1
|
Kruth PS, Lane T, Barta JR. Organellar genome dynamics of exogenous stages of Eimeria tenella. Parasit Vectors 2024; 17:428. [PMID: 39396981 PMCID: PMC11476305 DOI: 10.1186/s13071-024-06498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Coccidia are a group of intracellular protozoal parasites within the phylum Apicomplexa. Eimeria tenella, one of the species that cause intestinal coccidiosis in poultry, can cause significant mortality and morbidity. Diploid oocysts of Eimeria species are shed in the feces of an infected host and must sporulate to achieve infectivity. This process results in eight haploid infectious units, called sporozoites, held within a single oocyst. Each Eimeria spp. parasite possesses a single apicoplast and a single mitochondrion, both of which carry multiple copies of their respective organellar genomes. Reports of copy numbers of organellar genomes have varied widely. METHODS We report the application of quantitative polymerase chain reaction (qPCR), supported by next-generation sequencing, for the quantification of the extranuclear genomes relative to the nuclear genome over the course of sporulation and following its completion. RESULTS At 64 elapsed hours, 93.0% of oocysts were fully sporulated; no increase in percent sporulation was observed after this time. Apicoplast relative genome copy number showed several significant shifts up to 72 elapsed hours, after which no significant shifts were observed. Oocysts were shed with approximately 60% the amount of apicoplast DNA present at 72 h, after which point no significant shifts in apicoplast genome relative abundance occurred. Mitogenome relative copy number showed only two significant shifts, from 16 to 24 elapsed hours and from 24 to 32 elapsed hours. Oocysts were shed with approximately 28% the amount of mitochondrial DNA that was present at the time sporulation was deemed morphologically complete, at 64 elapsed hours. CONCLUSIONS The characterization of the dynamics of genome abundance in exogenous stages sheds new light on the basic biology of Eimeria spp. and supports the use of extranuclear targets for molecular modes of parasite quantification and identification with improved sensitivity and accuracy.
Collapse
|
2
|
Tsutsumi H, Abe M, Uchida N, Takiguchi M, Yamasaki M. The role of heat shock protein 90 in the proliferation of Babesia gibsoni in vitro. Exp Parasitol 2023:108567. [PMID: 37308002 DOI: 10.1016/j.exppara.2023.108567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/14/2023]
Abstract
The present study investigated the role of heat shock protein 90 (HSP90) in the proliferation and survival of Babesia gibsoni in vitro. To detect the effect on the entry of B. gibsoni into host erythrocytes, the parasite was incubated with an antibody against B. gibsoni HSP90 (BgHSP90) for 24 hr. The results of this experiment demonstrated that both the incorporation of [3H]hypoxanthine into the nucleic acids of B. gibsoni and the number of parasites were not altered, indicating that an anti-BgHSP90 antibody did not directly inhibit the entry of the parasite into erythrocytes. Moreover, two HSP90 inhibitors, geldanamycin (GA) and tanespimycin (17-AAG), were used to evaluate the function of BgHSP90. GA and 17-AAG decreased both the incorporation of [3H]hypoxanthine and the number of infected erythrocytes, suggesting that BgHSP90 plays important roles in DNA synthesis and the proliferation of B. gibsoni. The effect of 17-AAG on the parasites was weaker than that of GA. Additionally, the effect of GA on the survival and superoxide generation of canine neutrophils was assessed. The survival of canine neutrophils was not affected. The superoxide generation was strongly suppressed by GA. This result indicated that GA inhibited the function of canine neutrophils. Additional studies are necessary to elucidate the role of BgHSP90 in the proliferation of the parasite.
Collapse
Affiliation(s)
- Hiroka Tsutsumi
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 202-8550, Japan
| | - Moeko Abe
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Naohiro Uchida
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 202-8550, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Masahiro Yamasaki
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate, 202-8550, Japan.
| |
Collapse
|
3
|
Yamasaki M, Idaka N, Abe M, Takiguchi M. Reduced expression levels of heat shock protein 90 in a diminazene aceturate-resistant Babesia gibsoni isolate. Exp Parasitol 2020; 221:108050. [PMID: 33307095 DOI: 10.1016/j.exppara.2020.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 11/24/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Heat shock protein 90 (HSP90) is a molecular chaperon and an essential component for stage differentiation and intracellular growth inside the host cells of many protozoans. HSP90 of Babesia gibsoni (BgHSP90) was suggested to function in the development of diminazene aceturate (DA)-resistance. Therefore, we examined the expression level of BgHSP90 in a DA-resistant B. gibsoni isolate. Transcription of the BgHSP90 gene in the DA-resistant isolate and wild-type B. gibsoni was assessed by quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). As a result, the copy number and relative amount of BgHSP90 transcripts in the DA-resistant isolate were significantly lower than those in the wild-type. Moreover, a rabbit anti-recombinant BgHSP90 antibody was developed, and the protein synthesis of BgHSP90 in the DA-resistant isolate was compared with that in the wild-type by Western blot analysis and indirect fluorescence assay. There was significantly less BgHSP90 protein than in the wild-type. Additionally, the relative intensity of BgHSP70 in DA-resistant isolate was also lower than that in the wild-type. This suggested that the expression of BgHSP90 and BgHSP70 in the DA-resistant B. gibsoni isolate was suppressed and that the reduced amount of BgHSP90 and BgHSP70 might cause the weak proliferation of the DA-resistant isolate. Further studies are necessary to elucidate the function of BgHSP90.
Collapse
Affiliation(s)
- Masahiro Yamasaki
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 202-8550, Japan.
| | - Natsuki Idaka
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Moeko Abe
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | - Mitsuyoshi Takiguchi
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Clinical Sciences, Division of Veterinary Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| |
Collapse
|
4
|
Yamasaki M, Tsuboi Y, Taniyama Y, Uchida N, Sato R, Nakamura K, Ohta H, Takiguchi M. Molecular cloning, phylogenetic analysis and heat shock response of Babesia gibsoni heat shock protein 90. J Vet Med Sci 2016; 78:1355-60. [PMID: 27149891 PMCID: PMC5053942 DOI: 10.1292/jvms.16-0027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Babesia gibsoni heat shock protein 90 (BgHSP90)
gene was cloned and sequenced. The length of the gene was 2,610 bp with two introns. This
gene was amplified from cDNA corresponding to full length coding sequence (CDS) with an
open reading frame of 2,148 bp. A phylogenetic analysis of the CDS of
HSP90 gene showed that B. gibsoni was most closely
related to B. bovis and Babesia sp. BQ1/Lintan and lies
within a phylogenetic cluster of protozoa. Moreover, mRNA transcription profile for
BgHSP90 exposed to high temperature were examined by quantitative
real-time reverse transcription-polymerase chain reaction. BgHSP90 levels
were elevated when the parasites were incubated at 43°C for 1 hr.
Collapse
Affiliation(s)
- Masahiro Yamasaki
- Laboratory of Veterinary Small Animal Internal Medicine, Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Khan MK, He L, Zhang W, Wang Y, Tao Q, Song Q, Sajid MS, Yu Q, Hu J, Fang R, Hu M, Zhou Y, Zhao J. Identification of two novel HSP90 proteins in Babesia orientalis: molecular characterization, and computational analyses of their structure, function, antigenicity and inhibitor interaction. Parasit Vectors 2014; 7:293. [PMID: 24970594 PMCID: PMC4089566 DOI: 10.1186/1756-3305-7-293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/17/2014] [Indexed: 11/13/2022] Open
Abstract
Background HSP90 protects the cells from heat stress and facilitates protein maturation and stability. The full genome sequences of piroplasms contain two putative HSP90 proteins, which are yet uncharacterized. To this end, the two putative HSP90 proteins of Babesia orientalis were identified and characterized by molecular and in silico methods. Methods The two putative proteins in B. orientalis genome showing homology with putative HSP90 of other piroplasms were cloned and sequenced. A computational analysis was carried out to predict the antigenic determinants, structure and function of these proteins. The interactions of two HSP90 isoforms with respective inhibitors were also examined through docking analysis. Results The length of BoHSP90-A gene (amplified from gDNA) was 2706 bp with one intron from position 997 to 1299 bp. This gene amplified from cDNA corresponded to full length CDS with an open reading frame (ORF) of 2403 bp encoding a 800 amino acid (AA) polypeptide with a predicted size of 91.02 kDa. The HSP90-B gene was intronless with an ORF of 2349 bp, and predicted polypeptide comprised of 797 AA with a size of 90.59 kDa. The AA sequences of these two proteins of B. orientalis were the most identical to those of B. bovis. The BoHSP90-A and BoHSP90-B were recognized as 90 kDa in the parasite lysate by the rabbit antisera raised against the recombinant BoHSP90 proteins. The anti-B. orientalis buffalo serum reacted with the rBoHSP90s expressed in E. coli, indicating that these proteins might be secreted by the parasite before entry into host cells. The overall structure and functional analyses showed several domains involved in ATPase activity, client protein binding and HSP90 dimerization. Likewise, several HSP90 inhibitors showed binding to ATP binding pockets of BoHSP90-A and BoHSP90-B, as observed through protein structure-ligand interaction analysis. Conclusions The two putative HSP90 proteins in B. orientalis were recognized as 90 kDa. The rBoHSP90-A and rBoHSP90-B were reacted with the B. orientalis infected buffalo serum. The computational structure and functional analyses revealed that these two proteins may have chaperonic activity. The protein structure-ligand interaction analyses indicated that these two proteins had many drug target sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
6
|
Dalloul RA, Lillehoj HS. Poultry coccidiosis: recent advancements in control measures and vaccine development. Expert Rev Vaccines 2014; 5:143-63. [PMID: 16451116 DOI: 10.1586/14760584.5.1.143] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coccidiosis is recognized as the major parasitic disease of poultry and is caused by the apicomplexan protozoan Eimeria. Coccidiosis seriously impairs the growth and feed utilization of infected animals resulting in loss of productivity. Conventional disease control strategies rely heavily on chemoprophylaxis and, to a certain extent, live vaccines. Combined, these factors inflict tremendous economic losses to the world poultry industry in excess of USD 3 billion annually. Increasing regulations and bans on the use of anticoccidial drugs coupled with the associated costs in developing new drugs and live vaccines increases the need for the development of novel approaches and alternative control strategies for coccidiosis. This paper aims to review the current progress in understanding the host immune response to Eimeria and discuss current and potential strategies being developed for coccidiosis control in poultry.
Collapse
Affiliation(s)
- Rami A Dalloul
- Animal & Natural Resources Institute, BARC-East, Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, MD 20705, USA.
| | | |
Collapse
|
7
|
Shen X, Wang C, Zhu Q, Li T, Yu L, Zheng W, Fei C, Qiu M, Xue F. Effect of the diclazuril on Hsp90 in the second-generation merozoites of Eimeria tenella. Vet Parasitol 2011; 185:290-5. [PMID: 22075039 DOI: 10.1016/j.vetpar.2011.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/21/2022]
Abstract
Eimeria tenella (E. tenella) is one of the most virulent pathogens of coccidiosis. In apicomplexan parasites, Hsp90 (Heat shock protein 90) is essential for the invasion and survival in host cells. In this study, the effect of diclazuril, an effective benzeneacetonitrile anticoccidial agent, on the expression of Hsp90 in the second-generation merozoites of E. tenella was investigated. We inoculated 8 × 10(4) oocysts/chicken suspended in 1 ml of distilled water, and chickens were challenged with E. tenella oocysts and provided with normal feed as Control group; chickens challenged with E. tenella oocysts and provided with 1mg/kg diclazuril in feed from 96 h to 120 h after inoculation as treatment group. Then the second-generation merozoites were obtained after 120 h from the infected caeca. Our results showed that the transcription level of mzHsp90 was reduced by 29.7% in the diclazuril treatment group, accompanied by reduced level of mzHsp90 protein in second-generation merozoites prepared from infected chickens. We also found that the subcellular localization of mzHsp90 was more dispersed in these merozoites. Moreover, we demonstrated that the effects of diclazuril on mzHsp90 expression were direct by in vitro experiments. Taken together, our data provide insights into the molecular mechanisms of diclazuril in the chemotherapy of E. tenella, and suggest that mzHsp90 represents a promising target for the intervention with E. tenella infection.
Collapse
Affiliation(s)
- Xiaojiong Shen
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Chinese Academy of Agricultural Sciences, Shanghai Veterinary Research Institute, CAAS, 518 Ziyue Road, Minhang, Shanghai 200241, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Miska KB, Fetterer RH, Rosenberg GH. Analysis of Transcripts from Intracellular Stages of Eimeria acervulina Using Expressed Sequence Tags. J Parasitol 2008; 94:462-6. [DOI: 10.1645/ge-1186.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Péroval M, Péry P, Labbé M. The heat shock protein 90 of Eimeria tenella is essential for invasion of host cell and schizont growth. Int J Parasitol 2006; 36:1205-15. [PMID: 16753167 DOI: 10.1016/j.ijpara.2006.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/06/2006] [Accepted: 04/11/2006] [Indexed: 11/28/2022]
Abstract
The 90-kDa heat shock proteins (Hsp90) are important for stress tolerance, for newly synthesised protein folding and for the growth of various organisms. Participation of Hsp90 in the development of Apicomplexa, notably in Plasmodium falciparum and Toxoplasma gondii, has been proven. In this work, the importance of Hsp90 for Eimeria tenella, which is responsible for avian caecal coccidiosis, was studied. Our results show that E. tenella Hsp90 (EtHsp90) expression increases during infection. Immunofluorescence microscopy studies reveal a dispersed localisation of EtHsp90 during the first schizogony. Moreover, EtHsp90 is secreted by sporozoites as early as 5min after addition of FCS in a temperature-dependent manner. By using staurosporine, we invalidated the hypothesis that EtHsp90 might be a micronemal protein. Then, EtHsp90 was detected in a parasitophorous vacuole membrane. This result suggests the importance of EtHsp90 for intracellular growth of the parasite. Inhibition of EtHsp90 function using specific antibodies and geldanamicin attenuates the capacity of E. tenella to invade and grow in the host cell.
Collapse
Affiliation(s)
- Marylène Péroval
- Département de Biologie, Université de Versailles Saint-Quentin-en-Yvelines, 78035 Versailles, France
| | | | | |
Collapse
|