1
|
Bass AL, Bateman AW, Kaukinen KH, Li S, Ming T, Patterson DA, Hinch SG, Miller KM. The spatial distribution of infectious agents in wild Pacific salmon along the British Columbia coast. Sci Rep 2023; 13:5473. [PMID: 37016008 PMCID: PMC10071257 DOI: 10.1038/s41598-023-32583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
Although infectious agents can act as strong population regulators, knowledge of their spatial distributions in wild Pacific salmon is limited, especially in the marine environment. Characterizing pathogen distributions during early marine residence, a period considered a survival bottleneck for Pacific salmon, may reveal where salmon populations are exposed to potentially detrimental pathogens. Using high-throughput qPCR, we determined the prevalence of 56 infectious agents in 5719 Chinook, 2032 Coho and 4062 Sockeye salmon, sampled between 2008 and 2018, in their first year of marine residence along coastal Western Canada. We identified high prevalence clusters, which often shifted geographically with season, for most of the 41 detected agents. A high density of infection clusters was found in the Salish Sea along the east coast of Vancouver Island, an important migration route and residence area for many salmon populations, some experiencing chronically poor marine survival. Maps for each infectious agent taxa showing clusters across all host species are provided. Our novel documentation of salmon pathogen distributions in the marine environment contributes to the ecological knowledge regarding some lesser known pathogens, identifies salmon populations potentially impacted by specific pathogens, and pinpoints priority locations for future research and remediation.
Collapse
Affiliation(s)
- Arthur L Bass
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| | - Andrew W Bateman
- Pacific Salmon Foundation, Vancouver, V6J 4S6, Canada
- Ecology and Evolutionary Biology, University of Toronto, Toronto, M5S 1A1, Canada
| | - Karia H Kaukinen
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Shaorong Li
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - Tobi Ming
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| | - David A Patterson
- Fisheries and Oceans Canada, Science Branch, Pacific Region, School of Resource and Environmental Management, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Scott G Hinch
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada
| | - Kristina M Miller
- Forest and Conservation Sciences, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, V9T 6N7, Canada
| |
Collapse
|
2
|
Bartholomew JL, Alexander JD, Hallett SL, Alama-Bermejo G, Atkinson SD. Ceratonova shasta: a cnidarian parasite of annelids and salmonids. Parasitology 2022; 149:1862-1875. [PMID: 36081219 PMCID: PMC11010528 DOI: 10.1017/s0031182022001275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 12/29/2022]
Abstract
The myxozoan Ceratonova shasta was described from hatchery rainbow trout over 70 years ago. The parasite continues to cause severe disease in salmon and trout, and is recognized as a barrier to salmon recovery in some rivers. This review incorporates changes in our knowledge of the parasite's life cycle, taxonomy and biology and examines how this information has expanded our understanding of the interactions between C. shasta and its salmonid and annelid hosts, and how overarching environmental factors affect this host–parasite system. Development of molecular diagnostic techniques has allowed discrimination of differences in parasite genotypes, which have differing host affinities, and enabled the measurement of the spatio-temporal abundance of these different genotypes. Establishment of the C. shasta life cycle in the laboratory has enabled studies on host–parasite interactions and the availability of transcriptomic data has informed our understanding of parasite virulence factors and host defences. Together, these advances have informed the development of models and management actions to mitigate disease.
Collapse
Affiliation(s)
- Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Julie D. Alexander
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Sascha L. Hallett
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| | - Gema Alama-Bermejo
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Division of Fish Health, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Stephen D. Atkinson
- Department of Microbiology, Oregon State University, Nash Hall 226, Corvallis, Oregon 97331, USA
| |
Collapse
|
3
|
Robinson HE, Alexander JD, Bartholomew JL, Hallett SL, Hetrick NJ, Perry RW, Som NA. Using a mechanistic framework to model the density of an aquatic parasite Ceratonova shasta. PeerJ 2022; 10:e13183. [PMID: 35441056 PMCID: PMC9013479 DOI: 10.7717/peerj.13183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 03/07/2022] [Indexed: 01/12/2023] Open
Abstract
Ceratonova shasta is a myxozoan parasite endemic to the Pacific Northwest of North America that is linked to low survival rates of juvenile salmonids in some watersheds such as the Klamath River basin. The density of C. shasta actinospores in the water column is typically highest in the spring (March-June), and directly influences infection rates for outmigrating juvenile salmonids. Current management approaches require quantities of C. shasta density to assess disease risk and estimate survival of juvenile salmonids. Therefore, we developed a model to simulate the density of waterborne C. shasta actinospores using a mechanistic framework based on abiotic drivers and informed by empirical data. The model quantified factors that describe the key features of parasite abundance during the period of juvenile salmon outmigration, including the week of initial detection (onset), seasonal pattern of spore density, and peak density of C. shasta. Spore onset was simulated by a bio-physical degree-day model using the timing of adult salmon spawning and accumulation of thermal units for parasite development. Normalized spore density was simulated by a quadratic regression model based on a parabolic thermal response with river water temperature. Peak spore density was simulated based on retained explanatory variables in a generalized linear model that included the prevalence of infection in hatchery-origin Chinook juveniles the previous year and the occurrence of flushing flows (≥171 m3/s). The final model performed well, closely matched the initial detections (onset) of spores, and explained inter-annual variations for most water years. Our C. shasta model has direct applications as a management tool to assess the impact of proposed flow regimes on the parasite, and it can be used for projecting the effects of alternative water management scenarios on disease-induced mortality of juvenile salmonids such as with an altered water temperature regime or with dam removal.
Collapse
Affiliation(s)
- H. Eve Robinson
- Arcata Fish and Wildlife Office, U.S. Fish and Wildlife Service, Arcata, CA, United States of America,California State Polytechnic University, Humboldt, Arcata, CA, United States of America
| | - Julie D. Alexander
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
| | - Jerri L. Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
| | - Sascha L. Hallett
- Department of Microbiology, Oregon State University, Corvallis, OR, United States of America
| | - Nicholas J. Hetrick
- Arcata Fish and Wildlife Office, U.S. Fish and Wildlife Service, Arcata, CA, United States of America
| | - Russell W. Perry
- U.S. Geological Survey, Western Fisheries Research Center, Cook, WA, United States of America
| | - Nicholas A. Som
- Arcata Fish and Wildlife Office, U.S. Fish and Wildlife Service, Arcata, CA, United States of America,California State Polytechnic University, Humboldt, Arcata, CA, United States of America
| |
Collapse
|
4
|
Abstract
Sabellida Levinsen, 1883 is a large morphologically uniform group of sedentary annelids commonly known as fanworms. These annelids live in tubes made either of calcareous carbonate or mucus with agglutinated sediment. They share the presence of an anterior crown consisting of radioles and the division of the body into thorax and abdomen marked by a chaetal and fecal groove inversion. This study synthesises the current state of knowledge about the diversity of fanworms in the broad sense (morphological, ecological, species richness), the species occurrences in the different biogeographic regions, highlights latest surveys, provides guidelines for identification of members of each group, and describe novel methodologies for species delimitation. As some members of this group are well-known introduced pests, we address information about these species and their current invasive status. In addition, an overview of the current evolutionary hypothesis and history of the classification of members of Sabellida is presented. The main aim of this review is to highlight the knowledge gaps to stimulate research in those directions.
Collapse
|
5
|
Richey CA, Kenelty KV, Hopkins KVS, Stevens BN, Martínez-López B, Hallett SL, Atkinson SD, Bartholomew JL, Soto E. Validation of environmental DNA sampling for determination of Ceratonova shasta (Cnidaria: Myxozoa) distribution in Plumas National Forest, CA. Parasitol Res 2020; 119:859-870. [PMID: 31897785 DOI: 10.1007/s00436-019-06509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/11/2019] [Indexed: 10/25/2022]
Abstract
Ceratonova shasta is the etiological agent of myxozoan-associated enteronecrosis in North American salmonids. The parasite's life cycle involves waterborne spores and requires both a salmonid fish and a freshwater fabriciid annelid. The success and survival of annelids can be enhanced by flow moderation by dams, and through the erosion of fine sediments into stream channels following wildfires. In this study, the presence of C. shasta environmental/ex-host DNA (eDNA) in river water and substrate samples collected from areas affected by recent fire activity in California, USA, was investigated. Additionally, DNA loads in the environment were compared to C. shasta infection in sentinel-exposed rainbow trout (Oncorhynchus mykiss). Significant associations between C. shasta detection in environmental samples and location within a wildfire perimeter (p = 0.002), between C. shasta detection in sentinel fish and exposure location within a wildfire perimeter (p = 0.015), and between C. shasta detection in fish and locations where water temperature was above the median (p < 0.001) were observed. Additionally, a higher prevalence of C. shasta infection in fish was detected where C. shasta was also detected in environmental samples (p < 0.001). Results suggest that pathogen eDNA sampling can be used as a non-invasive, rapid, specific, and sensitive method for establishing risk of C. shasta infection in wild populations. Knowledge of the complete life cycle of the target parasite, including ecology of each host, can inform the choice of eDNA sampling strategy. Environmental DNA sampling also revealed a novel species of Ceratonova, not yet observed in a host.
Collapse
Affiliation(s)
- Christine A Richey
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Kirsten V Kenelty
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | - Brittany N Stevens
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Beatriz Martínez-López
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Sascha L Hallett
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Stephen D Atkinson
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Jerri L Bartholomew
- Department of Microbiology, Oregon State University, Corvallis, OR, 97331, USA
| | - Esteban Soto
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Fish disease dynamics in changing rivers: Salmonid Ceratomyxosis in the Klamath River. ECOLOGICAL COMPLEXITY 2019. [PMCID: PMC7194549 DOI: 10.1016/j.ecocom.2019.100776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Genotyping of individual Ceratonova shasta (Cnidaria: Myxosporea) myxospores reveals intra-spore ITS-1 variation and invalidates the distinction of genotypes II and III. Parasitology 2018; 145:1588-1593. [PMID: 29580305 DOI: 10.1017/s0031182018000422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Genotypes of the myxosporean parasite Ceratonova shasta are defined by the number of ATC repeats in the parasite's ribosomal DNA internal transcribed spacer region 1. These genotypes correlate with specific salmonid fish hosts. We observed coho salmon (Oncorhynchus kisutch) and rainbow trout (Oncorhynchus mykiss) with mixtures of genotypes II and III, and assumed that this was a consequence of fish having an aggregate infection from multiple individual parasites. We hypothesized that although multiple ITS copies are present within a parasite spore, the DNA sequences of these copies are identical, and thus individual C. shasta spores are a single genotype. We tested this by extracting and sequencing DNA from individual myxospores. We trialed three approaches for in-tube DNA extraction; digestion with proteinase K was superior to simply rehydrating spores, or incubation in the buffer. Sequences from 14 myxospores were each a mixture of genotypes II and III. Therefore, intra-genomic ribosomal DNA variants exist within individual parasite spores, and II and III should no longer be regarded as discrete C. shasta genotypes. This single-spore genotyping approach will be a useful tool for testing validity of other C. shasta genotypes, and for correctly matching genotype with phenotype for mixed infections of other myxozoan species.
Collapse
|
8
|
Malakauskas DM, Snipes RB, Thompson AM, Schloesser DW. Molecular evidence of undescribed Ceratonova sp. (Cnidaria: Myxosporea) in the freshwater polychaete, Manayunkia speciosa, from western Lake Erie. J Invertebr Pathol 2016; 137:49-53. [PMID: 27150245 DOI: 10.1016/j.jip.2016.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/18/2016] [Accepted: 05/02/2016] [Indexed: 10/21/2022]
Abstract
We used PCR to screen pooled individuals of Manayunkia speciosa from western Lake Erie, Michigan, USA for myxosporean parasites. Amplicons from positive PCRs were sequenced and showed a Ceratonova species in an estimated 1.1% (95% CI=0.46%, 1.8%) of M. speciosa individuals. We sequenced 18S, ITS1, 5.8S, ITS2 and most of the 28S rDNA regions of this Ceratonova sp., and part of the protein-coding EF2 gene. Phylogenetic analyses of ribosomal and EF2 sequences showed the Lake Erie Ceratonova sp. is most similar to, but genetically distinct from, Ceratonova shasta. Marked interspecific polymorphism in all genes examined, including the ITS barcoding genes, along with geographic location suggests this is an undescribed Ceratonova species. COI sequences showed M. speciosa individuals in Michigan and California are the same species. These findings represent a third parasite in the genus Ceratonova potentially hosted by M. speciosa.
Collapse
Affiliation(s)
- David M Malakauskas
- Francis Marion University, Department of Biology, P.O. Box 100547, Florence, SC 29502, USA.
| | - R Benjamin Snipes
- Francis Marion University, Department of Biology, P.O. Box 100547, Florence, SC 29502, USA.
| | - Ann M Thompson
- Francis Marion University, Department of Biology, P.O. Box 100547, Florence, SC 29502, USA.
| | - Donald W Schloesser
- U.S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105, USA.
| |
Collapse
|
9
|
Malakauskas DM, Altman EC, Malakauskas SJ, Thiem SM, Schloesser DW. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes. J Invertebr Pathol 2015; 132:101-104. [PMID: 26386327 DOI: 10.1016/j.jip.2015.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/04/2015] [Accepted: 09/15/2015] [Indexed: 11/27/2022]
Abstract
We examined Manayunkia speciosa individuals from the Klamath River, Oregon/California and Lake Erie, Michigan, USA for the presence of Microsporidia. We identified microsporidian spores and sequenced their SSU, ITS, and part of the LSU rDNA. Phylogenetic analysis of SSU rDNA indicated spores from both populations belonged to the Nosema/Vairimorpha clade. PCR showed an infection prevalence in Lake Erie M. speciosa of 0.6% (95% CI=0.5%, 0.7%). This represents the first known example of molecularly characterized Nosema/Vairimorpha isolates infecting a non-arthropod host.
Collapse
Affiliation(s)
- David M Malakauskas
- Francis Marion University, Department of Biology, P.O. Box 100547, Florence, SC 29502, USA.
| | - Emory C Altman
- Francis Marion University, Department of Biology, P.O. Box 100547, Florence, SC 29502, USA.
| | - Sarah J Malakauskas
- Francis Marion University, Department of Biology, P.O. Box 100547, Florence, SC 29502, USA.
| | - Suzanne M Thiem
- Michigan State University, Department of Entomology, 288 Farm Lane Room 243, East Lansing, MI 48824, USA.
| | - Donald W Schloesser
- U.S. Geological Survey, Great Lakes Science Center, 1451 Green Road, Ann Arbor, MI 48105, USA.
| |
Collapse
|
10
|
Alexander JD, Hallett SL, Stocking RW, Xue L, Bartholomew JL. Host and Parasite Populations After a Ten Year Flood:Manayunkia speciosaandCeratonova(synCeratomyxa)shastain the Klamath River. NORTHWEST SCIENCE 2014. [DOI: 10.3955/046.088.0305] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Atkinson SD, Foott JS, Bartholomew JL. Erection of Ceratonova n. gen. (Myxosporea: Ceratomyxidae) to encompass freshwater species C. gasterostea n. sp. from threespine stickleback (Gasterosteus aculeatus) and C. shasta n. comb. from salmonid fishes. J Parasitol 2014; 100:640-5. [PMID: 24754344 DOI: 10.1645/13-434.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Ceratonova gasterostea n. gen. n. sp. is described from the intestine of freshwater Gasterosteus aculeatus L. from the Klamath River, California. Myxospores are arcuate, 22.4 ± 2.6 μm thick, 5.2 ± 0.4 μm long, posterior angle 45° ± 24°, with 2 sub-spherical polar capsules, diameter 2.3 ± 0.2 μm, which lie adjacent to the suture. Its ribosomal small subunit sequence was most similar to an intestinal parasite of salmonid fishes, Ceratomyxa shasta (97%, 1,671/1,692 nucleotides), and distinct from all other Ceratomyxa species (<85%), which are typically coelozoic parasites in the gall bladder or urinary system of marine fishes. We propose erection of genus Ceratonova to contain both intestinal, freshwater species and reassign the salmonid parasite as Ceratonova shasta n. comb.
Collapse
Affiliation(s)
- S D Atkinson
- Department of Microbiology, Oregon State University, 226 Nash Hall, Corvallis, Oregon 97331
| | | | | |
Collapse
|
12
|
Fujiwara M, Mohr MS, Greenberg A. The effects of disease-induced juvenile mortality on the transient and asymptotic population dynamics of Chinook salmon (Oncorhynchus tshawytscha). PLoS One 2014; 9:e85464. [PMID: 24427310 PMCID: PMC3888422 DOI: 10.1371/journal.pone.0085464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/27/2013] [Indexed: 11/18/2022] Open
Abstract
The effects of an increased disease mortality rate on the transient and asymptotic dynamics of Chinook salmon (Oncorhynchus tshawytscha) were investigated. Disease-induced mortality of juvenile salmon has become a serious concern in recent years. However, the overall effects of disease mortality on the asymptotic and transient dynamics of adult spawning abundance are still largely unknown. We explored various scenarios with regard to the density-dependent process, the distribution of survivorship over the juvenile phase, the disease mortality rate, and the infusion of stray hatchery fish. Our results suggest that the sensitivity to the disease mortality rate of the equilibrium adult spawning abundance and resilience (asymptotic return rate toward this equilibrium following a small perturbation) varied widely and differently depending on the scenario. The resilience and coefficient of variation of adult spawning abundance following a large perturbation were consistent with each other under the scenarios investigated. We conclude that the increase in disease mortality likely has an effect on fishery yield under a fluctuating environment, not only because the mean equilibrium adult spawning abundance has likely been reduced, but also because the resilience has likely decreased and the variance in adult spawning abundance has likely increased. We also infer the importance of incorporating finer-scale spatiotemporal information into population models and demonstrate a means for doing so within a matrix population modeling framework.
Collapse
Affiliation(s)
- Masami Fujiwara
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Michael S. Mohr
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, United States of America
| | - Aaron Greenberg
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
13
|
Estes JA, Brashares JS, Power ME. Predicting and Detecting Reciprocity between Indirect Ecological Interactions and Evolution. Am Nat 2013; 181 Suppl 1:S76-99. [DOI: 10.1086/668120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Hurst CN, Bartholomew JL. Ceratomyxa shasta genotypes cause differential mortality in their salmonid hosts. JOURNAL OF FISH DISEASES 2012; 35:725-732. [PMID: 22808922 DOI: 10.1111/j.1365-2761.2012.01407.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 06/01/2023]
Abstract
Ceratomyxa shasta is a myxozoan parasite of salmonid fish. In natural communities, distinct genotypes of the parasite are associated with different salmonid hosts. To test the hypothesis that genotypes of C. shasta cause differential mortality, the polychaete host was experimentally infected with different parasite genotypes. Genotype I was obtained from Chinook salmon, Oncorhynchus tshawytscha, and genotype II from either coho salmon, O. kisutch, or rainbow trout, O. mykiss, We then challenged four salmonid strains: Chinook and coho salmon that occur in sympatry with the parasite and allopatric Chinook salmon and rainbow trout. Parasite genotype I caused mortality only in Chinook strains, although mortality in the allopatric strain also occurred from exposure to genotype II. A second experiment demonstrated that genotype II could be separated into two biotypes based on differential mortality in rainbow trout and coho salmon. These differential patterns of mortality as a result of infection by certain genotypes of C. shasta support field observations and suggest a co-evolutionary relationship between these parasites and their hosts.
Collapse
Affiliation(s)
- C N Hurst
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | | |
Collapse
|
15
|
Geographical and host distribution patterns of Parvicapsula minibicornis (Myxozoa) small subunit ribosomal RNA genetic types. Parasitology 2011; 138:969-77. [DOI: 10.1017/s0031182011000734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYParvicapsula minibicornis is a myxozoan parasite implicated in mortalities of both juvenile and pre-spawning adult salmon in the Pacific Northwest of North America. Disease severity and presentation varies between salmon species and geographical localities. To better characterize population structure of the parasite, we sought genetic markers in the P. minibicornis ribosomal RNA gene. We compared samples from California with the type specimen from British Columbia, identified sequence variations, and then sequenced 197 samples from fish, river water and the parasite's polychaete worm host. Although DNA sequences of the parasite were >98·9% similar, there was enough variation to define 15 genotypes. All genotypes were detected in fish samples, although not in all species. A single genotype only was found in sockeye and pink salmon in the Fraser River Basin, but was not detected in sockeye from the adjacent Columbia River Basin. All coho salmon, irrespective of river basin, were infected with a unique mix of 2 genotypes. These data indicated that the P. minibicornis population exhibited strong signals of structuring by both geography and salmonid host species. Particular genotypes may correlate with disease differences seen in salmon populations in the Pacific Northwest.
Collapse
|
16
|
Armendáriz LC, Paola A, Capítulo AR. Manayunkia speciosa Leidy (Polychaeta: Sabellidae): introduction of this nonindigenous species in the Neotropical Region (Uruguay river, South America). Biol Invasions 2011. [DOI: 10.1007/s10530-010-9838-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ray RA, Rossignol PA, Bartholomew JL. Mortality threshold for juvenile Chinook salmon Oncorhynchus tshawytscha in an epidemiological model of Ceratomyxa shasta. DISEASES OF AQUATIC ORGANISMS 2010; 93:63-70. [PMID: 21290897 DOI: 10.3354/dao02281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The myxozoan parasite Ceratomyxa shasta is a significant pathogen of juvenile Chinook salmon Oncorhynchus tshawytscha in the Klamath River, California, USA. This parasite requires 2 hosts to complete its life cycle: a freshwater polychaete (Manayunkia speciosa) and a salmonid. The complex life cycle and large geographic area where infection occurs make it difficult to monitor and manage ceratomyxosis. We present a model for ceratomyxosis-induced mortality in O. tshawytscha, from which parameters important to the persistence of C. shasta are identified. We also experimentally quantify specific parameters from the model and identify a mortality threshold (a critical parameter), by naturally exposing native O. tshawytscha to C. shasta in the Klamath River. The average percent mortality that resulted from these experimental challenges ranged from 2.5 to 98.5% over an exposure dose of 4.4 to 612 x 10(6) parasites. This experiment identified a non-linear mortality threshold of 7.7 +/- 2.1 x 10(4) actinospores fish(-1) for Chinook salmon from the Iron Gate Hatchery on the Klamath River. Below this threshold no mortality occurred and above it mortality increased dramatically, thus providing a target by which to reduce parasitism in emigrating juvenile O. tshawytscha.
Collapse
Affiliation(s)
- R Adam Ray
- Department of Fisheries and Wildlife, Nash Hall, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
18
|
Bjork SJ, Bartholomew JL. The effects of water velocity on the Ceratomyxa shasta infectious cycle. JOURNAL OF FISH DISEASES 2009; 32:131-142. [PMID: 18803584 PMCID: PMC4143187 DOI: 10.1111/j.1365-2761.2008.00964.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ceratomyxa shasta is a myxozoan parasite identified as a contributor to salmon mortality in the Klamath River, USA. The parasite has a complex life cycle involving a freshwater polychaete, Manayunkia speciosa and a salmonid. As part of ongoing research on how environmental parameters influence parasite establishment and replication, we designed a laboratory experiment to examine the effect of water flow (velocity) on completion of the C. shasta infectious cycle. The experiment tested the effect of two water velocities, 0.05 and 0.01 m s(-1), on survival and infection of M. speciosa as well as transmission to susceptible rainbow trout and comparatively resistant Klamath River Chinook salmon. The faster water velocity facilitated the greatest polychaete densities, but the lowest polychaete infection prevalence. Rainbow trout became infected in all treatments, but at the slower velocity had a shorter mean day to death, indicating a higher infectious dose. Infection was not detected in Chinook salmon even at a dose estimated to be as high as 80,000 actinospores per fish. The higher water velocity resulted in lower C. shasta infection prevalence in M. speciosa and decreased infection severity in fish. Another outcome of our experiment is the description of a system for maintaining and infecting M. speciosa in the laboratory.
Collapse
|