1
|
Kreling SES, Reese EM, Cavalluzzi OM, Bozzi NB, Messinger R, Schell CJ, Long RA, Prugh LR. City divided: Unveiling family ties and genetic structuring of coyotes in Seattle. Mol Ecol 2024; 33:e17427. [PMID: 38837263 DOI: 10.1111/mec.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Linear barriers pose significant challenges for wildlife gene flow, impacting species persistence, adaptation, and evolution. While numerous studies have examined the effects of linear barriers (e.g., fences and roadways) on partitioning urban and non-urban areas, understanding their influence on gene flow within cities remains limited. Here, we investigated the impact of linear barriers on coyote (Canis latrans) population structure in Seattle, Washington, where major barriers (i.e., interstate highways and bodies of water) divide the city into distinct quadrants. Just under 1000 scats were collected to obtain genetic data between January 2021 and December 2022, allowing us to identify 73 individual coyotes. Notably, private allele analysis underscored limited interbreeding among quadrants. When comparing one quadrant to each other, there were up to 16 private alleles within a single quadrant, representing nearly 22% of the population allelic diversity. Our analysis revealed weak isolation by distance, and despite being a highly mobile species, genetic structuring was apparent between quadrants even with extremely short geographic distance between individual coyotes, implying that Interstate 5 and the Ship Canal act as major barriers. This study uses coyotes as a model species for understanding urban gene flow and its consequences in cities, a crucial component for bolstering conservation of rarer species and developing wildlife friendly cities.
Collapse
Affiliation(s)
- Samantha E S Kreling
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Ellen M Reese
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Olivia M Cavalluzzi
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Natalee B Bozzi
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Riley Messinger
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| | - Christopher J Schell
- Department of Environmental Science, Policy, and Management, University of California-Berkeley, Berkeley, California, USA
| | | | - Laura R Prugh
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
Bird S, Monzón JD, Meyer WM, Moore JE. An Illusion of Barriers to Gene Flow in Suburban Coyotes (Canis latrans): Spatial and Temporal Population Structure across a Fragmented Landscape in Southern California. DIVERSITY 2023. [DOI: 10.3390/d15040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Carnivores with large home ranges are especially vulnerable to habitat fragmentation. As coyotes (Canis latrans) are often found living in highly modified landscapes, it is unclear how urban and suburban development impact gene flow between their populations. This study evaluated gene flow among coyotes inhabiting California sage scrub fragments within the highly developed Pomona Valley, California. We genotyped microsatellites from scat samples collected from four study sites to examine population structure between coyotes separated by a major freeway, coyotes separated by suburban development, and finally, coyotes in contiguous, natural habitat sites over 15 months. Though coyotes from all four sites were genetically distinct, near-complete turnover of individuals in sites and examination of temporal genetic structure and relatedness within one site indicated the movement of family groups through natural fragments over time. Thus, we argue that solely examining spatial genetic structure may create the illusion of genetic barriers among coyote populations where they may not exist, and that incorporating temporal components of genetic variation is critical to understanding gene flow across space and time in highly mobile animals. Understanding how to better study and manage coyotes, an apex predator, is key to the conservation of the endangered California sage scrub ecosystem.
Collapse
Affiliation(s)
- Savanah Bird
- Biology Department, University of Oregon, Eugene, OR 97403, USA
- Biology Department, Pomona College, Claremont, CA 91711, USA
| | - Javier D. Monzón
- Natural Science Division, Pepperdine University, Malibu, CA 90263, USA
| | | | | |
Collapse
|
3
|
Adducci A, Jasperse J, Riley S, Brown J, Honeycutt R, Monzón J. Urban coyotes are genetically distinct from coyotes in natural habitats. JOURNAL OF URBAN ECOLOGY 2020. [DOI: 10.1093/jue/juaa010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractUrbanization is increasing throughout the world, transforming natural habitats. Coyotes (Canis latrans) are found in highly urban, suburban, rural and undeveloped mountainous habitats, making them an exemplary model organism to investigate the effects of urbanization on animals. We hypothesized that coyotes in natural habitats are more genetically related to distant coyotes in similar natural habitats and less related to coyotes in urban areas due to natal habitat-biased dispersal. We also hypothesized that increasing urbanization would result in decreased genetic diversity due to habitat fragmentation, dispersal barriers and genetic drift. We analyzed 10 microsatellite genetic markers from 125 individual coyotes sampled across a spectrum of highly urban to highly natural areas in southern California. Most coyotes clustered into four distinct genetic populations, whereas others appeared to have admixed ancestry. Three genetic populations were associated primarily with urban habitats in Los Angeles and Orange Counties. In contrast, the remaining population was associated with more naturally vegetated land near the surrounding mountains. Coyotes living in natural areas formed a genetically distinct cluster despite long geographic distances separating them. Genetic diversity was negatively associated with urban/suburban land cover and local road density, and positively associated with the relative amount of natural vegetation. These results indicate that genetic differentiation and loss of genetic diversity coincided with the extremely rapid expansion of Greater Los Angeles throughout the 1900s. Thus, urbanization reduces gene flow and erodes genetic diversity even in a habitat generalist thought to be minimally impacted by land development.
Collapse
Affiliation(s)
- Anthony Adducci
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| | - Jeremy Jasperse
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| | - Seth Riley
- Santa Monica Mountains National Recreation Area, National Park Service, 401 West Hillcrest Drive, Thousand Oaks, CA 91360, USA
| | - Justin Brown
- Santa Monica Mountains National Recreation Area, National Park Service, 401 West Hillcrest Drive, Thousand Oaks, CA 91360, USA
| | - Rodney Honeycutt
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| | - Javier Monzón
- Natural Science Division, Pepperdine University, 24255 Pacific Coast Highway, Malibu, CA 90263, USA
| |
Collapse
|
4
|
Genetic diversity and relatedness of a recently established population of eastern coyotes (Canis latrans) in New York City. Urban Ecosyst 2019. [DOI: 10.1007/s11252-019-00918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
5
|
Hinton JW, Heppenheimer E, West KM, Caudill D, Karlin ML, Kilgo JC, Mayer JJ, Miller KV, Walch M, vonHoldt B, Chamberlain MJ. Geographic patterns in morphometric and genetic variation for coyote populations with emphasis on southeastern coyotes. Ecol Evol 2019; 9:3389-3404. [PMID: 30962900 PMCID: PMC6434562 DOI: 10.1002/ece3.4966] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 12/02/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Prior to 1900, coyotes (Canis latrans) were restricted to the western and central regions of North America, but by the early 2000s, coyotes became ubiquitous throughout the eastern United States. Information regarding morphological and genetic structure of coyote populations in the southeastern United States is limited, and where data exist, they are rarely compared to those from other regions of North America. We assessed geographic patterns in morphology and genetics of coyotes with special consideration of coyotes in the southeastern United States. Mean body mass of coyote populations increased along a west-to-east gradient, with southeastern coyotes being intermediate to western and northeastern coyotes. Similarly, principal component analysis of body mass and linear body measurements suggested that southeastern coyotes were intermediate to western and northeastern coyotes in body size but exhibited shorter tails and ears from other populations. Genetic analyses indicated that southeastern coyotes represented a distinct genetic cluster that differentiated strongly from western and northeastern coyotes. We postulate that southeastern coyotes experienced lower immigration from western populations than did northeastern coyotes, and over time, genetically diverged from both western and northeastern populations. Coyotes colonizing eastern North America experienced different selective pressures than did stable populations in the core range, and we offer that the larger body size of eastern coyotes reflects an adaptation that improved dispersal capabilities of individuals in the expanding range.
Collapse
Affiliation(s)
- Joseph W. Hinton
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgia
| | | | | | - Danny Caudill
- Florida Fish and Wildlife Conservation CommissionGainesvilleFlorida
- Present address:
Alaska Department of Fish and GameFairbanksAlaska
| | - Melissa L. Karlin
- Department of Physics and Environmental SciencesSt. Mary's UniversitySan AntonioTexas
| | - John C. Kilgo
- United States Department of AgricultureForest Service Southern Research StationNew EllentonSouth Carolina
| | - John Joseph Mayer
- United States Department of Energy, Environmental Sciences, and BiotechnologySavannah River National LaboratoryAikenSouth Carolina
| | - Karl V. Miller
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGeorgia
| | | | - Bridgett vonHoldt
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNew Jersey
| | | |
Collapse
|
6
|
Heppenheimer E, Cosio DS, Brzeski KE, Caudill D, Van Why K, Chamberlain MJ, Hinton JW, vonHoldt B. Demographic history influences spatial patterns of genetic diversityin recently expanded coyote (Canis latrans) populations. Heredity (Edinb) 2018; 120:183-195. [PMID: 29269931 PMCID: PMC5836586 DOI: 10.1038/s41437-017-0014-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/06/2017] [Accepted: 10/03/2017] [Indexed: 11/09/2022] Open
Abstract
Human-mediated range expansions have increased in recent decades and represent unique opportunities to evaluate genetic outcomes of establishing peripheral populations across broad expansion fronts. Over the past century, coyotes (Canis latrans) have undergone a pervasive range expansion and now inhabit every state in the continental United States. Coyote expansion into eastern North America was facilitated by anthropogenic landscape changes and followed two broad expansion fronts. The northern expansion extended through the Great Lakes region and southern Canada, where hybridization with remnant wolf populations was common. The southern and more recent expansion front occurred approximately 40 years later and across territory where gray wolves have been historically absent and remnant red wolves were extirpated in the 1970s. We conducted a genetic survey at 10 microsatellite loci of 482 coyotes originating from 11 eastern U.S. states to address how divergent demographic histories influence geographic patterns of genetic diversity. We found that population structure corresponded to a north-south divide, which is consistent with the two known expansion routes. Additionally, we observed extremely high genetic diversity, which is atypical of recently expanded populations and is likely the result of multiple complex demographic processes, in addition to hybridization with other Canis species. Finally, we considered the transition of allele frequencies across geographic space and suggest the mid-Atlantic states of North Carolina and Virginia as an emerging contact zone between these two distinct coyote expansion fronts.
Collapse
Affiliation(s)
- Elizabeth Heppenheimer
- Department of Ecology & Evolutionary Biology, Princeton University, 106 A Guyot Hall, Princeton, NJ, 08544, USA.
| | - Daniela S Cosio
- Department of Ecology & Evolutionary Biology, Princeton University, 106 A Guyot Hall, Princeton, NJ, 08544, USA
| | - Kristin E Brzeski
- Department of Ecology & Evolutionary Biology, Princeton University, 106 A Guyot Hall, Princeton, NJ, 08544, USA
| | - Danny Caudill
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, 1105 SW Williston Road, Gainesville, FL, 32601, USA
- Alaska Department of Fish Game, 1300 College Road, Fairbanks, AK, 99701, USA
| | - Kyle Van Why
- United States Department of Agriculture, Animal Plant Health Inspection Service, Wildlife Services, PO Box 60827, Harrisburg, PA, 17106, USA
| | - Michael J Chamberlain
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30621, USA
| | - Joseph W Hinton
- Warnell School of Forestry and Natural Resources, University of Georgia, 180 E Green Street, Athens, GA, 30621, USA
| | - Bridgett vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, 106 A Guyot Hall, Princeton, NJ, 08544, USA
| |
Collapse
|
7
|
Kang TH, Han SH, Lee HS. Genetic structure and demographic history of Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae) in its area of origin and adjacent areas. Ecol Evol 2017; 7:9162-9178. [PMID: 29152205 PMCID: PMC5677484 DOI: 10.1002/ece3.3467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/04/2017] [Accepted: 09/01/2017] [Indexed: 12/02/2022] Open
Abstract
We analyzed the population genetic structure and demographic history of 20 Lymantria dispar populations from Far East Asia using microsatellite loci and mitochondrial genes. In the microsatellite analysis, the genetic distances based on pairwise FST values ranged from 0.0087 to 0.1171. A NeighborNet network based on pairwise FST genetic distances showed that the 20 regional populations were divided into five groups. Bayesian clustering analysis (K = 3) demonstrated the same groupings. The populations in the Korean Peninsula and adjacent regions, in particular, showed a mixed genetic pattern. In the mitochondrial genetic analysis based on 98 haplotypes, the median‐joining network exhibited a star shape that was focused on three high‐frequency haplotypes (Haplotype 1: central Korea and adjacent regions, Group 1; Haplotype 37: southern Korea, Group 2; and Haplotype 90: Hokkaido area, Group 3) connected by low‐frequency haplotypes. The mismatch distribution dividing the three groups was unimodal. In the neutral test, Tajima's D and Fu's FS tests were negative. We can thus infer that the Far East Asian populations of L. dispar underwent a sudden population expansion. Based on the age expansion parameter, the expansion time was inferred to be approximately 53,652 years before present (ybp) for Group 1, approximately 65,043 ybp for Group 2, and approximately 76,086 ybp for Group 3. We propose that the mixed genetic pattern of the inland populations of Far East Asia is due to these expansions and that the inland populations of the region should be treated as valid subspecies that are distinguishable from other subspecies by genetic traits.
Collapse
Affiliation(s)
- Tae Hwa Kang
- Bio Control Research Center Jeonnam Bioindustry Foundation Gokseong-gun Korea
| | - Sang Hoon Han
- Department of Life Science College of Natural Science Kyonggi University Suwon Korea
| | - Heung Sik Lee
- Plant Quarantine Technology Center Animal and Plant Quarantine Agency Gimcheon-si Korea
| |
Collapse
|