1
|
Lettrich MD, Asaro MJ, Borggaard DL, Dick DM, Griffis RB, Litz JA, Orphanides CD, Palka DL, Soldevilla MS, Balmer B, Chavez S, Cholewiak D, Claridge D, Ewing RY, Fazioli KL, Fertl D, Fougeres EM, Gannon D, Garrison L, Gilbert J, Gorgone A, Hohn A, Horstman S, Josephson B, Kenney RD, Kiszka JJ, Maze-Foley K, McFee W, Mullin KD, Murray K, Pendleton DE, Robbins J, Roberts JJ, Rodriguez- Ferrer G, Ronje EI, Rosel PE, Speakman T, Stanistreet JE, Stevens T, Stolen M, Moore RT, Vollmer NL, Wells R, Whitehead HR, Whitt A. Vulnerability to climate change of United States marine mammal stocks in the western North Atlantic, Gulf of Mexico, and Caribbean. PLoS One 2023; 18:e0290643. [PMID: 37729181 PMCID: PMC10511136 DOI: 10.1371/journal.pone.0290643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
Climate change and climate variability are affecting marine mammal species and these impacts are projected to continue in the coming decades. Vulnerability assessments provide a framework for evaluating climate impacts over a broad range of species using currently available information. We conducted a trait-based climate vulnerability assessment using expert elicitation for 108 marine mammal stocks and stock groups in the western North Atlantic, Gulf of Mexico, and Caribbean Sea. Our approach combined the exposure (projected change in environmental conditions) and sensitivity (ability to tolerate and adapt to changing conditions) of marine mammal stocks to estimate vulnerability to climate change, and categorize stocks with a vulnerability index. The climate vulnerability score was very high for 44% (n = 47) of these stocks, high for 29% (n = 31), moderate for 20% (n = 22), and low for 7% (n = 8). The majority of stocks (n = 78; 72%) scored very high exposure, whereas 24% (n = 26) scored high, and 4% (n = 4) scored moderate. The sensitivity score was very high for 33% (n = 36) of these stocks, high for 18% (n = 19), moderate for 34% (n = 37), and low for 15% (n = 16). Vulnerability results were summarized for stocks in five taxonomic groups: pinnipeds (n = 4; 25% high, 75% moderate), mysticetes (n = 7; 29% very high, 57% high, 14% moderate), ziphiids (n = 8; 13% very high, 50% high, 38% moderate), delphinids (n = 84; 52% very high, 23% high, 15% moderate, 10% low), and other odontocetes (n = 5; 60% high, 40% moderate). Factors including temperature, ocean pH, and dissolved oxygen were the primary drivers of high climate exposure, with effects mediated through prey and habitat parameters. We quantified sources of uncertainty by bootstrapping vulnerability scores, conducting leave-one-out analyses of individual attributes and individual scorers, and through scoring data quality for each attribute. These results provide information for researchers, managers, and the public on marine mammal responses to climate change to enhance the development of more effective marine mammal management, restoration, and conservation activities that address current and future environmental variation and biological responses due to climate change.
Collapse
Affiliation(s)
- Matthew D. Lettrich
- ECS Under Contract for Office of Science and Technology, NOAA Fisheries, Silver Spring, Maryland, United States of America
| | - Michael J. Asaro
- Northeast Fisheries Science Center, NOAA Fisheries, Woods Hole, Massachusetts, United States of America
| | - Diane L. Borggaard
- Greater Atlantic Regional Fisheries Office, NOAA Fisheries, Gloucester, Massachusetts, United States of America
| | - Dorothy M. Dick
- Office of Protected Resources, NOAA Fisheries, Silver Spring, Maryland, United States of America
| | - Roger B. Griffis
- Office of Science and Technology, NOAA Fisheries, Silver Spring, Maryland, United States of America
| | - Jenny A. Litz
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Miami, Florida, United States of America
| | - Christopher D. Orphanides
- Northeast Fisheries Science Center, NOAA Fisheries, Woods Hole, Massachusetts, United States of America
| | - Debra L. Palka
- Northeast Fisheries Science Center, NOAA Fisheries, Woods Hole, Massachusetts, United States of America
| | - Melissa S. Soldevilla
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Miami, Florida, United States of America
| | - Brian Balmer
- Dolphin Relief and Research, Clancy, Montana, United States of America
| | - Samuel Chavez
- Integrated Statistics, Woods Hole, Massachusetts, United States of America
| | - Danielle Cholewiak
- Northeast Fisheries Science Center, NOAA Fisheries, Woods Hole, Massachusetts, United States of America
| | - Diane Claridge
- Bahamas Marine Mammal Research Organisation, Marsh Harbour, Abaco, Bahamas
| | - Ruth Y. Ewing
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Miami, Florida, United States of America
| | - Kristi L. Fazioli
- Environmental Institute of Houston, University of Houston ‐ Clear Lake, Houston, Texas, United States of America
| | - Dagmar Fertl
- Ziphius EcoServices, Magnolia, Texas, United States of America
| | - Erin M. Fougeres
- Southeast Regional Office, NOAA Fisheries, Saint Petersburg, Florida, United States of America
| | - Damon Gannon
- University of Georgia Marine Institute, Sapelo Island, Georgia, United States of America
| | - Lance Garrison
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Miami, Florida, United States of America
| | - James Gilbert
- University of Maine, Orono, Maine, United States of America
| | - Annie Gorgone
- CIMAS, University of Miami, Under Contract for NOAA Fisheries Southeast Fisheries Science Center, Beaufort, North Carolina, United States of America
| | - Aleta Hohn
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Beaufort, North Carolina, United States of America
| | - Stacey Horstman
- Southeast Regional Office, NOAA Fisheries, Saint Petersburg, Florida, United States of America
| | - Beth Josephson
- Integrated Statistics, Woods Hole, Massachusetts, United States of America
| | - Robert D. Kenney
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, United States of America
| | - Jeremy J. Kiszka
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, Florida, United States of America
| | - Katherine Maze-Foley
- CIMAS, University of Miami, Under Contract for Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Miami, Florida, United States of America
| | - Wayne McFee
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, Charleston, South Carolina, United States of America
| | - Keith D. Mullin
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Pascagoula, Mississippi, United States of America
| | - Kimberly Murray
- Northeast Fisheries Science Center, NOAA Fisheries, Woods Hole, Massachusetts, United States of America
| | - Daniel E. Pendleton
- Anderson Cabot Center for Ocean Life at the New England Aquarium, Boston, Massachusetts, United States of America
| | - Jooke Robbins
- Center for Coastal Studies, Provincetown, Massachusetts, United States of America
| | - Jason J. Roberts
- Marine Geospatial Ecology Lab, Duke University, Durham, North Carolina, United States of America
| | | | - Errol I. Ronje
- National Centers for Environmental Information, NOAA, Stennis Space Center, Hancock County, Mississippi, United States of America
| | - Patricia E. Rosel
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Lafayette, Louisiana, United States of America
| | - Todd Speakman
- National Marine Mammal Foundation, Charleston, South Carolina, United States of America
| | | | - Tara Stevens
- CSA Ocean Sciences, East Greenwich, Rhode Island, United States of America
| | - Megan Stolen
- Blue World Research Institute, Merritt Island, Florida, United States of America
| | - Reny Tyson Moore
- Sarasota Dolphin Research Program, Chicago Zoological Society, Sarasota, Florida, United States of America
| | - Nicole L. Vollmer
- CIMAS, University of Miami, Under Contract for Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA Fisheries, Lafayette, Louisiana, United States of America
| | - Randall Wells
- Sarasota Dolphin Research Program, Chicago Zoological Society, Sarasota, Florida, United States of America
| | - Heidi R. Whitehead
- Texas Marine Mammal Stranding Network, Galveston, Texas, United States of America
| | - Amy Whitt
- Azura Consulting, Garland, Texas, United States of America
| |
Collapse
|
3
|
Mosquera-Guerra F, Trujillo F, Oliveira-da-Costa M, Marmontel M, Van Damme PA, Franco N, Córdova L, Campbell E, Alfaro-Shigueto J, Mena JL, Mangel JC, Oviedo JSU, Carvajal-Castro JD, Mantilla-Meluk H, Armenteras-Pascual D. Home range and movements of Amazon river dolphins Inia geoffrensis in the Amazon and Orinoco river basins. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Studying the variables that describe the spatial ecology of threatened species allows us to identify and prioritize areas that are critical for species conservation. To estimate the home range and core area of the Endangered (EN) Amazon river dolphin Inia geoffrensis, 23 individuals (6♀, 17♂) were tagged during the rising water period in the Amazon and Orinoco river basins between 2017 and 2018. The satellite tracking period ranged from 24 to 336 d (mean ± SE = 107 ± 15.7 d), and river dolphin movements ranged from 7.5 to 298 km (58 ± 13.4 km). Kernel density estimates were used to determine minimum home ranges at 95% (K95 = 6.2 to 233.9 km2; mean = 59 ± 13.5 km2) and core areas at 50% (K50 = 0.6 to 54.9 km2; mean = 9 ± 2.6 km2). Protected areas accounted for 45% of the K50 estimated core area. We observed dolphin individuals crossing country borders between Colombia and Peru in the Amazon basin, and between Colombia and Venezuela in the Orinoco basin. Satellite tracking allowed us to determine the different uses of riverine habitat types: main rivers (channels and bays, 52% of recorded locations), confluences (32%), lagoons (9.6%), and tributaries (6.2%). Satellite monitoring allowed us to better understand the ecological preferences of the species and demonstrated the importance of maintaining aquatic landscape heterogeneity and spatial connectivity for effective river dolphin conservation.
Collapse
Affiliation(s)
- F Mosquera-Guerra
- Fundación Omacha, 111211 Bogotá, D.C., Colombia
- Grupo de Ecología del Paisaje y Modelación de Ecosistemas-ECOLMOD, Departamento de Biología, Universidad Nacional de Colombia, 111321 Bogotá, D.C., Colombia
| | - F Trujillo
- Fundación Omacha, 111211 Bogotá, D.C., Colombia
| | - M Oliveira-da-Costa
- World Wildlife Fund (WWF) - Brazil, Colombia, and Peru, Rue Mauverney 28, 1196 Gland, Switzerland
| | - M Marmontel
- Instituto de Desenvolvimento Sustentável Mamirauá, 69.553-225 Tefé (AM), Brazil
| | | | - N Franco
- Fundación Omacha, 111211 Bogotá, D.C., Colombia
| | - L Córdova
- Faunagua, 31001 Sacaba-Cochabamba, Bolivia
| | - E Campbell
- ProDelphinus, 15074 Lima, Peru
- School of BioSciences, University of Exeter, Penryn, Cornwall TR10 9EZ, UK
- Carrera de Biología Marina, Universidad Cientifíca del Sur, 15067 Lima, Peru
| | - J Alfaro-Shigueto
- ProDelphinus, 15074 Lima, Peru
- School of BioSciences, University of Exeter, Penryn, Cornwall TR10 9EZ, UK
- Carrera de Biología Marina, Universidad Cientifíca del Sur, 15067 Lima, Peru
| | - JL Mena
- Museo de Historia Natural Vera Alleman Haeghebaert, Universidad Ricardo Palma, 1801 Lima, Peru
| | - JC Mangel
- ProDelphinus, 15074 Lima, Peru
- School of BioSciences, University of Exeter, Penryn, Cornwall TR10 9EZ, UK
- Carrera de Biología Marina, Universidad Cientifíca del Sur, 15067 Lima, Peru
| | - JSU Oviedo
- World Wildlife Fund (WWF) - Brazil, Colombia, and Peru, Rue Mauverney 28, 1196 Gland, Switzerland
| | - JD Carvajal-Castro
- Grupo de Investigación en Evolución, Ecología y Conservación (EECO), Programa de Biología, Universidad del Quindío, 630004 Armenia, Colombia
- Department of Biological Sciences, St. John’s University, 11366 Queens, NY, USA
| | - H Mantilla-Meluk
- Grupo de Investigación en Desarrollo y Estudio del Recurso Hídrico y el Ambiente (CIDERA), Programa de Biología, Universidad del Quindío, 630004 Armenia, Colombia
- Centro de Estudios de Alta Montaña, Universidad del Quindío, 630004 Armenia, Colombia
| | - D Armenteras-Pascual
- Grupo de Ecología del Paisaje y Modelación de Ecosistemas-ECOLMOD, Departamento de Biología, Universidad Nacional de Colombia, 111321 Bogotá, D.C., Colombia
| |
Collapse
|
5
|
Deming AC, Wingers NL, Moore DP, Rotstein D, Wells RS, Ewing R, Hodanbosi MR, Carmichael RH. Health Impacts and Recovery From Prolonged Freshwater Exposure in a Common Bottlenose Dolphin ( Tursiops truncatus). Front Vet Sci 2020; 7:235. [PMID: 32457921 PMCID: PMC7220998 DOI: 10.3389/fvets.2020.00235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/06/2020] [Indexed: 11/13/2022] Open
Abstract
Common bottlenose dolphins (Tursiops truncatus) exposed to freshwater or low salinity (<10 practical salinity units; PSU) for prolonged periods of time have been documented to develop skin lesions, corneal edema and electrolyte abnormalities, and in some instances they have died. Here we review a case of an out-of-habitat subadult, female common bottlenose dolphin that remained in a freshwater lake in Seminole, Alabama for at least 32 days. Due to concerns for the dolphin's health a rescue was initiated. At the time of rescue bloodwork results indicated minor electrolyte abnormalities (hyponatremia, hypochloremia, hypoosmolality). Renal function was not affected (normal creatinine and urea nitrogen) and all other bloodwork parameters (hemogram; serum biochemistry analytes) were within normal limits. The dolphin was deemed healthy enough for immediate relocation and release. A satellite-linked tag was attached to the dorsal fin to track the dolphin following its relocation to a nearby brackish water bay (Perdido Bay, AL), a known habitat for bottlenose dolphins. Twelve weeks following release, the dolphin was found dead as a result of a fisheries interaction (peracute underwater entrapment). A full necropsy was conducted and there was complete resolution of the skin pallor and skin lesions and no evidence of chronic renal or central nervous system lesions. Post-mortem analysis of vitreous humor (used as a proxy for serum analytes and to determine post-mortem interval) was challenging to interpret and has not been validated in dolphins. This supports the need for future research in cetaceans to establish a species-specific approach. Elevated barium (Ba) concentrations in tooth dentin corresponded to increased seasonal freshwater discharge patterns, confirming repeated annual exposure to low salinity conditions prior to death and indicating freshwater exposure may pose an ongoing threat to dolphins in the region. This case provides a unique opportunity to follow the progression of prolonged freshwater exposure and recovery in a bottlenose dolphin and highlights that dolphins in nearshore habitats face a combination of persistent natural and human associated threats.
Collapse
Affiliation(s)
- Alissa C Deming
- Marine Mammal Research Center, Dauphin Island Sea Lab, Alabama Marine Mammal Stranding Network, Dauphin Island, AL, United States
| | - Noel L Wingers
- Marine Mammal Research Center, Dauphin Island Sea Lab, Alabama Marine Mammal Stranding Network, Dauphin Island, AL, United States
| | - Debra P Moore
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - David Rotstein
- Marine Mammal Pathology Services, Olney, MD, United States
| | - Randall S Wells
- Chicago Zoological Society's Sarasota Dolphin Research Program, Sarasota, FL, United States
| | - Ruth Ewing
- Southeast Fisheries Science Center, National Marine Fisheries Service, U.S. Department of Commerce, Miami, FL, United States
| | - Matthew R Hodanbosi
- Marine Mammal Research Center, Dauphin Island Sea Lab, Alabama Marine Mammal Stranding Network, Dauphin Island, AL, United States.,Department of Marine Sciences, University of South Alabama, Mobile, AL, United States
| | - Ruth H Carmichael
- Marine Mammal Research Center, Dauphin Island Sea Lab, Alabama Marine Mammal Stranding Network, Dauphin Island, AL, United States.,Department of Marine Sciences, University of South Alabama, Mobile, AL, United States
| |
Collapse
|