Station Biologique de Roscoff, CNRS, Sorbonne Universités, Université Pierre et Marie Curie - Paris 6, Paris, Roscoff, France
| | - Andrei Y. Diakin
- Faculty of Science, Department of Botany and Zoology, Masaryk University, Brno, Czech Republic
| | - Kirill V. Mikhailov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| | - Joseph Schrével
- CNRS 7245, Molécules de Communication et Adaptation of Micro-organisms, Paris, France
- Muséum National d’Histoire Naturelle, UMR 7245, Sorbonne Universités, Paris, France
| | - Vladimir V. Aleoshin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
13
|
Ryan U, Paparini A, Monis P, Hijjawi N. It's official - Cryptosporidium is a gregarine: What are the implications for the water industry? WATER RESEARCH 2016; 105:305-313. [PMID: 27639055 DOI: 10.1016/j.watres.2016.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Parasites of the genus Cryptosporidium are a major cause of diarrhoea and ill-health in humans and animals and are frequent causes of waterborne outbreaks. Until recently, it was thought that Cryptosporidium was an obligate intracellular parasite that only replicated within a suitable host, and that faecally shed oocysts could survive in the environment but could not multiply. In light of extensive biological and molecular data, including the ability of Cryptosporidium to complete its life cycle in the absence of a host and the production of novel extracellular stages, Cryptosporidium has been formally transferred from the Coccidia, to a new subclass, Cryptogregaria, with gregarine parasites. In this review, we discuss the close relationship between Cryptosporidium and gregarines and discuss the implications for the water industry.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia.
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water, Adelaide, Australia
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, PO Box 150459, Zarqa, 13115, Jordan
| |
Collapse
|
14
|
Schrével J, Valigurová A, Prensier G, Chambouvet A, Florent I, Guillou L. Ultrastructure of Selenidium pendula, the Type Species of Archigregarines, and Phylogenetic Relations to Other Marine Apicomplexa. Protist 2016; 167:339-368. [PMID: 27423403 DOI: 10.1016/j.protis.2016.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/30/2016] [Accepted: 06/12/2016] [Indexed: 01/16/2023]
Abstract
Archigregarines, an early branching lineage within Apicomplexa, are a poorly-known group of invertebrate parasites. By their phylogenetic position, archigregarines are an important lineage to understand the functional transition that occurred between free-living flagellated predators to obligatory parasites in Apicomplexa. In this study, we provide new ultrastructural data and phylogenies based on SSU rDNA sequences using the type species of archigregarines, the Selenidiidae Selenidium pendulaGiard, 1884. We describe for the first time the syzygy and early gamogony at the ultrastructural level, revealing a characteristic nuclear multiplication with centrocones, cryptomitosis, filamentous network of chromatin, a cyst wall secretion and a 9+0 flagellar axoneme of the male gamete. S. pendula belongs to a monophyletic lineage that includes several other related species, all infecting Sedentaria Polychaeta (Spionidae, Sabellaridae, Sabellidae and Cirratulidae). All of these Selenidium species exhibit similar biological characters: a cell cortex with the plasma membrane - inner membrane complex - subpellicular microtubule sets, an apical complex with the conoid, numerous rhoptries and micronemes, a myzocytosis with large food vacuoles, a nuclear multiplication during syzygy and young gamonts. Two other distantly related Selenidium-like lineages infect Terebellidae and Sipunculida, underlying the ability of archigregarines to parasite a wide range of marine hosts.
Collapse
Affiliation(s)
- Joseph Schrével
- Unité Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Muséum National Histoire Naturelle, Sorbonne Universités, CNRS, CP 52, 57 Rue Cuvier, 75005 Paris, France.
| | - Andrea Valigurová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Gérard Prensier
- Cell Biology and Electron Microscopy Laboratory, François Rabelais University, 10 Boulevard Tonnellé, BP 3223, 37032 Tours Cedex, France
| | - Aurélie Chambouvet
- Laboratoire des Sciences de l'Environnement Marin (LEMAR), UMR6539 UBO/CNRS/IRD/IFREMER, Institut Universitaire Européen de la Mer (IUEM), Technopole Brest Iroise, 29280 Plouzané, France
| | - Isabelle Florent
- Unité Molécules de Communication et Adaptation des Microorganismes, (MCAM, UMR 7245), Muséum National Histoire Naturelle, Sorbonne Universités, CNRS, CP 52, 57 Rue Cuvier, 75005 Paris, France
| | - Laure Guillou
- Sorbonne Universités, Université Pierre et Marie Curie - Paris 6, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688 Roscoff cedex, France
| |
Collapse
|
15
|
Molecular phylogenetics of eimeriid coccidia (Eimeriidae, Eimeriorina, Apicomplexa, Alveolata): A preliminary multi-gene and multi-genome approach. Parasitol Res 2015; 114:4149-60. [PMID: 26319519 DOI: 10.1007/s00436-015-4646-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Coccidia possess three distinct genomes: nuclear, mitochondrial, and plastid. Sequences from five genes located on these three genomes were used to reconstruct the phylogenetic relationships of members of the phylum Apicomplexa: 18S rDNA sequences from the nuclear (nu) genome, partial cytochrome c oxidase subunit I sequences from the mitochondrial (mt) genome, and partial 16S and 23S rDNA sequences and RNA polymerase B sequences from plastid (pl) genomes. Maximum parsimony, maximum likelihood, and Bayesian inference were used in conjunction with nuclear substitution models generated from data subsets in the analyses. Major groups within the Apicomplexa were well supported with the mitochondrial, nuclear, and a combination of mitochondrial, nuclear and concatenated plastid gene sequences. However, the genus Eimeria was paraphyletic in phylogenetic trees based on the nuclear gene. Analyses using the individual genes (18S rDNA and cytochrome c oxidase subunit I) resolved the various apicomplexan groups with high Bayesian posterior probabilities. The multi-gene, multi-genome analyses based on concatenated nu 18S rDNA, pl 16S, pl 23S, pl rPoB, pl rPoB1, and mt COI sequences appeared useful in resolving phylogenetic relationships within the phylum Apicomplexa. Genus-level relationships, or higher, appear best supported by 18S rDNA analyses, and species-level analyses are best investigated using mt COI sequences; for parasites for which both loci are available, nuclear 18S rDNA sequences combined with mitochondrial COI sequences provide a compact and informative molecular dataset for inferring the evolutionary relationships taxa in the Apicomplexa.
Collapse
|
16
|
Aldeyarbi HM, Karanis P. The Ultra-Structural Similarities between Cryptosporidium parvum and the Gregarines. J Eukaryot Microbiol 2015; 63:79-85. [PMID: 26173708 DOI: 10.1111/jeu.12250] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/28/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
Abstract
Using a transmission electron microscopy-based approach, this study details the striking similarities between Cryptosporidium parvum and the gregarines during in vitro axenic development at high ultra-structural resolution. C. parvum zoites displayed three unusual regions within uninucleated parasites: epimerite-like, protomerite-like, and the cell body; these regions exhibited a high degree of morphological similarity to gregarine-like trophozoites. The presence of a mucron-like bulging structure at the side of the free ovoid gregarine-like zoites was observed after 2 h of cultivation. An irregular pattern of epicytic-like folds were found to cover the surface of the parasites 24 h postcultivation. Some extracellular stages were paired in laterocaudal or side-side syzygy, with the presence of a fusion zone between some of these zoites. The present findings are in agreement with phylogenetic studies that have proposed a sister relationship with gregarines. Cryptosporidium appears to exhibit tremendous variety in cell structure depending on the surrounding environment, thereby mimicking the "primitive" gregarines in terms of the co-evolution strategy between the parasites and their environments. Given this degree of similarity, different aspects of the evolutionary biology of Cryptosporidium need to be examined, considering the knowledge gained from the study of gregarines.
Collapse
Affiliation(s)
- Hebatalla M Aldeyarbi
- Center for Anatomy, Institute I, University of Cologne, Joseph-Stelzmann-Street 9, 50937, Cologne, Germany.,Department of Parasitology, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Panagiotis Karanis
- Medical School, University of Cologne, Cologne, Germany.,Thousand Talents Plan of the Chinese Government, Center for Biomedicine and Infectious Diseases, Qinghai Academy of Animal Science and Veterinary Medicine, Xining, China
| |
Collapse
|
17
|
Comparative ultrastructure and molecular phylogeny of Selenidium melongena n. sp. and S. terebellae Ray 1930 demonstrate niche partitioning in marine gregarine parasites (apicomplexa). Protist 2014; 165:493-511. [PMID: 24998785 DOI: 10.1016/j.protis.2014.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/29/2014] [Accepted: 05/30/2014] [Indexed: 11/21/2022]
Abstract
Gregarine apicomplexans are a diverse group of single-celled parasites that have feeding stages (trophozoites) and gamonts that generally inhabit the extracellular spaces of invertebrate hosts living in marine, freshwater, and terrestrial environments. Inferences about the evolutionary morphology of gregarine apicomplexans are being incrementally refined by molecular phylogenetic data, which suggest that several traits associated with the feeding cells of gregarines arose by convergent evolution. The study reported here supports these inferences by showing how molecular data reveals traits that are phylogenetically misleading within the context of comparative morphology alone. We examined the ultrastructure and molecular phylogenetic positions of two gregarine species isolated from the spaghetti worm Thelepus japonicus: Selenidium terebellaeRay 1930 and S. melongena n. sp. The ultrastructural traits of S. terebellae were very similar to other species of Selenidium sensu stricto, such as having vermiform trophozoites with an apical complex, few epicytic folds, and a dense array of microtubules underlying the trilayered pellicle. By contrast, S. melongena n. sp. lacked a comparably discrete assembly of subpellicular microtubules, instead employing a system of fibrils beneath the cell surface that supported a relatively dense array of helically arranged epicytic folds. Molecular phylogenetic analyses of small subunit rDNA sequences derived from single-cell PCR unexpectedly demonstrated that these two gregarines are close sister species. The ultrastructural differences between these two species were consistent with the fact that S. terebellae infects the inner lining of the host intestines, and S. melongena n. sp. primarily inhabits the coelom, infecting the outside wall of the host intestine. Altogether, these data demonstrate a compelling case of niche partitioning and associated morphological divergence in marine gregarine apicomplexans.
Collapse
|
18
|
White feces syndrome of shrimp arises from transformation, sloughing and aggregation of hepatopancreatic microvilli into vermiform bodies superficially resembling gregarines. PLoS One 2014; 9:e99170. [PMID: 24911022 PMCID: PMC4049610 DOI: 10.1371/journal.pone.0099170] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 05/12/2014] [Indexed: 11/24/2022] Open
Abstract
Accompanying acute hepatopancreatic necrosis disease (AHPND) in cultivated Asian shrimp has been an increasing prevalence of vermiform, gregarine-like bodies within the shrimp hepatopancreas (HP) and midgut. In high quantity they result in white fecal strings and a phenomenon called white feces syndrome (WFS). Light microscopy (LM) of squash mounts and stained smears from fresh HP tissue revealed that the vermiform bodies are almost transparent with widths and diameters proportional to the HP tubule lumens in which they occur. Despite vermiform appearance, they show no cellular structure. At high magnification (LM with 40-100x objectives), they appear to consist of a thin, outer membrane enclosing a complex of thicker, inter-folded membranes. Transmission electron microscopy (TEM) revealed that the outer non-laminar membrane of the vermiform bodies bore no resemblance to a plasma membrane or to the outer layer of any known gregarine, other protozoan or metazoan. Sub-cellular organelles such as mitochondria, nuclei, endoplasmic reticulum and ribosomes were absent. The internal membranes had a tubular sub-structure and occasionally enclosed whole B-cells, sloughed from the HP tubule epithelium. These internal membranes were shown to arise from transformed microvilli that peeled away from HP tubule epithelial cells and then aggregated in the tubule lumen. Stripped of microvilli, the originating cells underwent lysis. By contrast, B-cells remained intact or were sloughed independently and whole from the tubule epithelium. When sometimes engulfed by the aggregated, transformed microvilli (ATM) they could be misinterpreted as cyst-like structures by light microscopy, contributing to gregarine-like appearance. The cause of ATM is currently unknown, but formation by loss of microvilli and subsequent cell lysis indicate that their formation is a pathological process. If sufficiently severe, they may retard shrimp growth and may predispose shrimp to opportunistic pathogens. Thus, the cause of ATM and their relationship (if any) to AHPND should be determined.
Collapse
|
19
|
Wakeman KC, Reimer JD, Jenke-Kodama H, Leander BS. Molecular Phylogeny and Ultrastructure of Caliculium glossobalani
n. gen. et sp. (Apicomplexa) from a Pacific Glossobalanus minutus
(Hemichordata) Confounds the Relationships Between Marine and Terrestrial Gregarines. J Eukaryot Microbiol 2014; 61:343-53. [DOI: 10.1111/jeu.12114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 02/04/2014] [Accepted: 02/04/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Kevin C. Wakeman
- Canadian Institute for Advanced Research; Program in Integrated Microbial Biodiversity; Departments of Botany and Zoology; University of British Columbia; #3529 - 6270 University Blvd Vancouver British Columbia V6T 1Z4 Canada
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory; Faculty of Science; University of the Ryukyus; Senbaru 1, Nishihara Okinawa 903-0213 Japan
| | - Holger Jenke-Kodama
- Microbiology and Biochemistry of Secondary Metabolites Unit; Okinawa Institute of Science and Technology; 1919-1 Tancha Onna-son, Kunigami Okinawa 904-0412 Japan
| | - Brian S. Leander
- Canadian Institute for Advanced Research; Program in Integrated Microbial Biodiversity; Departments of Botany and Zoology; University of British Columbia; #3529 - 6270 University Blvd Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
20
|
Lantova L, Volf P. Mosquito and sand fly gregarines of the genus Ascogregarina and Psychodiella (Apicomplexa: Eugregarinorida, Aseptatorina)--overview of their taxonomy, life cycle, host specificity and pathogenicity. INFECTION GENETICS AND EVOLUTION 2014; 28:616-27. [PMID: 24797386 DOI: 10.1016/j.meegid.2014.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/16/2014] [Accepted: 04/24/2014] [Indexed: 11/15/2022]
Abstract
Mosquitoes and sand flies are important blood-sucking vectors of human diseases such as malaria or leishmaniasis. Nevertheless, these insects also carry their own parasites, such as gregarines; these monoxenous pathogens are found exclusively in invertebrates, and some of them have been considered useful in biological control. Mosquito and sand fly gregarines originally belonging to a single genus Ascogregarina were recently divided into two genera, Ascogregarina comprising parasites of mosquitoes, bat flies, hump-backed flies and fleas and Psychodiella parasitizing sand flies. Currently, nine mosquito Ascogregarina and five Psychodiella species are described. These gregarines go through an extraordinarily interesting life cycle; the mosquito and sand fly larvae become infected by oocysts, the development continues transtadially through the larval and pupal stages to adults and is followed by transmission to the offspring by genus specific mechanisms. In adult mosquitoes, ascogregarines develop in the Malpighian tubules, and oocysts are defecated, while in the sand flies, the gregarines are located in the body cavity, their oocysts are injected into the accessory glands of females and released during oviposition. These life history differences are strongly supported by phylogenetical study of SSU rDNA proving disparate position of Ascogregarina and Psychodiella gregarines. This work reviews the current knowledge about Ascogregarina and Psychodiella gregarines parasitizing mosquitoes and sand flies, respectively. It gives a comprehensive insight into their taxonomy, life cycle, host specificity and pathogenicity, showing a very close relationship of gregarines with their hosts, which suggests a long and strong parasite-host coevolution.
Collapse
Affiliation(s)
- Lucie Lantova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 128 44 Prague 2, Czech Republic.
| |
Collapse
|
21
|
Koh W, Clode PL, Monis P, Thompson RCA. Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system. Parasit Vectors 2013; 6:270. [PMID: 24330483 PMCID: PMC3848567 DOI: 10.1186/1756-3305-6-270] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/15/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND In natural aquatic environments biofilms are known to act as environmental reservoirs for Cryptosporidium parvum oocysts. However, the fate of these oocysts within biofilms has yet to be determined. METHODS This study aimed to identify if biofilms have the ability to support the multiplication of Cryptosporidium by measuring the change in parasite number over time using quantitative polymerase chain reaction (qPCR) and detecting the possible extracellular developmental stages using a combination of confocal microscopy and immunolabelling techniques. Pseudomonas aeruginosa biofilm flow cell systems were established and C. parvum oocysts were constantly supplied over a six day period. RESULTS A significant (P<0.001) increase in Cryptosporidium was detected as the biofilm matured, with the total number of C. parvum multiplying 2-3 fold during this period. With this, various Cryptosporidium developmental stages (sporozoites, trophozoites, type I and II meronts) were identified from the biofilm. CONCLUSION This is the first study demonstrating that biofilms not only serve as an environmental reservoir for oocysts, but are also capable of supporting the multiplication of Cryptosporidium over time in an aquatic environment.
Collapse
|
22
|
Wakeman KC, Leander BS. Molecular Phylogeny of Marine Gregarine Parasites (Apicomplexa) from Tube-forming Polychaetes (Sabellariidae, Cirratulidae, and Serpulidae), Including Descriptions of Two New Species of Selenidium. J Eukaryot Microbiol 2013; 60:514-25. [DOI: 10.1111/jeu.12059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 04/15/2013] [Accepted: 04/15/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin C. Wakeman
- Departments of Botany and Zoology; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity; University of British Columbia; #3529 - 6270 University Blvd. Vancouver British Columbia V6T 1Z4 Canada
| | - Brian S. Leander
- Departments of Botany and Zoology; Canadian Institute for Advanced Research, Program in Integrated Microbial Biodiversity; University of British Columbia; #3529 - 6270 University Blvd. Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
23
|
Rueckert S, Wakeman KC, Leander BS. Discovery of a diverse clade of gregarine apicomplexans (Apicomplexa: Eugregarinorida) from Pacific eunicid and onuphid polychaetes, including descriptions of Paralecudina n. gen., Trichotokara japonica n. sp., and T. eunicae n. sp. J Eukaryot Microbiol 2013; 60:121-36. [PMID: 23347320 DOI: 10.1111/jeu.12015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/13/2012] [Accepted: 09/25/2012] [Indexed: 11/28/2022]
Abstract
Marine gregarines are poorly understood apicomplexan parasites with large trophozoites that inhabit the body cavities of marine invertebrates. Two novel species of gregarines were discovered in polychaete hosts collected in Canada and Japan. The trophozoites of Trichotokara japonica n. sp. were oval to rhomboidal shaped, and covered with longitudinal epicytic folds with a density of six to eight folds/micron. The nucleus was situated in the middle of the cell, and the mucron was elongated and covered with hair-like projections; antler-like projections also extended from the anterior tip of the mucron. The distinctively large trophozoites of Trichotokara eunicae n. sp. lacked an elongated mucron and had a tadpole-like cell shape consisting of a bulbous anterior region and a tapered tail-like posterior region. The cell surface was covered with longitudinal epicytic folds with a density of three to five folds/micron. Small subunit (SSU) rDNA sequences of both species were very divergent and formed a strongly supported clade with the recently described species Trichotokara nothriae and an environmental sequence (AB275074). This phylogenetic context combined with the morphological features of T. eunicae n. sp. required us to amend the description for Trichotokara. The sister clade to the Trichotokara clade consisted of environmental sequences and Lecudina polymorpha, which also possesses densely packed epicyctic folds (3-5 folds/micron) and a prominently elongated mucron. This improved morphological and molecular phylogenetic context justified the establishment of Paralecudina (ex. Lecudina) polymorpha n. gen. et comb.
Collapse
Affiliation(s)
- Sonja Rueckert
- School of Life, Sport and Social Sciences, Edinburgh Napier University, Sighthill Campus, Sighthill Court, Edinburgh EH11 4BN, UK.
| | | | | |
Collapse
|
24
|
Wakeman KC, Leander BS. Molecular Phylogeny of Pacific Archigregarines (Apicomplexa), Including Descriptions of Veloxidium leptosynaptae n. gen., n. sp., from the Sea Cucumber Leptosynapta clarki (Echinodermata), and Two New Species of Selenidium. J Eukaryot Microbiol 2012; 59:232-45. [DOI: 10.1111/j.1550-7408.2012.00616.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/23/2012] [Indexed: 11/30/2022]
Affiliation(s)
- Kevin C. Wakeman
- Department of Zoology, Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research; University of British Columbia, #3529 6270 University Boulevard; Vancouver; BC; Canada; V6T 1Z4
| | - Brian S. Leander
- Department of Zoology, Program in Integrated Microbial Biodiversity, Canadian Institute for Advanced Research; University of British Columbia, #3529 6270 University Boulevard; Vancouver; BC; Canada; V6T 1Z4
| |
Collapse
|
25
|
Molecular systematics of marine gregarines (Apicomplexa) from North-eastern Pacific polychaetes and nemerteans, with descriptions of three novel species: Lecudina phyllochaetopteri sp. nov., Difficilina tubulani sp. nov. and Difficilina paranemertis sp. nov. Int J Syst Evol Microbiol 2010; 60:2681-2690. [DOI: 10.1099/ijs.0.016436-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most eugregarine apicomplexans infecting the intestines of marine invertebrates have been described within the family Lecudinidae and the type genus Lecudina. The diversity of these parasites is vast and poorly understood and only a tiny number of species has been characterized at the molecular phylogenetic level. DNA sequences coupled with high-resolution micrographs of trophozoites provide an efficient and precise approach for delimiting gregarine lineages from one another and also facilitate our overall understanding of gregarine biodiversity. In this study, phylogenetic analyses of small subunit (SSU) rDNA sequences from five (uncultivated) gregarines isolated from polychaetes and nemerteans in the North-eastern Pacific Ocean are presented. Lecudina phyllochaetopteri sp. nov. was isolated from the intestines of the parchment tubeworm Phyllochaetopterus prolifica (Polychaeta). Lecudina longissima and Lecudina polymorpha were both isolated from the intestines of Lumbrineris japonica (Polychaeta). Difficilina tubulani sp. nov. was isolated from the nemertean Tubulanus polymorpha and Difficilina paranemertis sp. nov. was isolated from the nemertean Paranemertes peregrina. This is the first report of molecular sequence data from gregarines that infect nemerteans. The two novel species of the genus Difficilina described in this study formed a strongly supported clade in the phylogenetic analyses. This Difficilina clade formed the sister group to a robust subclade of lecudinids consisting of Lecudina longissima, Lecudina phyllochaetopteri sp. nov. (which lacked epicytic folds), Lecudina tuzetae, species of the genus Lankesteria and several sequences derived from previous environmental DNA surveys of marine biodiversity.
Collapse
|
26
|
Description of Trichotokara nothriae n. gen. et sp. (Apicomplexa, Lecudinidae) – An intestinal gregarine of Nothria conchylega (Polychaeta, Onuphidae). J Invertebr Pathol 2010; 104:172-9. [DOI: 10.1016/j.jip.2010.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/03/2010] [Accepted: 03/11/2010] [Indexed: 11/22/2022]
|
27
|
Rueckert S, Leander BS. Molecular phylogeny and surface morphology of marine archigregarines (Apicomplexa), Selenidium spp., Filipodium phascolosomae n. sp., and Platyproteum n. g. and comb. from North-Eastern Pacific peanut worms (Sipuncula). J Eukaryot Microbiol 2009; 56:428-39. [PMID: 19737195 DOI: 10.1111/j.1550-7408.2009.00422.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The trophozoites of two novel archigregarines, Selenidium pisinnus n. sp. and Filipodium phascolosomae n. sp., were described from the sipunculid Phascolosoma agassizii. The trophozoites of S. pisinnus n. sp. were relatively small (64-100 microm long and 9-25 microm wide), had rounded ends, and had about 21 epicytic folds per side. The trophozoites of F. phascolosomae n. sp. were highly irregular in shape and possessed hair-like surface projections. The trophozoites of this species were 85-142 microm long and 40-72 microm wide and possessed a distinct longitudinal ridge that extended from the mucron to the posterior end of the cell. In addition to the small subunit (SSU) rDNA sequences of these two species, we also characterized the surface morphology and SSU rDNA sequence of Selenidium orientale, isolated from the sipunculid Themiste pyroides. Molecular phylogenetic analyses demonstrated that S. pisinnus n. sp. and S. orientale formed a strongly supported clade within other Selenidium and archigregarine-like environmental sequences. Filipodium phascolosomae n. sp. formed the nearest sister lineage to the dynamic, tape-like gregarine Selenidium vivax. Overall, these data enabled us to reassess the molecular systematics of archigregarines within sipunculid hosts and make the following revisions: (1) Filipodium was transferred from the Lecudinidae (eugregarines) to the Selenidiidae (archigregarines), and (2) Platyproteum n. g. was established for Platyproteum vivax n. comb. (ex. S. vivax) in order to account for the highly divergent morphological features and better resolved phylogenetic position of this lineage.
Collapse
Affiliation(s)
- Sonja Rueckert
- Canadian Institute for Advanced Research, Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
28
|
Thompson RCA, Olson ME, Zhu G, Enomoto S, Abrahamsen MS, Hijjawi NS. Cryptosporidium and cryptosporidiosis. ADVANCES IN PARASITOLOGY 2009; 59:77-158. [PMID: 16182865 DOI: 10.1016/s0065-308x(05)59002-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cryptosporidium is one of the most common enteric protozoan parasites of vertebrates with a wide host range that includes humans and domestic animals. It is a significant cause of diarrhoeal disease and an ubiquitous contaminant of water which serves as an excellent vehicle for transmission. A better understanding of the development and life cycle of Cryptosporidium, and new insights into its phylogenetic relationships, have illustrated the need to re-evaluate many aspects of the biology of Cryptosporidium. This has been reinforced by information obtained from the recent successful Cryptosporidium genome sequencing project, which has emphasised the uniqueness of this organism in terms of its parasite life style and evolutionary biology. This chapter provides an up to date review of the biology, biochemistry and host parasite relationships of Cryptosporidium.
Collapse
Affiliation(s)
- R C A Thompson
- Division of Veterinary and Biomedical Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | | | | | | | | | | |
Collapse
|
29
|
Clopton RE. Phylogenetic Relationships, Evolution, and Systematic Revision of the Septate Gregarines (Apicomplexa: Eugregarinorida: Septatorina). COMP PARASITOL 2009. [DOI: 10.1654/4388.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
30
|
Kuo CH, Wares JP, Kissinger JC. The Apicomplexan whole-genome phylogeny: an analysis of incongruence among gene trees. Mol Biol Evol 2008; 25:2689-98. [PMID: 18820254 PMCID: PMC2582981 DOI: 10.1093/molbev/msn213] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2008] [Indexed: 11/26/2022] Open
Abstract
The protistan phylum Apicomplexa contains many important pathogens and is the subject of intense genome sequencing efforts. Based upon the genome sequences from seven apicomplexan species and a ciliate outgroup, we identified 268 single-copy genes suitable for phylogenetic inference. Both concatenation and consensus approaches inferred the same species tree topology. This topology is consistent with most prior conceptions of apicomplexan evolution based upon ultrastructural and developmental characters, that is, the piroplasm genera Theileria and Babesia form the sister group to the Plasmodium species, the coccidian genera Eimeria and Toxoplasma are monophyletic and are the sister group to the Plasmodium species and piroplasm genera, and Cryptosporidium forms the sister group to the above mentioned with the ciliate Tetrahymena as the outgroup. The level of incongruence among gene trees appears to be high at first glance; only 19% of the genes support the species tree, and a total of 48 different gene-tree topologies are observed. Detailed investigations suggest that the low signal-to-noise ratio in many genes may be the main source of incongruence. The probability of being consistent with the species tree increases as a function of the minimum bootstrap support observed at tree nodes for a given gene tree. Moreover, gene sequences that generate high bootstrap support are robust to the changes in alignment parameters or phylogenetic method used. However, caution should be taken in that some genes can infer a "wrong" tree with strong support because of paralogy, model violations, or other causes. The importance of examining multiple, unlinked genes that possess a strong phylogenetic signal cannot be overstated.
Collapse
|
31
|
Ciancio A, Scippa S, Finetti-Sialer M, De Candia A, Avallone B, De Vincentiis M. Redescription of Cardiosporidium cionae (Van Gaver and Stephan, 1907) (Apicomplexa: Piroplasmida), a plasmodial parasite of ascidian haemocytes. Eur J Protistol 2008; 44:181-96. [PMID: 18304788 DOI: 10.1016/j.ejop.2007.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 11/19/2007] [Accepted: 11/24/2007] [Indexed: 11/27/2022]
Abstract
Cardiosporidium cionae (Apicomplexa), from the ascidian Ciona intestinalis L., is redescribed with novel ultrastructural, phylogenetic and prevalence data. Ultrastructural analysis of specimens of C. intestinalis collected from the Gulf of Naples showed sporonts and plasmodia of C. cionae within the host pericardial body. Several merogonic stages and free merozoites were found in the pericardial body, together with sexual stages. All stages showed typical apicomplexan cell organelles, i.e. apicoplasts, rhoptries and subpellicular microtubules. Merogonic stages of C. cionae were also produced inside haemocytes. A fragment of the rSSU gene of C. cionae was amplified by PCR using DNA extracted from the pericardial bodies. The amplified product showed closest affinity with other apicomplexan representatives and a 66bp unique insertion, specific for C. cionae, at position 1644. Neighbour-joining phylogenetic analysis placed C. cionae in a clade with other piroplasm genera, including Cytauxzoon, Babesia and Theileria spp. The parasite was found in different populations of C. intestinalis with highest prevalence in October-November. Ultrastructural and DNA data showed that the organism, described in 1907 from the same host but not illustrated in detail, is a member of a novel marine apicomplexan radiation of tunicate parasites.
Collapse
Affiliation(s)
- A Ciancio
- CNR, Istituto per la Protezione delle Piante, Via Amendola 122/D, I-70126 Bari, Italy.
| | | | | | | | | | | |
Collapse
|
32
|
Leander BS. Marine gregarines: evolutionary prelude to the apicomplexan radiation? Trends Parasitol 2008; 24:60-7. [PMID: 18226585 DOI: 10.1016/j.pt.2007.11.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 10/18/2007] [Accepted: 11/08/2007] [Indexed: 11/25/2022]
Abstract
Gregarine apicomplexans inhabit the intestines, coeloms and reproductive vesicles of invertebrates. An emphasis on specific ancestral characteristics in marine gregarines has given the group a reputation of being 'primitive.' Although some lineages have retained characteristics inferred to be ancestral for the group, and perhaps apicomplexans as a whole, most gregarines represent highly derived parasites with novel ultrastructural and behavioral adaptations. Many marine gregarines have become giants among single-celled organisms and have evolved ornate surface structures. A comparison of gregarine morphology, placed in a modern phylogenetic context, helps clarify the earliest stages of apicomplexan evolution, the origin of Cryptosporidium, and specific cases of convergent evolution within the group and beyond.
Collapse
Affiliation(s)
- Brian S Leander
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
33
|
VALIGUROVÁ ANDREA, HOFMANNOVÁ LADA, KOUDELA BŘETISLAV, VÁVRA JIŘÍ. An Ultrastructural Comparison of the Attachment Sites Between Gregarina steini and Cryptosporidium muris. J Eukaryot Microbiol 2007; 54:495-510. [DOI: 10.1111/j.1550-7408.2007.00291.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T. Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 2007; 11:563-76. [PMID: 17426921 DOI: 10.1007/s00792-007-0068-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 02/19/2007] [Indexed: 10/23/2022]
Abstract
Recent culture-independent surveys of eukaryotic small-subunit ribosomal DNA (SSU rDNA) from many environments have unveiled unexpectedly high diversity of microbial eukaryotes (microeukaryotes) at various taxonomic levels. However, such surveys were most probably biased by various technical difficulties, resulting in underestimation of microeukaryotic diversity. In the present study on oxygen-depleted sediment from a deep-sea methane cold seep of Sagami Bay, Japan, we surveyed the diversity of eukaryotic rDNA in raw sediment samples and in two enrichment cultures. More than half of all clones recovered from the raw sediment samples were of the basidiomycetous fungus Cryptococcus curvatus. Among other clones, phylotypes of eukaryotic parasites, such as Apicomplexa, Ichthyosporea, and Phytomyxea, were identified. On the other hand, we observed a marked difference in phylotype composition in the enrichment samples. Several phylotypes belonging to heterotrophic stramenopiles were frequently found in one enrichment culture, while a phylotype of Excavata previously detected at a deep-sea hydrothermal vent dominated the other. We successfully established a clonal culture of this excavate flagellate. Since these phylotypes were not identified in the raw sediment samples, the approach incorporating a cultivation step successfully found at least a fraction of the "hidden" microeukaryotic diversity in the environment examined.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.
| | | | | | | | | |
Collapse
|
35
|
Leander BS. Molecular phylogeny and ultrastructure of Selenidium serpulae (Apicomplexa, Archigregarinia) from the calcareous tubeworm Serpula vermicularis (Annelida, Polychaeta, Sabellida). ZOOL SCR 2007. [DOI: 10.1111/j.1463-6409.2007.00272.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
|
37
|
Takishita K, Tsuchiya M, Kawato M, Oguri K, Kitazato H, Maruyama T. Genetic Diversity of Microbial Eukaryotes in Anoxic Sediment of the Saline Meromictic Lake Namako-ike (Japan): On the Detection of Anaerobic or Anoxic-tolerant Lineages of Eukaryotes. Protist 2007; 158:51-64. [PMID: 16952482 DOI: 10.1016/j.protis.2006.07.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Accepted: 07/09/2006] [Indexed: 11/20/2022]
Abstract
Available sequence data on eukaryotic small-subunit ribosomal DNA (SSU rDNA) directly retrieved from various environments have increased recently, and the diversity of microbial eukaryotes (protists) has been shown to be much greater than previously expected. However, the molecular information accumulated to date does still not thoroughly reveal ecological distribution patterns of microbial eukaryotes. In the ongoing challenge to detect anaerobic or anoxic-tolerant lineages of eukaryotes, we directly extracted DNA from the anoxic sediment of a saline meromictic lake, constructed genetic libraries of PCR-amplified SSU rDNA, and performed phylogenetic analyses with the cloned SSU rDNA sequences. Although a few sequences could not be confidently assigned to any major eukaryotic groups in the analyses and are debatable regarding their taxonomic positions, most sequences obtained have affiliations with known major lineages of eukaryotes (Cercozoa, Alveolata, Stramenopiles, and Opisthokonta). Among these sequences, some branched with lineages predominantly composed of uncultured environmental clones retrieved from other anoxic environments, while others were closely related to those of eukaryotic parasites (e.g. Phytomyxea of Cercozoa, Gregarinea of Alveolata, and Ichthyosporea of Opisthokonta).
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Extremobiosphere Research Center, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Barta JR, Thompson RCA. What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol 2006; 22:463-8. [PMID: 16904941 DOI: 10.1016/j.pt.2006.08.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2006] [Revised: 07/10/2006] [Accepted: 08/01/2006] [Indexed: 10/24/2022]
Abstract
In raising the question "What is Cryptosporidium?", we aim to emphasize a growing need to re-evaluate the affinities of Cryptosporidium species within the phylum Apicomplexa so as to better understand the biology and ecology of these parasites. Here, we have compiled evidence from a variety of molecular and biological studies to build a convincing case for distancing Cryptosporidium species from the coccidia conceptually, biologically and taxonomically. We suggest that Cryptosporidium species must no longer be considered unusual or unique coccidia but rather seen for what they are--a distantly related lineage of apicomplexan parasites that are not in fact coccidia but that do occupy many of the same ecological niches. Looking at Cryptosporidium species without traditional coccidian blinders is likely to reveal new avenues of investigation into pathogenesis, epidemiology, treatment and control of these ubiquitous pathogens.
Collapse
Affiliation(s)
- John R Barta
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
39
|
Leander BS, Ramey PA. Cellular Identity of a Novel Small Subunit rDNA Sequence Clade of Apicomplexans: Description of the Marine Parasite Rhytidocystis polygordiae n. sp. (Host: Polygordius sp., Polychaeta). J Eukaryot Microbiol 2006; 53:280-91. [PMID: 16872296 DOI: 10.1111/j.1550-7408.2006.00109.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A new species of Rhytidocystis (Apicomplexa) is characterized from North American waters of the Atlantic Ocean using electron microscopy and phylogenetic analyses of small subunit (SSU) rDNA sequences. Rhytidocystis polygordiae n. sp. is a parasite of the polychaete Polygordius sp. and becomes the fourth described species within this genus. The trophozoites of R. polygordiae were relatively small oblong cells (L=35-55 microm; W=20-25 microm) and distinctive in possessing subterminal indentations at both ends of the cell. The surface of the trophozoites had six to eight longitudinal series of small transverse folds and several micropores arranged in short linear rows. The trophozoites of R. polygordiae were positioned beneath the brush border of the intestinal epithelium but appeared to reside between the epithelial cells within the extracellular matrix rather than within the cells. The trophozoites possessed a uniform distribution of paraglycogen granules, putative apicoplasts, mitochondria with tubular cristae, and a centrally positioned nucleus. The trophozoites were non-motile and lacked a mucron and an apical complex. Intracellular sporozoites of R. polygordiae had a conoid, a few rhoptries, micronemes, dense granules, and a posteriorly positioned nucleus. Phylogenies inferred from SSU rDNA sequences demonstrated a close relationship between R. polygordiae and the poorly known parasite reported from the hemolymph of the giant clam Tridacna crocea. The rhytidocystid clade diverged early in the apicomplexan radiation and showed a weak affinity to a clade consisting of cryptosporidian parasites, monocystids, and neogregarines.
Collapse
Affiliation(s)
- Brian S Leander
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
40
|
Kopecná J, Jirků M, Oborník M, Tokarev YS, Lukes J, Modrý D. Phylogenetic analysis of coccidian parasites from invertebrates: search for missing links. Protist 2006; 157:173-83. [PMID: 16621694 DOI: 10.1016/j.protis.2006.02.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Apicomplexan parasites represent one of the most important groups of parasitic unicellular eukaryotes comprising such important human parasites such as Plasmodium spp. and Toxoplasma gondii. Apicomplexan radiation as well as their adaptation to the parasitic style of life took place before the era of vertebrates. Thus, invertebrates were the first hosts of apicomplexan parasites that switched to vertebrates later in evolution. Despite this fact, apicomplexan parasites of invertebrates, with the exception of gregarines, have so far been ignored in phylogenetic studies. To address this issue, we sequenced the nuclear SSU rRNA genes from the homoxenous apicomplexan parasites of insects Adelina grylli and Adelina dimidiata, and the heteroxenous Aggregata octopiana and Aggregata eberthii that are transmitted between cephalopods and crustaceans, and used them for phylogenetic reconstructions. The position of the adelinids as a sister group to Hepatozoon spp. within the suborder Adeleorina was stable regardless of the phylogenetic method used. In contrast, both members of the genus Aggregata possess highly divergent SSU rRNA genes with an unusual nucleotide composition. Because of this, they form the longest branches in the tree and their position is variable. However, the genus Aggregata branches together with adelinids and hepatozoons in most of the analyses, although their position within the scope of this cluster is unstable.
Collapse
Affiliation(s)
- Jana Kopecná
- Institute of Parasitology, Czech Academy of Sciences, Ceské Budejovice, Czech Republic
| | | | | | | | | | | |
Collapse
|
41
|
Leander BS, Lloyd SAJ, Marshall W, Landers SC. Phylogeny of Marine Gregarines (Apicomplexa) — Pterospora, Lithocystis and Lankesteria — and the Origin(s) of Coelomic Parasitism. Protist 2006; 157:45-60. [PMID: 16352468 DOI: 10.1016/j.protis.2005.10.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Accepted: 10/23/2005] [Indexed: 11/30/2022]
Abstract
Gregarines constitute a large group of apicomplexans with diverse modes of nutrition and locomotion that are associated with different host compartments (e.g. intestinal lumena and coelomic cavities). A broad molecular phylogenetic framework for gregarines is needed to infer the early evolutionary history of apicomplexans as a whole and the evolutionary relationships between the diverse ultrastructural and behavioral characteristics found in intestinal and coelomic gregarines. To this end, we sequenced the SSU rRNA gene from (1) Lankesteria abbotti from the intestines of two Pacific appendicularians, (2) Pterospora schizosoma from the coelom of a Pacific maldanid polychaete, (3) Pterospora floridiensis from the coelom of a Gulf Atlantic maldanid polychaete and (4) Lithocystis sp. from the coelom of a Pacific heart urchin. Molecular phylogenetic analyses including the new sequences demonstrated that several environmental and misattributed sequences are derived from gregarines. The analyses also demonstrated a clade of environmental sequences that was affiliated with gregarines, but as yet none of the constituent organisms have been described at the ultrastructural level (apicomplexan clade I). Lankesteria spp. (intestinal parasites of appendicularians) grouped closely with other marine intestinal eugregarines, particularly Lecudina tuzetae, from polychaetes. The sequences from all three coelomic gregarines branched within a larger clade of intestinal eugregarines and were similarly highly divergent. A close relationship between Pterospora schizosoma (Pacific) and Pterospora floridiensis (Gulf Atlantic) was strongly supported by the data. Lithocystis sp. was more closely related to a clade of marine intestinal gregarines consisting of Lankesteria spp. and Lecudina spp. than it was to the Pterospora clade. These data suggested that coelomic parasitism evolved more than once from different marine intestinal eugregarines, although a larger taxon sample is needed to further explore this inference.
Collapse
Affiliation(s)
- Brian S Leander
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.
| | | | | | | |
Collapse
|
42
|
Heintzelman MB. Cellular and Molecular Mechanics of Gliding Locomotion in Eukaryotes. INTERNATIONAL REVIEW OF CYTOLOGY 2006; 251:79-129. [PMID: 16939778 DOI: 10.1016/s0074-7696(06)51003-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliding is a form of substrate-dependent cell locomotion exploited by a variety of disparate cell types. Cells may glide at rates well in excess of 1 microm/sec and do so without the gross distortion of cellular form typical of amoeboid crawling. In the absence of a discrete locomotory organelle, gliding depends upon an assemblage of molecules that links cytoplasmic motor proteins to the cell membrane and thence to the appropriate substrate. Gliding has been most thoroughly studied in the apicomplexan parasites, including Plasmodium and Toxoplasma, which employ a unique assortment of proteins dubbed the glideosome, at the heart of which is a class XIV myosin motor. Actin and myosin also drive the gliding locomotion of raphid diatoms (Bacillariophyceae) as well as the intriguing form of gliding displayed by the spindle-shaped cells of the primitive colonial protist Labyrinthula. Chlamydomonas and other flagellated protists are also able to abandon their more familiar swimming locomotion for gliding, during which time they recruit a motility apparatus independent of that driving flagellar beating.
Collapse
Affiliation(s)
- Matthew B Heintzelman
- Department of Biology, Program in Cell Biology and Biochemistry, Bucknell University, Lewisburg, PA 17837, USA
| |
Collapse
|
43
|
Keithly JS, Langreth SG, Buttle KF, Mannella CA. Electron tomographic and ultrastructural analysis of the Cryptosporidium parvum relict mitochondrion, its associated membranes, and organelles. J Eukaryot Microbiol 2005; 52:132-40. [PMID: 15817118 DOI: 10.1111/j.1550-7408.2005.04-3317.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sporozoites of the apicomplexan Cryptosporidium parvum possess a small, membranous organelle sandwiched between the nucleus and crystalloid body. Based upon immunolabelling data, this organelle was identified as a relict mitochondrion. Transmission electron microscopy and tomographic reconstruction reveal the complex arrangement of membranes in the vicinity of this organelle, as well as its internal organization. The mitochondrion is enveloped by multiple segments of rough endoplasmic reticulum that extend from the outer nuclear envelope. In tomographic reconstructions of the mitochondrion, there is either a single, highly-folded inner membrane or multiple internal subcompartments (which might merge outside the reconstructed volume). The infoldings of the inner membrane lack the tubular "crista junctions" found in typical metazoan, fungal, and protist mitochondria. The absence of this highly conserved structural feature is congruent with the loss, through reductive evolution, of the normal oxidative phosphorylation machinery in C. parvum. It is proposed that the retention of a relict mitochondrion in C. parvum is a strategy for compartmentalizing away from the cytosol toxic ferrous iron and sulfide, which are needed for iron sulfur cluster biosynthesis, an essential function of mitochondria in all eukaryotes.
Collapse
Affiliation(s)
- Janet S Keithly
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA.
| | | | | | | |
Collapse
|
44
|
Landers SC, Leander BS. Comparative surface morphology of marine coelomic gregarines (Apicomplexa, Urosporidae): Pterospora floridiensis and Pterospora schizosoma. J Eukaryot Microbiol 2005; 52:23-30. [PMID: 15702976 DOI: 10.1111/j.1550-7408.2005.3277rrr.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two species in the aseptate gregarine genus Pterospora from the Pacific and Gulf coasts were analyzed by scanning electron microscopy, which revealed characteristics not reported in other gregarines. The gamonts of these species had branching trunks that ended in terminal digits, and both species moved by cytoplasmic streaming and peristalsis. Pterospora floridiensis had surface pits and tracts of parallel ridges that bended and connected with one another. Pterospora schizosoma had irregular-shaped surface swellings that were usually arranged in rosette patterns. These unique surface features have not been reported for other gregarines, and are strikingly different from the surface features of many septate and aseptate gregarines that inhabit the intestinal lumena of their hosts and move by gliding. The correlation of Pterospora's unique pellicular features to the habitat and cytoplasmic streaming characteristic of the genus may be significant, and may reflect an adaptation for development in coelomic environments.
Collapse
Affiliation(s)
- Stephen C Landers
- Department of Biological and Environmental Sciences, Troy University, Troy, Alabama 36082, USA.
| | | |
Collapse
|