1
|
Pearce LL, Zheng X, Wilen DS, Cronican AA, Frawley KL, Peterson J. Oxidant-Dependent Sensitizing, Protective, and Mitigative Effects in X-Ray-Irradiated Pulmonary Endothelial Cells. J Pharmacol Exp Ther 2024; 388:624-636. [PMID: 38182415 PMCID: PMC10801727 DOI: 10.1124/jpet.123.001714] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 01/07/2024] Open
Abstract
The primary response of proliferating bovine pulmonary artery endothelial cells (BPAECs) after X-ray irradiation [≤10 gray (Gy)] is shown to be transient cell-cycle arrest. Accompanying oxidant-linked functional changes within the mitochondria are readily measured, but increased autophagy is not. Radiation-induced apoptosis is negligible in this line-important because cells undergoing apoptosis release oxygen-derived species that can overwhelm/mask the radiation-associated species and their effects that we wish to investigate. Cells irradiated and cultured at 3% oxygen exhibited delayed cell-cycle arrest (6-8 hours after 10 Gy irradiation) compared with those maintained at 20% oxygen (2-4 hours after 10 Gy irradiation). At 3% oxygen, either only during or only after irradiation, results intermediate between 20% and 3% oxygen throughout were obtained. No variability in cell-cycle distribution was observed for unirradiated cells cultured under different prevailing oxygen levels. Mitochondrially localized manganese superoxide dismutase delayed the X-ray-induced cell-cycle changes when over-expressed in BPAEC, indicating superoxide to be one of the key oxygen-derived cytotoxic species involved in the radiobiological response. Also, the peroxynitrite biomarker 3-nitrotyrosine was elevated, whereas hydrogen peroxide levels were not. Lastly, the utility of the BPAEC for screening potential countermeasures to ionizing radiation is demonstrated with some quinoline derivatives. Three of the five compounds appeared mitigative, and all were protective. It is suggested that the oxidation-reduction chemistry of these compounds probably offers a reasonable explanation for their observed ameliorative properties. Furthermore, the results suggest a promising new direction in the search for lead compounds as countermeasures to the effects of ionizing radiation. SIGNIFICANCE STATEMENT: The primary radiological response of proliferating bovine pulmonary artery endothelial cells is cell-cycle arrest, starting soon after X-ray irradiation (1-10 Gy) at 20% O2 but delayed by 4 hours at systemic (3%) O2. Oxygen/superoxide is found to be radio-sensitizing in at least two distinct time windows, during and after the irradiation, with both responses antagonized by various hydroxyquinoline derivatives. Similar responses in many other cell lines are likely to be masked by elevated oxidants associated with apoptosis.
Collapse
Affiliation(s)
- Linda L Pearce
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xi Zheng
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel S Wilen
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrea A Cronican
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kristin L Frawley
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jim Peterson
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Urushihara Y, Hashimoto T, Fujishima Y, Hosoi Y. AMPK/FOXO3a Pathway Increases Activity and/or Expression of ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 and Induces Radioresistance under Nutrient Starvation. Int J Mol Sci 2023; 24:12828. [PMID: 37629008 PMCID: PMC10454868 DOI: 10.3390/ijms241612828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Most solid tumors contain hypoxic and nutrient-deprived microenvironments. The cancer cells in these microenvironments have been reported to exhibit radioresistance. We have previously reported that nutrient starvation increases the expression and/or activity of ATM and DNA-PKcs, which are involved in the repair of DNA double-strand breaks induced by ionizing radiation. In the present study, to elucidate the molecular mechanisms underlying these phenomena, we investigated the roles of AMPK and FOXO3a, which play key roles in the cellular response to nutrient starvation. Nutrient starvation increased clonogenic cell survival after irradiation and increased the activity and/or expression of AMPKα, FOXO3a, ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 in MDA-MB-231 cells. Knockdown of AMPKα using siRNA suppressed the activity and/or expression of FOXO3a, ATM, DNA-PKcs, Src, EGFR, PDK1, and SOD2 under nutrient starvation. Knockdown of FOXO3a using siRNA suppressed the activity and/or expression of AMPKα, ATM, DNA-PKcs, FOXO3a, Src, EGFR, PDK1, and SOD2 under nutrient starvation. Nutrient starvation decreased the incidence of apoptosis after 8 Gy irradiation. Knockdown of FOXO3a increased the incidence of apoptosis after irradiation under nutrient starvation. AMPK and FOXO3a appear to be key molecules that induce radioresistance under nutrient starvation and may serve as targets for radiosensitization.
Collapse
Affiliation(s)
- Yusuke Urushihara
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Kobe Research Lab, Oncolys BioPharma Inc., Kobe 650-0047, Japan
| | - Takuma Hashimoto
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yohei Fujishima
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki 036-8562, Japan
| | - Yoshio Hosoi
- Department of Radiation Biology, School of Medicine, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
3
|
Limoli CL, Vozenin MC. Reinventing Radiobiology in the Light of FLASH Radiotherapy. ANNUAL REVIEW OF CANCER BIOLOGY 2023; 7:1-21. [PMID: 39421564 PMCID: PMC11486513 DOI: 10.1146/annurev-cancerbio-061421-022217] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Ultrahigh-dose rate FLASH radiotherapy (FLASH-RT) is a potentially paradigm-shifting treatment modality that holds the promise of expanding the therapeutic index for nearly any cancer. At the heart of this exciting technology comes the capability to ameliorate major normal tissue complications without compromising the efficacy of tumor killing. This combination of benefits has now been termed the FLASH effect and relies on an in vivo validation to rigorously demonstrate the absence of normal tissue toxicity. The FLASH effect occurs when the overall irradiation time is extremely short (<500 ms), and in this review we attempt to understand how FLASH-RT can kill tumors but spare normal tissues-likely the single most pressing question confronting the field today.
Collapse
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California, USA
| | - Marie-Catherine Vozenin
- Laboratory of Radiation Oncology, Radiation Oncology Service and Oncology Department, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
5
|
Wei F, Neal CJ, Sakthivel TS, Fu Y, Omer M, Adhikary A, Ward S, Ta KM, Moxon S, Molinari M, Asiatico J, Kinzel M, Yarmolenko SN, San Cheong V, Orlovskaya N, Ghosh R, Seal S, Coathup M. A novel approach for the prevention of ionizing radiation-induced bone loss using a designer multifunctional cerium oxide nanozyme. Bioact Mater 2022; 21:547-565. [PMID: 36185749 PMCID: PMC9507991 DOI: 10.1016/j.bioactmat.2022.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
The disability, mortality and costs due to ionizing radiation (IR)-induced osteoporotic bone fractures are substantial and no effective therapy exists. Ionizing radiation increases cellular oxidative damage, causing an imbalance in bone turnover that is primarily driven via heightened activity of the bone-resorbing osteoclast. We demonstrate that rats exposed to sublethal levels of IR develop fragile, osteoporotic bone. At reactive surface sites, cerium ions have the ability to easily undergo redox cycling: drastically adjusting their electronic configurations and versatile catalytic activities. These properties make cerium oxide nanomaterials fascinating. We show that an engineered artificial nanozyme composed of cerium oxide, and designed to possess a higher fraction of trivalent (Ce3+) surface sites, mitigates the IR-induced loss in bone area, bone architecture, and strength. These investigations also demonstrate that our nanozyme furnishes several mechanistic avenues of protection and selectively targets highly damaging reactive oxygen species, protecting the rats against IR-induced DNA damage, cellular senescence, and elevated osteoclastic activity in vitro and in vivo. Further, we reveal that our nanozyme is a previously unreported key regulator of osteoclast formation derived from macrophages while also directly targeting bone progenitor cells, favoring new bone formation despite its exposure to harmful levels of IR in vitro. These findings open a new approach for the specific prevention of IR-induced bone loss using synthesis-mediated designer multifunctional nanomaterials.
Collapse
Key Words
- ALP, Alkaline phosphatase
- BMSC, Bone marrow derived mesenchymal stem cells
- Bone resorption
- Bone strength
- CAT, Catalase
- COLI, Collagen type I
- CTSK, Cathepsin K
- CTX-1, Cross-linked C-telopeptide of type I collagen
- CeONPs, Cerium oxide nanoparticles
- Cerium oxide
- DFT, Density functional theory
- DNA, Deoxyribonucleic acid
- EPR, Electron paramagnetic resonance
- FDA, Food and Drug Administration
- GPX, Glutathione peroxidase
- Gy, Gray
- HIF1α, Hypoxia-inducible factor 1 alpha
- IL-1β, Interleukin 1 beta
- IL-6, Interleukin 6
- IR, Ionizing radiation
- Ionizing radiation
- MNGC, Multinucleated giant cell
- Nanozyme
- OCN, Osteocalcin
- Osteoporosis
- RANKL, Receptor activator of nuclear factor kappa-Β ligand
- ROS, Reactive oxygen species
- SAED, Selected area electron diffraction
- SOD, Superoxide dismutase
- TRAP, Tartrate-resistant acid phosphatase
- XPS, X-ray photoelectron spectroscopy
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Craig J. Neal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | - Yifei Fu
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Mahmoud Omer
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Amitava Adhikary
- Department of Chemistry, Oakland University, Rochester, MI, MI, USA
| | - Samuel Ward
- Department of Chemistry, Oakland University, Rochester, MI, MI, USA
| | - Khoa Minh Ta
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Samuel Moxon
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Marco Molinari
- School of Applied Sciences, Department of Chemical Sciences, University of Huddersfield, UK
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Sergey N. Yarmolenko
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A & T University, Greensboro, NC, USA
| | - Vee San Cheong
- Department of Automatic Control and Systems Engineering, Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield, S1 3JD, UK
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Sudipta Seal
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC), Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
- Corresponding author. Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
6
|
Greenberger JS, Mukherjee A, Epperly MW. Gene Therapy for Systemic or Organ Specific Delivery of Manganese Superoxide Dismutase. Antioxidants (Basel) 2021; 10:1057. [PMID: 34208819 PMCID: PMC8300724 DOI: 10.3390/antiox10071057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Manganese superoxide dismutase (MnSOD) is a dominant component of the antioxidant defense system in mammalian cells. Since ionizing irradiation induces profound oxidative stress, it was logical to test the effect of overexpression of MnSOD on radioresistance. This task was accomplished by introduction of a transgene for MnSOD into cells in vitro and into organs in vivo, and both paradigms showed clear radioresistance following overexpression. During the course of development and clinical application of using MnSOD as a radioprotector, several prominent observations were made by Larry Oberley, Joel Greenberger, and Michael Epperly which include (1) mitochondrial localization of either manganese superoxide dismutase or copper/zinc SOD was required to provide optimal radiation protection; (2) the time required for optimal expression was 12-18 h, and while acceptable for radiation protection, the time delay was impractical for radiation mitigation; (3) significant increases in intracellular elevation of MnSOD activity were required for effective radioprotection. Lessons learned during the development of MnSOD gene therapy have provided a strategy for delivery of small molecule SOD mimics, which are faster acting and have shown the potential for both radiation protection and mitigation. The purpose of this review is to summarize the current status of using MnSOD-PL and SOD mimetics as radioprotectors and radiomitigators.
Collapse
Affiliation(s)
- Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15232, USA; (A.M.); (M.W.E.)
| | | | | |
Collapse
|
7
|
Singh VK, Seed TM. Entolimod as a radiation countermeasure for acute radiation syndrome. Drug Discov Today 2020; 26:17-30. [PMID: 33065293 DOI: 10.1016/j.drudis.2020.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 01/11/2023]
Abstract
High doses of total-body or partial-body radiation exposure can result in a life-threatening acute radiation syndrome as manifested by severe morbidity. Entolimod (CBLB502) is effective in protecting against, and mitigating the development of, the hematopoietic and gastrointestinal subsyndromes of the acute radiation syndrome in rodents and nonhuman primates. Entolimod treatment reduces radiation-induced apoptosis and accelerates the regeneration of progenitors in radiation-damaged tissues. The drug has been evaluated clinically for its pharmacokinetics (PK), toxicity, and biomarkers. The US Food and Drug Administration (FDA) has granted investigational new drug, fast-track, and orphan drug statuses to entolimod. Its safety, efficacy, and animal-to-human dose conversion data allowed its progression with a pre-emergency use authorization application submission.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
8
|
Thermozier S, Hou W, Zhang X, Shields D, Fisher R, Bayir H, Kagan V, Yu J, Liu B, Bahar I, Epperly MW, Wipf P, Wang H, Huq MS, Greenberger JS. Anti-Ferroptosis Drug Enhances Total-Body Irradiation Mitigation by Drugs that Block Apoptosis and Necroptosis. Radiat Res 2020; 193:435-450. [PMID: 32134361 PMCID: PMC7299160 DOI: 10.1667/rr15486.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mitigation of total-body irradiation (TBI) in C57BL/6 mice by two drugs, which target apoptosis and necroptosis respectively, increases survival compared to one drug alone. Here we investigated whether the biomarker (signature)directed addition of a third anti-ferroptosis drug further mitigated TBI effects. C57BL/6NTac female mice (30-33 g) received 9.25 Gy TBI, and 24 h or later received JP4-039 (20 mg/kg), necrostatin-1 (1.65 mg/kg) and/or lipoxygenase-15 inhibitor (baicalein) (50 mg/kg) in single-, dual- or three-drug regimens. Some animals were sacrificed at days 0, 1, 2, 3, 4 or 7 postirradiation, while the majority in each group were maintained beyond 30 days. For those mice sacrificed at the early time points, femur bone marrow, intestine (ileum), lung and blood plasma were collected and analyzed for radiation-induced and mitigator-modified levels of 33 pro-inflammatory and stress response proteins. Each single mitigator administered [JP4-039 (24 h), necrostatin-1 (48 h) or baicalein (24 h)] improved survival at day 30 after TBI to 25% (P = 0.0432, 0.2816 or 0.1120, respectively) compared to 5% survival of 9.25 Gy TBI controls. Mice were administered the drug individually based on weight (mg/kg). Drug vehicles comprised 30% cyclodextrin for JP4-039 and baicalein, and 10% Cremphor-EL/10% ethanol/80% water for necrostatin-1; thus, dual-vehicle controls were also tested. The dual-drug combinations further enhanced survival: necrostatin-1 (delayed to 72 h) with baicalein 40% (P = 0.0359); JP4-039 with necrostatin-1 50% (P = 0.0062); and JP4-039 with baicalein 60% (P = 0.0064). The three-drug regimen, timed to signature directed evidence of onset after TBI of each death pathway in marrow and intestine, further increased the 30-day survival to 75% (P = 0.0002), and there was optimal normalization to preirradiation levels of inflammatory cytokine and stress response protein levels in plasma, intestine and marrow. In contrast, lung protein levels were minimally altered by 9.25 Gy TBI or mitigators over 7 days. Significantly, elevated intestinal proteins at day 7 after TBI were reduced by necrostatin-1-containing regimens; however, normalization of plasma protein levels at day 7 required the addition of JP4-039 and baicalein. These findings indicate that mitigator targeting to three distinct cell death pathways increases survival after TBI.
Collapse
Affiliation(s)
- Stephanie Thermozier
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Donna Shields
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Hulya Bayir
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Valerian Kagan
- Departments of Environmental/Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jian Yu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Bing Liu
- Departments of Computational and Biology Systems, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Ivet Bahar
- Departments of Computational and Biology Systems, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - M. Saiful Huq
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15232
| |
Collapse
|
9
|
Przystupski D, Górska A, Rozborska P, Bartosik W, Michel O, Rossowska J, Szewczyk A, Drąg-Zalesińska M, Kasperkiewicz P, Górski J, Kulbacka J. The Cytoprotective Role of Antioxidants in Mammalian Cells Under Rapidly Varying UV Conditions During Stratospheric Balloon Campaign. Front Pharmacol 2019; 10:851. [PMID: 31427965 PMCID: PMC6687761 DOI: 10.3389/fphar.2019.00851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 07/03/2019] [Indexed: 12/24/2022] Open
Abstract
The current age of dynamic development of the space industry brings the mankind closer to routine manned space flights and space tourism. This progress leads to a demand for intensive astrobiological research aimed at improving strategies of the pharmacological protection of the human cells against extreme conditions. Although routine research in space remains out of our reach, it is worth noticing that the unique severe environment of the Earth's stratosphere has been found to mimic subcosmic conditions, giving rise to the opportunity to use the stratospheric surface as a research model for the astrobiological studies. Our study included launching into the stratosphere a balloon containing mammalian normal and cancer cells treated with various compounds to examine whether these substances are capable of protecting the cells against stress caused by rapidly varying temperature, pressure, and radiation, especially UV. Owing to oxidative stress caused by irradiation and temperature shock, we used natural compounds which display antioxidant properties, namely, catechin isolated from green tea, honokiol derived from magnolia, curcumin from turmeric, and cinnamon extract. "After-flight" laboratory tests have shown the most active antioxidants as potential agents which can minimize harmful impact of extreme conditions on human cells.
Collapse
Affiliation(s)
| | - Agata Górska
- Department of Biological Sciences, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Rozborska
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| | | | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Jędrzej Górski
- Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
10
|
Chen C, Zhou Y, Hu C, Wang Y, Yan Z, Li Z, Wu R. Mitochondria and oxidative stress in ovarian endometriosis. Free Radic Biol Med 2019; 136:22-34. [PMID: 30926565 DOI: 10.1016/j.freeradbiomed.2019.03.027] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 10/27/2022]
Abstract
Endometriosis is associated with inflammatory reaction, and reactive oxidative species (ROS) are highly pro-inflammatory factors. Mitochondria are responsible for the production of ROS and energy. However, little is known about how mitochondria regulate ROS generation and energy metabolism in endometriosis. In our study, we investigated mitochondrial structure and function of ectopic endometrial stromal cells (ESCs) in ovarian endometriosis. We found mitochondria in ectopic ESCs generated more ROS and energy than controlled groups. Mitochondrial superoxide dismutase (SOD2), as an antioxidant enzyme, was found highly expressed in ectopic endometrium compared with normal endometrium. Due to its antioxidant role, SOD2 promoted the development of endometriosis by maintaining functional mitochondria to support high energetic metabolism of ectopic ESCs. We also showed that SOD2 promoted cell proliferation and migration in ovarian endometriosis. Inhibiting SOD2 expression reduced proliferation and migration of ectopic ESCS, and increased cell apoptosis. Therefore, understanding the role of mitochondrial dysfunction and SOD2 in ovarian endometriosis may provide new strategies to treat this disease.
Collapse
Affiliation(s)
- Chaolu Chen
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, 310006, China
| | - Yong Zhou
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, 310006, China
| | - Changchang Hu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, 310006, China
| | - Yinfeng Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, 310006, China
| | - Zhuqing Yan
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, 310006, China
| | - Zhi Li
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, 310006, China
| | - Ruijin Wu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Zhejiang, 310006, China.
| |
Collapse
|
11
|
Kiang JG, Olabisi AO. Radiation: a poly-traumatic hit leading to multi-organ injury. Cell Biosci 2019; 9:25. [PMID: 30911370 PMCID: PMC6417034 DOI: 10.1186/s13578-019-0286-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/27/2019] [Indexed: 01/16/2023] Open
Abstract
The range of radiation threats we face today includes everything from individual radiation exposures to mass casualties resulting from a terrorist incident, and many of these exposure scenarios include the likelihood of additional traumatic injury as well. Radiation injury is defined as an ionizing radiation exposure inducing a series of organ injury within a specified time. Severity of organ injury depends on the radiation dose and the duration of radiation exposure. Organs and cells with high sensitivity to radiation injury are the skin, the hematopoietic system, the gastrointestinal (GI) tract, spermatogenic cells, and the vascular system. In general, acute radiation syndrome (ARS) includes DNA double strand breaks (DSB), hematopoietic syndrome (bone marrow cells and circulatory cells depletion), cutaneous injury, GI death, brain hemorrhage, and splenomegaly within 30 days after radiation exposure. Radiation injury sensitizes target organs and cells resulting in ARS. Among its many effects on tissue integrity at various levels, radiation exposure results in activation of the iNOS/NF-kB/NF-IL6 and p53/Bax pathways; and increases DNA single and double strand breaks, TLR signaling, cytokine concentrations, bacterial infection, cytochrome c release from mitochondria to cytoplasm, and possible PARP-dependent NAD and ATP-pool depletion. These alterations lead to apoptosis and autophagy and, as a result, increased mortality. In this review, we summarize what is known about how radiation exposure leads to the radiation response with time. We also describe current and prospective countermeasures relevant to the treatment and prevention of radiation injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814 USA
| | - Ayodele O. Olabisi
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889 USA
| |
Collapse
|
12
|
Crestini A, Vona R, Lo Giudice M, Sbriccoli M, Piscopo P, Borrelli A, Rivabene R, Ricceri L, Mancini A, Confaloni A. Differentiation-Dependent Effects of a New Recombinant Manganese Superoxide Dismutase on Human SK-N-BE Neuron-Like Cells. Neurochem Res 2018; 44:400-411. [PMID: 30471001 DOI: 10.1007/s11064-018-2686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 09/24/2018] [Accepted: 11/16/2018] [Indexed: 11/29/2022]
Abstract
We have recently isolated a new isoform of recombinant manganese superoxide dismutase (rMnSOD) which provides a potent antitumor activity and strongly counteracts the occurrence of oxidative stress and tissue inflammation. This isoform, in addition to the enzymatic action common to all SODs, also shows special functional and structural properties, essentially due to the presence of a first leader peptide that allows the protein to enter easily into cells. Among endogenous antioxidants, SOD constitutes the first line of natural defence against pathological effects induced by an excess of free radicals. Here, we firstly describe the effects of our rMnSOD administration on the proliferant and malignant undifferentiated human neuroblastoma SK-N-BE cell line. Moreover, we also test the effects of rMnSOD in the all trans retinoic-differentiated SK-N-BE neuron-like cells, a quiescent "not malignant" model. While rMnSOD showed an antitumor activity on proliferating cells, a poor sensitivity to rMnSOD overload in retinoid-differentiated neuron-like cells was observed. However, in the latter case, in presence of experimental-induced oxidative stress, overcharge of rMnSOD enhanced the oxidant effects, through an increase of H2O2 due to low activity of both catalase and glutathione peroxidase. In conclusion, our data show that rMnSOD treatment exerts differential effects, which depend upon both cell differentiation and redox balance, addressing attention to the potential use of the recombinant enzyme on differentiated neurons. These facts ultimately pave the way for further preclinical studies aimed at evaluation of rMnSOD effects in models of neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessio Crestini
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Rosa Vona
- Biomarkers Unit, Center for Gender-Specific Medicine, Italian National Institute of Health, Rome, Italy
| | - Maria Lo Giudice
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Marco Sbriccoli
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Department of Experimental Oncology, Istituto Nazionale Tumori, "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Roberto Rivabene
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy
| | - Laura Ricceri
- Centre for Behavioural Sciences and Mental Health, Italian National Institute of Health, Rome, Italy
| | - Aldo Mancini
- Leadhexa Biotechnologies Inc., San Francisco, CA, USA
| | - Annamaria Confaloni
- Department of Neuroscience, Italian National Institute of Health, Rome, Italy.
| |
Collapse
|
13
|
Bai H, Sun F, Yang G, Wang L, Zhang Q, Zhang Q, Zhan Y, Chen J, Yu M, Li C, Yin R, Yang X, Ge C. CBLB502, a Toll-like receptor 5 agonist, offers protection against radiation-induced male reproductive system damage in mice†. Biol Reprod 2018; 100:281-291. [DOI: 10.1093/biolre/ioy173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/26/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hao Bai
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Feifei Sun
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Ganggang Yang
- College of Life Science, Henan Normal University, Xinxiang, China
- Xinxiang Key Laboratory of Genetic Engineering Medicine, Xinxiang, China
| | - Lei Wang
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
| | - Quanyi Zhang
- Xinxiang Key Laboratory of Genetic Engineering Medicine, Xinxiang, China
| | - Quanhai Zhang
- Xinxiang Key Laboratory of Genetic Engineering Medicine, Xinxiang, China
| | - Yiqun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Jiaojiao Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Changhui Ge
- Department of Experimental Hematology and Biochemistry, Beijing Institute of Radiation Medicine, Beijing, China
- Graduate School of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Phosphorylation of LAMP2A by p38 MAPK couples ER stress to chaperone-mediated autophagy. Nat Commun 2017; 8:1763. [PMID: 29176575 PMCID: PMC5701254 DOI: 10.1038/s41467-017-01609-x] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/03/2017] [Indexed: 11/09/2022] Open
Abstract
Endoplasmic reticulum (ER) and lysosomes coordinate a network of key cellular processes including unfolded protein response (UPR) and autophagy in response to stress. How ER stress is signaled to lysosomes remains elusive. Here we find that ER disturbance activates chaperone-mediated autophagy (CMA). ER stressors lead to a PERK-dependent activation and recruitment of MKK4 to lysosomes, activating p38 MAPK at lysosomes. Lysosomal p38 MAPK directly phosphorylates the CMA receptor LAMP2A at T211 and T213, which causes its membrane accumulation and active conformational change, activating CMA. Loss of ER stress-induced CMA activation sensitizes cells to ER stress-induced death. Neurotoxins associated with Parkinson’s disease fully engages ER-p38 MAPK–CMA pathway in the mouse brain and uncoupling it results in a greater loss of SNc dopaminergic neurons. This work identifies the coupling of ER and CMA as a critical regulatory axis fundamental for physiological and pathological stress response. The endoplasmic reticulum (ER) and lysosome are central to cellular stress responses, but it is unclear how ER stress is signaled to lysosomes. Here the authors show that ER stress activates chaperone-mediated autophagy (CMA) via direct phosphorylation of the CMA receptor LAMP2A by the lysosomal p38 MAPK.
Collapse
|
15
|
Jiang WD, Tang RJ, Liu Y, Wu P, Kuang SY, Jiang J, Tang L, Tang WN, Zhang YA, Zhou XQ, Feng L. Impairment of gill structural integrity by manganese deficiency or excess related to induction of oxidative damage, apoptosis and dysfunction of the physical barrier as regulated by NF-κB, caspase and Nrf2 signaling in fish. FISH & SHELLFISH IMMUNOLOGY 2017; 70:280-292. [PMID: 28887111 DOI: 10.1016/j.fsi.2017.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/24/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
This study is for the first time to explore the possible effects of dietary manganese (Mn) on structural integrity and the related signaling in the gills of fish. Grass carp (Ctenopharyngodon idella) were fed with six diets containing graded levels of Mn [3.65-27.86 mg Mn/kg diet] for 8 weeks. The results firstly demonstrated that Mn deficiency aggravated inflammation indicated by up-regulation of pro-inflammatory cytokines (tumour necrosis factor α, interleukin 8, and interleukin 1β mRNA levels) and down-regulation of anti-inflammatory cytokines (interleukin 10, transforming growth factor-β1) mRNA levels, which might be partially related to the up-regulation of nuclear factor kappa B (NF-κB p65) and down-regulation of nuclear inhibitor factor κBα (iκBα) mRNA levels in the gills of fish. Meanwhile, Mn deficiency caused DNA fragmentation, which might be partially associated with the up-regulation of the apoptosis signaling (caspase-3, caspase-8 and caspase-9) in the gills of fish. Furthermore, Mn deficiency-caused apoptosis might be partly related to the increases of oxidative damage that indicated by increases of lipid peroxidation and protein oxidation, and decreases of antioxidant enzyme activities [included Mn superoxide dismutase (MnSOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione-S-transferase (GST)]. However, Mn deficiency only down-regulated MnSOD and GST mRNA levels, which might be partially related to the up-regulation of NF-E2-related factor-2 (Nrf2) inhibitor (Keap1), and only down-regulated the gene expression of claudin-b and claudin-15 to disrupt the TJ in the gills of fish. Excessive Mn led to negative effects on partial parameters studied in the gills of fish. The optimal levels of Mn based on protecting against ROS, MDA and PC in the gills of grass carp were 17.04, 16.86 and 21.20 mg/kg diet, respectively. Collectively, Mn deficiency or excess could cause inflammation, apoptosis, antioxidant system disruption and change tight junction protein (claudin-b and claudin-15) transcription abundances, which might be partially related to the NF-κB p65, caspase-(3,8,9) and Nrf2 signaling, in the gills of fish.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Ren-Jun Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu, 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Chengdu, 611130, China.
| |
Collapse
|
16
|
Chang Y, Wei W, Tong L, Liu Y, Zhou A, Chen J, Wei R, Zhang P, Su X. Weikangning therapy in functional dyspepsia and the protective role of Nrf2. Exp Ther Med 2017; 14:2885-2894. [PMID: 28928800 PMCID: PMC5590041 DOI: 10.3892/etm.2017.4892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Functional dyspepsia (FD) is a non-organic gastrointestinal disorder that has a marked negative impact on quality of life. Compared with conventional pharmacological therapies, the traditional Chinese medicine weikangning (WKN) is a safe and effective treatment for FD. The present study aimed to determine the molecular mechanisms underlying the efficacy of WKN. The effect of different concentrations of WKN on the proliferation of the human gastric mucosal epithelial cell line GES-1 was assessed. The optimal WKN concentration to promote cell proliferation was determined, and this concentration was used to examine the effect of WKN compared with a domperidone-treated positive control group on the antioxidant capacity of GES-1 cells. The effect of WKN treatment on the growth and antioxidant activity of GES-1 cells was also assessed following nuclear factor erythroid 2 like 2 (Nrf2) knockdown. The optimal WKN dose for promoting cell growth was determined to be 0.025 mg/ml; at this concentration the expression of the antioxidant proteins glutathione S-transferase P and superoxide dismutase 2 (SOD2) were significantly elevated (P<0.0001). Furthermore, the amount of reduced glutathione and activity of SOD2 were significantly increased (P<0.0001 and P<0.01, respectively), and malondialdehyde content was significantly decreased, compared with the controls (P<0.001). With WKN treatment, the transcription of Nrf2 and its downstream genes were significantly upregulated (P<0.01), and the level and nuclear distribution of Nrf2 protein was also markedly increased. Following Nrf2 silencing, the protective antioxidant effects of WKN treatment were impaired and GES-1 cell proliferation decreased. The results of the present study suggest that the efficacy of WKN in protecting gastric mucosal epithelial cells in FD is antioxidant-dependent and mediated by Nrf2 activation.
Collapse
Affiliation(s)
- Yujuan Chang
- Department of Postgraduate Studies, Oriental Hospital of Beijing University of Chinese Medicine, Beijing 100029, P.R. China.,Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Wei Wei
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Li Tong
- Institute of Cellular Biology, College of Life Sciences, Beijing Normal University, Beijing 100875, P.R. China
| | - Yanjun Liu
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Aimin Zhou
- Department of Chemistry, Cleveland State University, Cleveland, OH 44114, USA
| | - Jiande Chen
- Department of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 44115, USA
| | - Ruhan Wei
- Department of Chemistry, Cleveland State University, Cleveland, OH 44114, USA
| | - Ping Zhang
- Department of Pathology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| | - Xiaolan Su
- Department of Gastroenterology, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China
| |
Collapse
|
17
|
Epperly MW, Rhieu BH, Franicola D, Dixon T, Cao S, Zhang X, Shields D, Wang H, Wipf P, Greenberger JS. Induction of TGF-β by Irradiation or Chemotherapy in Fanconi Anemia (FA) Mouse Bone Marrow Is Modulated by Small Molecule Radiation Mitigators JP4-039 and MMS350. ACTA ACUST UNITED AC 2017; 31:159-168. [PMID: 28358695 DOI: 10.21873/invivo.11040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND/AIM Total-body irradiation and/or administration of chemotherapy drugs in bone marrow transplantation induce cytokines that can suppress engraftment. Fanconi Anemia (FA) patients have a hyperactive responsiveness to the inhibitory cytokine, transforming growth factor-beta (TGF-β). Small molecule radiation mitigator drugs, JP4-039 and MMS350, were evaluated for suppression of irradiation or drug-induced TGF-β. MATERIALS AND METHODS In vivo induction of TGF-β by total-body ionizing irradiation (TBI), L-phenylalanine mustard (L-PAM), busulfan or fludarabine, was quantified. In parallel, mitigator drug amelioration of TGF-β induction in FA D2-/- (FANCD2-/-) mouse bone marrow, was studied in vitro. Tissue culture medium, cell lysates, and mouse plasma were analyzed for TGF-β levels. RESULTS Induction of TGF-β levels in FANCD2-/- and FANCD2+/+ mice and in mouse bone marrow were modulated by both JP4-039 and MMS350. CONCLUSION Bone marrow transplantation in FA recipients may benefit from administration of small molecule agents that suppress TGF-β induction.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Byung-Han Rhieu
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Tracy Dixon
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Shaonan Cao
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
18
|
Maria OM, Eliopoulos N, Muanza T. Radiation-Induced Oral Mucositis. Front Oncol 2017; 7:89. [PMID: 28589080 PMCID: PMC5439125 DOI: 10.3389/fonc.2017.00089] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 04/21/2017] [Indexed: 01/11/2023] Open
Abstract
Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Osama Muhammad Maria
- Faculty of Medicine, Experimental Medicine Department, McGill University, Montreal, QC, Canada
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Faculty of Medicine, Surgery Department, McGill University, Montreal, QC, Canada
| | - Thierry Muanza
- Faculty of Medicine, Experimental Medicine Department, McGill University, Montreal, QC, Canada
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Oncology Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Han X, Xue X, Zhao Y, Li Y, Liu W, Zhang J, Fan S. Rutin-Enriched Extract from Coriandrum sativum L. Ameliorates Ionizing Radiation-Induced Hematopoietic Injury. Int J Mol Sci 2017; 18:ijms18050942. [PMID: 28468251 PMCID: PMC5454855 DOI: 10.3390/ijms18050942] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 04/22/2017] [Accepted: 04/24/2017] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic injury is a major cause of mortality in radiation accidents and a primary side effect in patients undergoing radiotherapy. Ionizing radiation (IR)-induced myelosuppression is largely attributed to the injury of hematopoietic stem and progenitor cells (HSPCs). Coriander is a culinary herb with multiple pharmacological effects and has been widely used in traditional medicine. In this study, flavonoids were identified as the main component of coriander extract with rutin being the leading compound (rutin-enriched coriander extract; RE-CE). We evaluated the radioprotective effect of RE-CE against IR-induced HSPCs injury. Results showed that RE-CE treatment markedly improved survival, ameliorated organ injuries and myelosuppression, elevated HSPCs frequency, and promoted differentiation and proliferation of HSPCs in irradiated mice. The protective role of RE-CE in hematopoietic injury is probably attributed to its anti-apoptotic and anti-DNA damage effect in irradiated HSPCs. Moreover, these changes were associated with reduced reactive oxygen species (ROS) and enhanced antioxidant enzymatic activities in irradiated HSPCs. Collectively, these findings demonstrate that RE-CE is able to ameliorate IR-induced hematopoietic injury partly by reducing IR-induced oxidative stress.
Collapse
Affiliation(s)
- Xiaodan Han
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Xiaolei Xue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Weili Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin 300192, China.
| |
Collapse
|
20
|
Epperly MW, Sacher JR, Krainz T, Zhang X, Wipf P, Liang M, Fisher R, Li S, Wang H, Greenberger JS. Effectiveness of Analogs of the GS-Nitroxide, JP4-039, as Total Body Irradiation Mitigators. ACTA ACUST UNITED AC 2017; 31:39-43. [PMID: 28064218 DOI: 10.21873/invivo.11022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIM Mitochondrial-targeted gramicidin S (GS)-nitroxide, JP4-039, has been demonstrated to be a potent radiation mitigator, and safe over a wide dose range. In addition, JP4-039 has organ-specific effectiveness when locally applied. MATERIALS AND METHODS We tested the effect of another GS-nitroxide, XJB-5-131, which has more effective mitochondrial localization, and compared these results to those for radiation mitigation against the hematopoietic syndrome, and two analogs of JP4-039, which have the same mitochondrial localization signal, but different chemical payloads: JRS527.084 contains a second nitroxide per molecule, and TK649.030 contains an ester group attached to the nitroxide. RESULTS The results demonstrate the superiority of JP4-039 as a systemic radiation mitigator. CONCLUSION Structure-activity relationships and bioassays demonstrate that JP4-039 is an optimized small-molecule radiation mitigator.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Joshua R Sacher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Tanja Krainz
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Xiaolin Zhang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Mary Liang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A.,Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Song Li
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
21
|
Sheshadri P, Kumar A. Managing odds in stem cells: insights into the role of mitochondrial antioxidant enzyme MnSOD. Free Radic Res 2016; 50:570-84. [DOI: 10.3109/10715762.2016.1155708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Abstract
In the event of a nuclear disaster, the individuals proximal to the source of radiation will be exposed to combined radiation injury. As irradiation delays cutaneous repair, the purpose of this study was to elucidate the effect of combined radiation and burn injury (CRBI) on apoptosis and inflammation at the site of skin injury. Male C57Bl/6 mice were exposed to no injury, thermal injury only, radiation only (1 and 6 Gy) and CRBI (1 and 6 Gy) and euthanized at various times after for skin collection. TUNEL staining revealed that the CRBI 6 Gy group had a delayed and increased apoptotic response. This correlated with decreased recovery of live cells as compared to the other injuries. Similar response was observed when cleaved-caspase-3 immunohistochemical staining was compared between CRBI 6 Gy and thermal injury. TNFR1, caspase 8, Bax and IL-6 mRNA expression revealed that the higher CRBI group had delayed increase in mRNA expression as compared to thermal injury alone. RIPK1 mRNA expression and necrotic cell counts were delayed in the CRBI 6 Gy group to day 5. TNF-α and NFκB expression peaked in the CRBI 6 Gy group at day 1 and was much higher than the other injuries. Also, inflammatory cell counts in the CRBI 6 Gy group were lower at early time points as compared to thermal injury by itself. These data suggest that CRBI delays and exacerbates apoptosis and inflammation in skin as well as increases necrosis thus resulting in delayed wound healing.
Collapse
|
23
|
Todorović A, Pejić S, Stojiljković V, Gavrilović L, Popović N, Pavlović I, Saičić ZS, Pajović SB. Antioxidative enzymes in irradiated rat brain-indicators of different regional radiosensitivity. Childs Nerv Syst 2015; 31:2249-56. [PMID: 26143278 DOI: 10.1007/s00381-015-2807-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 06/23/2015] [Indexed: 12/01/2022]
Abstract
PURPOSE Previously, we examined manganese superoxide dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), and catalase (CAT) activities in rat brain irradiated with 2 or 3 Gy of γ-rays. The results indicated that lower MnSOD activity and inducibility found in hippocampus might explain higher radiosensitivity of this brain region. Thus, in this study, we wanted to determine changes of MnSOD, CuZnSOD, and CAT activities after dose of 5 Gy and to find out if differences in MnSOD activity are caused by changes in its expression. METHODS Heads of 4-day-old female rats were irradiated with γ-rays, using (60)Co. Animals were sacrificed 1/24 h after exposure. Hippocampus and cortex tissues were prepared for enzyme activity measurements and Western blot analysis. RESULTS One hour after exposure, γ-rays significantly decreased MnSOD activity in both examined brain regions. Twenty-four hours later, MnSOD recovery showed dose and regional dependence. It was weaker at higher doses and in hippocampal region. MnSOD expression changed in the similar manner as MnSOD activity only at lower doses of γ-rays. In both examined brain regions, gamma radiation significantly decreased CuZnSOD activity and did not change activity of CAT. CONCLUSIONS Our results confirmed that MnSOD plays an important role in different regional radiosensitivity but also showed that depending on dose, radiation affects MnSOD level by utterly different mechanisms. Postradiation changes of CuZnSOD and CAT are not regionally specific and therefore, cannot account for the different radiosensitivity of the hippocampus and cortex.
Collapse
Affiliation(s)
- Ana Todorović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia.
| | - Snežana Pejić
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Vesna Stojiljković
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Ljubica Gavrilović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Nataša Popović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Ivan Pavlović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| | - Zorica S Saičić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, 11060, Belgrade, Serbia
| | - Snežana B Pajović
- Laboratory of Molecular Biology and Endocrinology, Vinča Institute of Nuclear Sciences, University of Belgrade, PO Box 522, 11001, Belgrade, Serbia
| |
Collapse
|
24
|
Krivokrysenko VI, Toshkov IA, Gleiberman AS, Krasnov P, Shyshynova I, Bespalov I, Maitra RK, Narizhneva NV, Singh VK, Whitnall MH, Purmal AA, Shakhov AN, Gudkov AV, Feinstein E. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates. PLoS One 2015; 10:e0135388. [PMID: 26367124 PMCID: PMC4569586 DOI: 10.1371/journal.pone.0135388] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1-48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40-60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters.
Collapse
Affiliation(s)
| | - Ilia A. Toshkov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Peter Krasnov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Inna Shyshynova
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Ivan Bespalov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Ratan K. Maitra
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Vijay K. Singh
- Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Mark H. Whitnall
- Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Andrei A. Purmal
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Andrei V. Gudkov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
- Department of Cell Stress Biology, Roswell Park Cancer Institute (RPCI), Buffalo, New York, United States of America
- * E-mail: (AVG); (EF)
| | - Elena Feinstein
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
- * E-mail: (AVG); (EF)
| |
Collapse
|
25
|
Suman S, Khan Z, Zarin M, Chandna S, Seth RK. Radioresistant Sf9 insect cells display efficient antioxidant defence against high dose γ-radiation. Int J Radiat Biol 2015; 91:732-41. [PMID: 25998970 DOI: 10.3109/09553002.2015.1054958] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the effect of gamma radiation-induced alterations in antioxidant defence of radioresistant Sf9 insect cells. MATERIALS AND METHODS Sf9 cells were irradiated at doses ranging from 0.5-200 Gy. Lipid peroxidation and protein carbonylation levels were observed at 4 h post-exposure along with reduced glutathione/oxidized glutathione (GSH/GSSG) profile as well as specific activities of redox active enzymes superoxide dismutase (SOD), catalase, ascorbate peroxidase (APOx), and glutathione reductase (GR). Human brain malignant glioma (BMG-1) cells were used for comparing radiation response of mammalian cells. RESULTS Sf9 cells displayed significantly less radiation-induced reactive oxygen/nitrogen species (ROS/RNS) generation, protein carbonylation and growth inhibition as compared to mammalian cells. Sf9 cells have higher basal APOx (∼4-fold), catalase (∼1.7-fold), SOD (∼1.3-fold) activity and GSH level (∼2.2-fold) compared to mammalian cells. A radiation dose-dependent increase in SOD, Catalase and APOx activity was found in Sf9 cells at least up to 100 Gy dose, while maximum activity in mammalian cells was achieved by 10 Gy. CONCLUSION The present study suggests that Lepidopteran insect cells carry a stronger antioxidant system that protects against radiation-induced macromolecular damage, growth inhibition and cell death.
Collapse
Affiliation(s)
- Shubhankar Suman
- a Natural Radiation Response Mechanisms Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences , Delhi , India.,b Department of Zoology , University of Delhi , Delhi , India
| | - Zubeda Khan
- b Department of Zoology , University of Delhi , Delhi , India
| | - Mahtab Zarin
- b Department of Zoology , University of Delhi , Delhi , India
| | - Sudhir Chandna
- a Natural Radiation Response Mechanisms Group, Division of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences , Delhi , India
| | | |
Collapse
|
26
|
The importance of manganese in the cytoplasmic maturation of cattle oocytes: blastocyst production improvement regardless of cumulus cells presence during in vitro maturation. ZYGOTE 2015; 24:139-48. [PMID: 25707535 DOI: 10.1017/s0967199414000823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Adequate dietary intake of manganese (Mn) is required for normal reproductive performance in cattle. This study was carried out to investigate the effect of Mn during in vitro maturation of bovine cumulus-oocyte complexes (COC) on apoptosis of cumulus cells, cumulus expansion, and superoxide dismutase (SOD) activity in the COC. The role of cumulus cells on Mn transport and subsequent embryo development was also evaluated. Early apoptosis decreased in cumulus cells matured with Mn compared with medium alone. Cumulus expansion did not show differences in COC matured with or without Mn supplementation. SOD activity was higher in COC matured with 6 ng/ml Mn than with 0 ng/ml Mn. Cleavage rates were higher in COC and denuded oocytes co-cultured with cumulus cells, either with or without Mn added to in vitro maturation (IVM) medium. Regardless of the presence of cumulus cells during IVM, the blastocyst rates were higher when 6 ng/ml Mn was supplemented into IVM medium compared with growth in medium alone. Blastocyst quality was enhanced when COC were matured in medium with Mn supplementation. The results of the present study indicated that Mn supplementation to IVM medium enhanced the 'health' of COC, and improved subsequent embryo development and embryo quality.
Collapse
|
27
|
Greenberger J, Kagan V, Bayir H, Wipf P, Epperly M. Antioxidant Approaches to Management of Ionizing Irradiation Injury. Antioxidants (Basel) 2015; 4:82-101. [PMID: 26785339 PMCID: PMC4665573 DOI: 10.3390/antiox4010082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 11/25/2022] Open
Abstract
Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.
Collapse
Affiliation(s)
- Joel Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Rm. 533, Pittsburgh, PA 15232, USA.
| | - Valerian Kagan
- Department of Environmental/Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Hulya Bayir
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Rm. 533, Pittsburgh, PA 15232, USA.
| |
Collapse
|
28
|
Rosen EM, Day R, Singh VK. New approaches to radiation protection. Front Oncol 2015; 4:381. [PMID: 25653923 PMCID: PMC4299410 DOI: 10.3389/fonc.2014.00381] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Radioprotectors are compounds that protect against radiation injury when given prior to radiation exposure. Mitigators can protect against radiation injury when given after exposure but before symptoms appear. Radioprotectors and mitigators can potentially improve the outcomes of radiotherapy for cancer treatment by allowing higher doses of radiation and/or reduced damage to normal tissues. Such compounds can also potentially counteract the effects of accidental exposure to radiation or deliberate exposure (e.g., nuclear reactor meltdown, dirty bomb, or nuclear bomb explosion); hence they are called radiation countermeasures. Here, we will review the general principles of radiation injury and protection and describe selected examples of radioprotectors/mitigators ranging from small-molecules to proteins to cell-based treatments. We will emphasize agents that are in more advanced stages of development.
Collapse
Affiliation(s)
- Eliot M Rosen
- Departments of Oncology, Biochemistry and Molecular & Cellular Biology, and Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University School of Medicine , Washington, DC , USA
| | - Regina Day
- Department of Pharmacology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| | - Vijay K Singh
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda, MD , USA ; Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD , USA
| |
Collapse
|
29
|
Singh VK, Newman VL, Romaine PLP, Wise SY, Seed TM. Radiation countermeasure agents: an update (2011-2014). Expert Opin Ther Pat 2014; 24:1229-55. [PMID: 25315070 PMCID: PMC4438421 DOI: 10.1517/13543776.2014.964684] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Despite significant scientific advances over the past 60 years towards the development of a safe, nontoxic and effective radiation countermeasure for the acute radiation syndrome (ARS), no drug has been approved by the US FDA. A radiation countermeasure to protect the population at large from the effects of lethal radiation exposure remains a significant unmet medical need of the US citizenry and, thus, has been recognized as a high priority area by the government. AREA COVERED This article reviews relevant publications and patents for recent developments and progress for potential ARS treatments in the area of radiation countermeasures. Emphasis is placed on the advanced development of existing agents since 2011 and new agents identified as radiation countermeasure for ARS during this period. EXPERT OPINION A number of promising radiation countermeasures are currently under development, seven of which have received US FDA investigational new drug status for clinical investigation. Four of these agents, CBLB502, Ex-RAD, HemaMax and OrbeShield, are progressing with large animal studies and clinical trials. G-CSF has high potential and well-documented therapeutic effects in countering myelosuppression and may receive full licensing approval by the US FDA in the future.
Collapse
Affiliation(s)
- Vijay K Singh
- Armed Forces Radiobiology Research Institute , 8901 Wisconsin Ave, Bethesda, MD 20889-5603 , USA +1 301 295 2347 ; +1 301 295 6503 ;
| | | | | | | | | |
Collapse
|
30
|
The influence of mtDNA deletion on lung cancer cells under the conditions of hypoxia and irradiation. Lung 2014; 192:997-1004. [PMID: 25218334 DOI: 10.1007/s00408-014-9639-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/12/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE This study was to evaluate the influence of mtDNA deletion on the lung cancer cells under the conditions of hypoxia or irradiation. METHOD The treatment conditions of lung cancer cell lines with (A549) and without mtDNA (ρ0A549: obtained by inducing from A549) included 2 h of hypoxia and 4 Gy irradiation (group 1: without treatment; group 2: 2 h of hypoxia; group 3: 4 Gy irradiation; group 4: 2 h of hypoxia plus 4 Gy irradiation). The Human OneArray™ microarray was used to hybridize with the Cy5-labeled aRNA in microarray sample preparation. Differentially expressed genes (DEGs) between the lung cancer cells with and without mtDNA were identified using NOISeq package in R. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed using the online tool of DAVID. RESULT In the KEGG pathway analysis of down-regulated DEGs, nineteen pathways were simultaneously enriched in the four groups, which were mainly metabolism- and biosynthesis-related pathways. Nine lung cancer-related pathways were enriched in group 4, and more cancer-associated DEGs, such as MYC, MAX, and E2F1 were found in group 4 than in the other groups. CONCLUSION The mtDNA deletion could inhibit the biosynthesis and metabolism of lung cancer cells and promote the effect of hypoxia and radiation on lung cancer cells. MYC might be the key gene of the cooperation of hypoxia and radiation and MYC, MAX, and E2F1 might play roles in hypoxia- and radiation-induced cell death in lung cancer cells without mtDNA.
Collapse
|
31
|
Ahmed MM, Ibrahim ZS, Alkafafy M, El-Shazly SA. L-carnitine protects against testicular dysfunction caused by gamma irradiation in mice. Acta Histochem 2014; 116:1046-55. [PMID: 24925768 DOI: 10.1016/j.acthis.2014.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 11/15/2022]
Abstract
This study was conducted on mice to evaluate the radioprotective role of L-carnitine against γ-ray irradiation-induced testicular damage. Adult male mice were exposed to whole body irradiation at a total dose of 1 Gy. Radiation exposure was continued 24 h a day (0.1 Gy/day) throughout the 10 days exposure period either in the absence and/or presence of L-carnitine at an i.p. dose of 10 mg/kg body weight/day. Results revealed that γ-rays irradiation suppressed the expression of ABP and CYP450SCC mRNA, whereas treatment with L-carnitine prior and throughout γ-rays irradiation exposure inhibited this suppression. Treatment with γ-ray irradiation or L-carnitine down-regulated expression of aromatase mRNA. With combined treatment, L-carnitine significantly normalized aromatase expression. γ-Ray irradiation up-regulated expression of FasL and Cyclin D2 mRNA, while L-carnitine inhibited these up-regulations. Results also showed that γ-ray-irradiation up-regulated TNF-α, IL1-β and IFN-γ mRNA expressions compared to either controls or the L-carnitine treated group. Moreover, γ-irradiation greatly reduced serum testosterone levels, while L-carnitine, either alone or in combination with irradiation, significantly increased serum testosterone levels compared to controls. In addition, γ-irradiation induced high levels of sperm abnormalities (43%) which were decreased to 12% in the presence of L-carnitine. In parallel with these findings, histological examination showed that γ-irradiation induced severe tubular degenerative changes, which were reduced by L-carnitine pre-treatment. These results clarified the immunostimulatory effects of L-carnitine and its radioprotective role against testicular injury.
Collapse
Affiliation(s)
- Mohamed Mohamed Ahmed
- Department of Biochemistry, College of Veterinary Medicine, University of Sadat City, Egypt; Department of Biotechnology, College of Science, Taif University, Saudi Arabia
| | - Zein Shaban Ibrahim
- Department of Physiology, College of Veterinary Medicine, Kaferelsheikh University, Egypt; Department of Physiology, College of Medicine, Taif University, Saudi Arabia
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, Saudi Arabia; Department of Histology, College of Veterinary Medicine, University of Sadat City, Egypt
| | - Samir Ahmed El-Shazly
- Department of Biotechnology, College of Science, Taif University, Saudi Arabia; Department of Biochemistry, College of Veterinary Medicine, Kaferelsheikh University, Egypt.
| |
Collapse
|
32
|
Holley AK, Miao L, St Clair DK, St Clair WH. Redox-modulated phenomena and radiation therapy: the central role of superoxide dismutases. Antioxid Redox Signal 2014; 20:1567-89. [PMID: 24094070 PMCID: PMC3942704 DOI: 10.1089/ars.2012.5000] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
SIGNIFICANCE Ionizing radiation is a vital component in the oncologist's arsenal for the treatment of cancer. Approximately 50% of all cancer patients will receive some form of radiation therapy as part of their treatment regimen. DNA is considered the major cellular target of ionizing radiation and can be damaged directly by radiation or indirectly through reactive oxygen species (ROS) formed from the radiolysis of water, enzyme-mediated ROS production, and ROS resulting from altered aerobic metabolism. RECENT ADVANCES ROS are produced as a byproduct of oxygen metabolism, and superoxide dismutases (SODs) are the chief scavengers. ROS contribute to the radioresponsiveness of normal and tumor tissues, and SODs modulate the radioresponsiveness of tissues, thus affecting the efficacy of radiotherapy. CRITICAL ISSUES Despite its prevalent use, radiation therapy suffers from certain limitations that diminish its effectiveness, including tumor hypoxia and normal tissue damage. Oxygen is important for the stabilization of radiation-induced DNA damage, and tumor hypoxia dramatically decreases radiation efficacy. Therefore, auxiliary therapies are needed to increase the effectiveness of radiation therapy against tumor tissues while minimizing normal tissue injury. FUTURE DIRECTIONS Because of the importance of ROS in the response of normal and cancer tissues to ionizing radiation, methods that differentially modulate the ROS scavenging ability of cells may prove to be an important method to increase the radiation response in cancer tissues and simultaneously mitigate the damaging effects of ionizing radiation on normal tissues. Altering the expression or activity of SODs may prove valuable in maximizing the overall effectiveness of ionizing radiation.
Collapse
Affiliation(s)
- Aaron K Holley
- 1 Graduate Center for Toxicology, University of Kentucky , Lexington, Kentucky
| | | | | | | |
Collapse
|
33
|
Candas D, Li JJ. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antioxid Redox Signal 2014; 20:1599-617. [PMID: 23581847 PMCID: PMC3942709 DOI: 10.1089/ars.2013.5305] [Citation(s) in RCA: 472] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The mitochondrial antioxidant manganese superoxide dismutase (MnSOD) is encoded by genomic DNA and its dismutase function is fully activated in the mitochondria to detoxify free radical O2(•-) generated by mitochondrial respiration. Accumulating evidence shows an extensive communication between the mitochondria and cytoplasm under oxidative stress. Not only is the MnSOD gene upregulated by oxidative stress, but MnSOD activity can be enhanced via the mitochondrial protein influx (MPI). RECENT ADVANCES A cluster of MPI containing cytoplasmic/nuclear proteins, such as cyclins, cyclin-dependent kinases, and p53 interact with and alter MnSOD activity. These proteins modulate MnSOD superoxide scavenging activity via post-translational modifications in the mitochondria. In addition to well-established pathways in gene expression, recent findings suggest that MnSOD enzymatic activity can also be enhanced by phosphorylation of specific motifs in mitochondria. This review attempts to discuss the pre- and post-translational regulation of MnSOD, and how these modifications alter MnSOD activity, which induces a cell adaptive response to oxidative stress. CRITICAL ISSUES MnSOD is biologically significant to aerobic cells. Its role in protecting the cells against the deleterious effects of reactive oxygen species is evident. However, the exact network of MnSOD-associated cellular adaptive reaction to oxidative stress and its post-translational modifications, especially its enzymatic enhancement via phosphorylation, is not yet fully understood. FUTURE DIRECTIONS The broad discussion of the multiple aspects of MnSOD regulation, including gene expression, protein modifications, and enzymatic activity, will shed light onto the unknown mechanisms that govern the prosurvival networks involved in cellular and mitochondrial adaptive response to genotoxic environment.
Collapse
Affiliation(s)
- Demet Candas
- 1 Department of Radiation Oncology, University of California Davis , Sacramento, California
| | | |
Collapse
|
34
|
Anchordoquy JP, Anchordoquy JM, Picco SJ, Sirini MA, Errecalde AL, Furnus CC. Influence of manganese on apoptosis and glutathione content of cumulus cells during in vitro maturation in bovine oocytes. Cell Biol Int 2013; 38:246-53. [DOI: 10.1002/cbin.10195] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 10/04/2013] [Indexed: 01/21/2023]
Affiliation(s)
- Juan Patricio Anchordoquy
- Instituto de Genética Veterinaria Prof. Fernando N. Dulout, (UNLP‐CONICET), Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataArgentina
- Cátedra de FisiologíaLaboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La PlataArgentina
| | - Juan Mateo Anchordoquy
- Instituto de Genética Veterinaria Prof. Fernando N. Dulout, (UNLP‐CONICET), Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataArgentina
- Cátedra de FisiologíaLaboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La PlataArgentina
| | - Sebastián J. Picco
- Instituto de Genética Veterinaria Prof. Fernando N. Dulout, (UNLP‐CONICET), Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataArgentina
- Cátedra de FisiologíaLaboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La PlataArgentina
| | - Matías A. Sirini
- Instituto de Genética Veterinaria Prof. Fernando N. Dulout, (UNLP‐CONICET), Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataArgentina
- Cátedra de FisiologíaLaboratorio de Nutrición Mineral, Facultad de Ciencias Veterinarias, Universidad Nacional de La PlataArgentina
| | - Ana Lía Errecalde
- Cátedra de CitologíaHistología y Embriología ‘A’, Facultad de Ciencias Médicas, Universidad Nacional de La PlataArgentina
| | - Cecilia C. Furnus
- Instituto de Genética Veterinaria Prof. Fernando N. Dulout, (UNLP‐CONICET), Facultad de Ciencias VeterinariasUniversidad Nacional de La PlataArgentina
- Cátedra de CitologíaHistología y Embriología ‘A’, Facultad de Ciencias Médicas, Universidad Nacional de La PlataArgentina
| |
Collapse
|
35
|
T lymphocytes from chronic HCV-infected patients are primed for activation-induced apoptosis and express unique pro-apoptotic gene signature. PLoS One 2013; 8:e77008. [PMID: 24130824 PMCID: PMC3794995 DOI: 10.1371/journal.pone.0077008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/28/2013] [Indexed: 12/12/2022] Open
Abstract
Although extensive studies have demonstrated the functional impairment of antigen-specific CD4(+) and CD8(+) T-cells during chronic hepatitis C virus (HCV) infection, the functional status of global CD4(+) and CD8(+) T-cells remains unclear. In this report, we recruited 42 long-term (~20 years) treatment-naïve chronic HCV (CHC) patients and 15 healthy donors (HDs) to investigate differences in global CD4(+) and CD8(+) T-cells function. We show that CD4(+) and CD8(+) T-cells from CHC patients underwent increased apoptosis after TCR stimulation. Furthermore, IFN-γ, IL-9 and IP-10 were elevated in CHC patients' plasma and promoted activation-induced T-cells death. Global CD4(+) and CD8(+) T-cells also showed unique transcriptional profiles in the expression of apoptosis-related genes. We identified BCL2, PMAIP1, and CASP1 in CD4(+) T-cells and IER3 and BCL2A1 in CD8(+) T-cells from CHC patients as HCV-specific gene signatures. Importantly, the gene expression patterns of CD4(+) and CD8(+) T-cells from CHC patients differ from those in CD4(+) and CD8(+) T-cells from human immunodeficiency virus type 1 (HIV-1) or hepatitis B virus (HBV) infected individuals. Our results indicate that chronic HCV infection causes a systemic change in cytokine levels that primes T-cells for activation-induced apoptosis. Furthermore, HCV infection programs unique apoptosis-related gene expression profiles in CD4(+) and CD8(+) T-cells, leading to their enhanced activation-induced apoptosis. These results provide novel insights to the pathogenesis of chronic HCV infection.
Collapse
|
36
|
Maier O, Fischer R, Agresti C, Pfizenmaier K. TNF receptor 2 protects oligodendrocyte progenitor cells against oxidative stress. Biochem Biophys Res Commun 2013; 440:336-41. [PMID: 24076392 DOI: 10.1016/j.bbrc.2013.09.083] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/16/2013] [Indexed: 01/11/2023]
Abstract
The neuroprotective role of TNF receptor 2 (TNFR2) has been shown in various studies. However, a direct role of TNFR2 in oligodendrocyte function has not yet been demonstrated. Using primary oligodendrocytes of transgenic mice expressing human TNFR2, we show here that TNFR2 is primarily expressed on oligodendrocyte progenitor cells. Interestingly, preconditioning with a TNFR2 agonist protects these cells from oxidative stress, presumably by increasing the gene expression of distinct anti-apoptotic and detoxifying proteins, thereby providing a potential mechanism for the neuroprotective role of TNFR2 in oligodendrocyte progenitor cells.
Collapse
Affiliation(s)
- Olaf Maier
- Institute of Cell Biology and Immunology, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
37
|
Epperly MW, Chaillet JR, Kalash R, Shaffer B, Goff J, Franicola D, Zhang X, Dixon T, Houghton F, Wang H, Berhane H, Romero C, Kim JH, Greenberger JS. Conditional radioresistance of Tet-inducible manganese superoxide dismutase bone marrow stromal cell lines. Radiat Res 2013; 180:189-204. [PMID: 23862693 DOI: 10.1667/rr3177.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial targeted manganese superoxide dismutase is a major antioxidant enzyme, the levels of which modulate the response of cells, tissues and organs to ionizing irradiation. We developed a Tet-regulated MnSOD mouse (MnSOD(tet)) to examine the detailed relationship between cellular MnSOD concentration and radioresistance and carried out in vitro studies using bone marrow culture derived stromal cell lines (mesenchymal stem cells). Homozygous MnSOD(tet/tet) cells had low levels of MnSOD, reduced viability and proliferation, increased radiosensitivity, elevated overall antioxidant stores, and defects in cell proliferation and DNA strand-break repair. Doxycycline (doxy) treatment of MnSOD(tet/tet) cells increased MnSOD levels and radioresistance from ñ of 2.79 ± 1.04 to 8.69 ± 1.09 (P = 0.0060) and normalized other biologic parameters. In contrast, MnSOD(tet/tet) cells showed minimal difference in baseline and radiation induced mRNA and protein levels of TGF-β, Nrf2 and NF-κB and radiation induced cell cycle arrest was not dependent upon MnSOD level. These novel MnSOD(tet/tet) mouse derived cells should be valuable for elucidating several parameters of the oxidative stress response to ionizing radiation.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wang ZD, Qiao YL, Tian XF, Zhang XQ, Zhou SX, Liu HX, Chen Y. Toll-like Receptor 5 Agonism Protects Mice from Radiation Pneumonitis and Pulmonary Fibrosis. Asian Pac J Cancer Prev 2012; 13:4763-7. [DOI: 10.7314/apjcp.2012.13.9.4763] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Fullerene nanoparticles and their anti-oxidative effects: a comparison to other radioprotective agents. J Appl Biomed 2012. [DOI: 10.2478/v10136-012-0002-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
40
|
Liu H, Bao W, Lin M, Niu H, Rikihisa Y. Ehrlichia type IV secretion effector ECH0825 is translocated to mitochondria and curbs ROS and apoptosis by upregulating host MnSOD. Cell Microbiol 2012; 14:1037-50. [PMID: 22348527 DOI: 10.1111/j.1462-5822.2012.01775.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ehrlichia chaffeensis infects monocytes/macrophages and causes human monocytic ehrlichiosis. To determine the role of type IV secretion (T4S) system in infection, candidates for T4S effectors were identified by bacterial two-hybrid screening of E. chaffeensis hypothetical proteins with positively charged C-terminus using E. chaffeensis VirD4 as bait. Of three potential T4S effectors, ECH0825 was highly upregulated early during exponential growth in a human monocytic cell line. ECH0825 was translocated from the bacterium into the host-cell cytoplasm and localized to mitochondria. Delivery of anti-ECH0825 into infected host cells significantly reduced bacterial infection. Ectopically expressed ECH0825 also localized to mitochondria and inhibited apoptosis of transfected cells in response to etoposide treatment. In double transformed yeast, ECH0825 localized to mitochondria and inhibited human Bax-induced apoptosis. Mitochondrial manganese superoxide dismutase (MnSOD) was increased over ninefold in E. chaffeensis-infected cells, and the amount of reactive oxygen species (ROS) in infected cells was significantly lower than that in uninfected cells. Similarly, MnSOD was upregulated and the ROS level was reduced in ECH0825-transfected cells. These data suggest that, by upregulating MnSOD, ECH0825 prevents ROS-induced cellular damage and apoptosis to allow intracellular infection. This is the first example of host ROS levels linked to a bacterial T4S effector.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
41
|
Dysregulated in vitro hematopoiesis, radiosensitivity, proliferation, and osteoblastogenesis with marrow from SAMP6 mice. Exp Hematol 2012; 40:499-509. [PMID: 22326715 DOI: 10.1016/j.exphem.2012.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 01/12/2023]
Abstract
The senescence accelerated-prone mouse variant 6 (SAMP6) shows normal growth followed by rapid aging, development of osteopenia, and shortened lifespan, compared with control R1 mice. Because oxidative stress is a fundamental mechanism of tissue aging, we tested whether cellular parameters that are associated with oxidative stress are impaired with marrow from SAMP6 mice. We compared in vitro hematopoiesis, irradiation sensitivity, proliferative potential, and osteoblastogenesis with marrow cells from SAMP6 and R1 mice. Marrow cells from SAMP6 mice showed shortened in vitro hematopoiesis; their stromal cells showed greater radiation sensitivity and decreased proliferation. Consistent with those properties, there was constitutive upregulation of transforming growth factor-β(1), an inhibitor of hematopoiesis, and of cell cycle inhibitory genes, p16(INK4A) and p19(ARF). Paradoxically, there was constitutive expression of osteoblast genes in stromal cells from SAMP6 mice, but in vitro matrix mineralization was impaired. These studies and data included in other reports indicate that impaired proliferation of osteoblast progenitors in SAMP6 marrow may be a major factor contributing to accelerated loss of bone mass. In sum, marrow from SAMP6 mice had diminished capacity for long-term hematopoiesis, increased radiosensitivity, and reduced proliferative capacity.
Collapse
|
42
|
Greenberger JS, Clump D, Kagan V, Bayir H, Lazo JS, Wipf P, Li S, Gao X, Epperly MW. Strategies for discovery of small molecule radiation protectors and radiation mitigators. Front Oncol 2012; 1:59. [PMID: 22655254 PMCID: PMC3356036 DOI: 10.3389/fonc.2011.00059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/20/2011] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development.
Collapse
Affiliation(s)
- Joel S. Greenberger
- Radiation Oncology Department, University of Pittsburgh Cancer InstitutePittsburgh, PA, USA
| | - David Clump
- Radiation Oncology Department, University of Pittsburgh Cancer InstitutePittsburgh, PA, USA
| | - Valerian Kagan
- Environmental and Occupational Health Department, University of PittsburghPittsburgh, PA, USA
| | - Hülya Bayir
- Critical Care Medicine Department, University of Pittsburgh Medical CenterPittsburgh, PA, USA
| | - John S. Lazo
- Pharmacology Department, University of VirginiaCharlottesville, VA, USA
| | - Peter Wipf
- Department of Chemistry, Accelerated Chemical Discovery Center, University of PittsburghPittsburgh, PA, USA
| | - Song Li
- Pharmaceutical Science Department, University of PittsburghPittsburgh, PA, USA
| | - Xiang Gao
- Pharmaceutical Science Department, University of PittsburghPittsburgh, PA, USA
| | - Michael W. Epperly
- Radiation Oncology Department, University of Pittsburgh Cancer InstitutePittsburgh, PA, USA
| |
Collapse
|
43
|
Kaneyuki Y, Yoshino H, Kashiwakura I. Involvement of intracellular reactive oxygen species and mitochondria in the radiosensitivity of human hematopoietic stem cells. JOURNAL OF RADIATION RESEARCH 2012; 53:145-150. [PMID: 22302055 DOI: 10.1269/jrr.11099] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Reactive oxygen species (ROS) can cause significant biological damage and are produced from low linear energy transfer-ionizing radiation, such as X-rays. Although hematopoietic stem cells (HSCs) are known to be particularly sensitive to ionizing radiation, little is known about the roles of mitochondria and ROS production in determining the radiosensitivity of HSCs. The clonogenic survival of CD34(+) HSCs, intracellular mitochondrial content, and intracellular ROS production after irradiation were investigated to elucidate the involvement of mitochondria and ROS in the individual radiosensitivity of HSCs detected in human placental/umbilical cord blood. The results showed that large individual differences exist in the initial numbers of each progenitor cell type, as well as in the surviving fraction of cells. When supplemented with an appropriate cytokine combination, a statistically significant increase in ROS production was observed at 3 h after 2 or 4 Gy of irradiation (P < 0.05), with nearly a return to initial levels by 6 h. In contrast, no significant difference was observed under cytokine-free conditions. At this stage, no significant correlations were observed between ROS production, intracellular mitochondrial content, and the surviving fractions of each HSC progenitor. These results suggest that the kinetics of ROS generation during the 6 h after ionizing radiation have little effect on the different radiation sensitivity of HSCs.
Collapse
Affiliation(s)
- Yukiko Kaneyuki
- Department of Radiological Life Sciences, Hirosaki University Graduate School of Health Sciences, Aomori, Japan
| | | | | |
Collapse
|
44
|
Yoon H, Kim DS, Lee GH, Kim KW, Kim HR, Chae HJ. Apoptosis Induced by Manganese on Neuronal SK-N-MC Cell Line: Endoplasmic Reticulum (ER) Stress and Mitochondria Dysfunction. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2011; 26:e2011017. [PMID: 22232721 PMCID: PMC3250590 DOI: 10.5620/eht.2011.26.e2011017] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Accepted: 11/11/2011] [Indexed: 05/31/2023]
Abstract
OBJECTIVES Manganese chloride (MnCl(2)) is one of heavy metals for causing neurogenerative dysfunction like Manganism. The purpose of this study was to determine the acute toxicity of MnCl(2) using different times and various concentrations including whether manganese toxicity may involve in two intrinsic pathways, endoplasmic reticulum (ER) stress and mitochondria dysfunction and lead to neuronal apoptosis mediated by organelle disorders in neuroblastoma cell line SK-N-MC. METHODS In the acute toxicity test, five concentrations (200, 400, 600, 800, 1,000 uM) of MnCl(2) with 3, 6, 12, 24, 48 hours exposure were selected to analyze cell viability. In addition, to better understand their toxicity, acute toxicity was examined with 1,000 uM MnCl(2) for 24 hours exposure via reactive oxygen species (ROS), mitochondria membrane potential, western blotting and mitochondrial complex activities. RESULTS Our results showed that both increments of dose and time prompt the increments in the number of dead cells. Cells treated by 1,000 µM MnCl(2) activated 265% (±8.1) caspase-3 compared to control cell. MnCl(2) induced intracellular ROS produced 168% (±2.3%) compared to that of the control cells and MnCl(2) induced neurotoxicity significantly dissipated 48.9% of mitochondria membrane potential compared to the control cells. CONCLUSIONS This study indicated that MnCl(2) induced apoptosis via ER stress and mitochondria dysfunction. In addition, MnCl(2) affected only complex I except complex II, III or IV activities.
Collapse
Affiliation(s)
- Hyonok Yoon
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju, Korea
- School of Pharmacy, Howard University, Washington DC, USA
| | - Do-Sung Kim
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju, Korea
| | - Geum-Hwa Lee
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju, Korea
| | - Kee-Won Kim
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju, Korea
| | | | - Han-Jung Chae
- Department of Pharmacology, School of Medicine, Chonbuk National University, Jeonju, Korea
| |
Collapse
|
45
|
Veldwijk MR, Trah J, Wang M, Maier P, Fruehauf S, Zeller WJ, Herskind C, Wenz F. Overexpression of Manganese Superoxide Dismutase Does Not Increase Clonogenic Cell Survival Despite Effect on Apoptosis in Irradiated Lymphoblastoid Cells. Radiat Res 2011; 176:725-31. [DOI: 10.1667/rr2651.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
46
|
Stoyanovsky DA, Huang Z, Jiang J, Belikova NA, Tyurin V, Epperly MW, Greenberger JS, Bayir H, Kagan VE. A manganese-porphyrin complex decomposes H(2)O(2), inhibits apoptosis, and acts as a radiation mitigator in vivo. ACS Med Chem Lett 2011; 2:814-817. [PMID: 22247787 DOI: 10.1021/ml200142x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ionizing radiation triggers mitochondrial overproduction of H(2)O(2) with concomitant induction of intrinsic apoptosis, whereby clearance of H(2)O(2) upon overexpression of mitochondrial catalase increases radioresistance in vitro and in vivo. As an alternative to gene therapy, we tested the potential of Mn((III))-porphyrin complexes to clear mitochondrial H(2)O(2). We report that triphenyl-[(2E)-2-[4-[(1Z,4Z,9Z,15Z)-10,15,20-tris(4-aminophenyl)-21,23-dihydroporphyrin-5-yl]phenyl]iminoethyl]phosphonium-Mn((III)) compartmentalizes preferentially into mitochondria of mouse embryonic cells, reacts with H(2)O(2), impedes γ-ray-induced mitochondrial apoptosis, and increases the survival of mice exposed to whole body irradiation with γ-rays.
Collapse
Affiliation(s)
- Detcho A. Stoyanovsky
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Zhentai Huang
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Jianfei Jiang
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Natalia A. Belikova
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Vladimir Tyurin
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Michael W. Epperly
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joel S. Greenberger
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hülya Bayir
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Valerian E. Kagan
- Departments of †Environmental and Occupational Health, ‡Critical Care Medicine, and §Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
47
|
Holley AK, Bakthavatchalu V, Velez-Roman JM, St. Clair DK. Manganese superoxide dismutase: guardian of the powerhouse. Int J Mol Sci 2011; 12:7114-62. [PMID: 22072939 PMCID: PMC3211030 DOI: 10.3390/ijms12107114] [Citation(s) in RCA: 207] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/28/2011] [Accepted: 10/08/2011] [Indexed: 12/18/2022] Open
Abstract
The mitochondrion is vital for many metabolic pathways in the cell, contributing all or important constituent enzymes for diverse functions such as β-oxidation of fatty acids, the urea cycle, the citric acid cycle, and ATP synthesis. The mitochondrion is also a major site of reactive oxygen species (ROS) production in the cell. Aberrant production of mitochondrial ROS can have dramatic effects on cellular function, in part, due to oxidative modification of key metabolic proteins localized in the mitochondrion. The cell is equipped with myriad antioxidant enzyme systems to combat deleterious ROS production in mitochondria, with the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) acting as the chief ROS scavenging enzyme in the cell. Factors that affect the expression and/or the activity of MnSOD, resulting in diminished antioxidant capacity of the cell, can have extraordinary consequences on the overall health of the cell by altering mitochondrial metabolic function, leading to the development and progression of numerous diseases. A better understanding of the mechanisms by which MnSOD protects cells from the harmful effects of overproduction of ROS, in particular, the effects of ROS on mitochondrial metabolic enzymes, may contribute to the development of novel treatments for various diseases in which ROS are an important component.
Collapse
Affiliation(s)
- Aaron K. Holley
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Vasudevan Bakthavatchalu
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Joyce M. Velez-Roman
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, 454 HSRB, 1095 VA Drive, Lexington, KY 40536, USA; E-Mails: (A.K.H.); (V.B.); (J.M.V.-R.)
| |
Collapse
|
48
|
Kim H, Bernard M, Flickinger J, Epperly MW, Wang H, Dixon TM, Shields D, Houghton F, Zhang X, Greenberger JS. The autophagy-inducing drug carbamazepine is a radiation protector and mitigator. Int J Radiat Biol 2011; 87:1052-60. [PMID: 21728759 PMCID: PMC3772684 DOI: 10.3109/09553002.2011.587860] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To determine whether Carbamazepine (CBZ) is a radiation protector and/or mitigator. MATERIALS AND METHODS Murine hematopoietic progenitor 32D cl 3 cells were incubated in 1, 10, or 100 μM CBZ 1 h before or immediately after 0-8 Gy irradiation and assayed for clonogenic survival. Autophagy was assayed by immunoblot for microtubule-associated protein light chain 3 (LC3). In vivo radioprotection and mitigation were determined with C57BL/6NTac mice. RESULTS CBZ treatment at 1, 10 or 100 μM for 1 h prior to irradiation increased radioresistance (the dose for 37% survival or D(0)) from control 1.5 ± 0.1 Gy to 2.1 ± 0.2 Gy (P = 0.012), 2.3 ± 0.1 Gy (P = 0.010), and 3.6 ± 0.7 Gy (P = 0.003), respectively; after irradiation increased the extrapolation number (ñ) from 1.5 ± 0.3 to 10.1 ± 4.2 (P = 0.011), 5.5 ± 1.7 (P = 0.019), and 3.6 ± 0.8 (P = 0.014), respectively, and increased autophagy. CBZ treated mice 10 min or 24 h before or 10 min or 12 h after 9.25 Gy total body irradiation (TBI) showed increased survival (P = 0.012, 0.011, 0.0002, and 0.017, respectively). CONCLUSION CBZ may be a useful radiation protector and mitigator.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Mark Bernard
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - John Flickinger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Tracy M. Dixon
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Donna Shields
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Frank Houghton
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232
| |
Collapse
|
49
|
Bernard ME, Kim H, Berhane H, Epperly MW, Franicola D, Zhang X, Houghton F, Shields D, Wang H, Bakkenist CJ, Frantz MC, Forbeck EM, Goff JP, Wipf P, Greenberger JS. GS-nitroxide (JP4-039)-mediated radioprotection of human Fanconi anemia cell lines. Radiat Res 2011; 176:603-12. [PMID: 21939290 DOI: 10.1667/rr2624.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG(-/-) (PD326) and FancD2(-/-) (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2(-/-) cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG(-/-) cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2(-/-) cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2(-/-) cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients.
Collapse
Affiliation(s)
- Mark E Bernard
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hempel N, Carrico PM, Melendez JA. Manganese superoxide dismutase (Sod2) and redox-control of signaling events that drive metastasis. Anticancer Agents Med Chem 2011; 11:191-201. [PMID: 21434856 DOI: 10.2174/187152011795255911] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/08/2011] [Indexed: 01/06/2023]
Abstract
Manganese superoxide dismutase (Sod2) has emerged as a key enzyme with a dual role in tumorigenic progression. Early studies were primarily directed at defining the tumor suppressive function of Sod2 based on its low level expression in many tumor types. It is now commonly held that loss of Sod2 expression is likely an early event in tumor progression allowing for further propagation of the tumorigenic phenotype resulting from steady state increases in free radical production. Increases in free radical load have also been linked to defects in mitochondrial function and metastatic disease progression. It was initially believed that Sod2 loss may propagate metastatic disease progression, in reality both epidemiologic and experimental evidence indicate that Sod2 levels increase in many tumor types as they progress from early stage non-invasive disease to late stage metastatic disease. Sod2 overexpression in many instances enhances the metastatic phenotype that is reversed by efficient H(2)O(2) scavenging. This review evaluates the many sequelae associated with increases in Sod2 that impinge on the metastatic phenotype. The ability to use Sod2 to modulate the cellular redox-environment has allowed for the identification of redox-responsive signaling events that drive malignancy, such as invasion, migration and prolonged tumor cell survival. Further studies of these redox-driven events will help in the development of targeted therapeutic strategies to efficiently restrict redox-signaling essential for malignant progression.
Collapse
Affiliation(s)
- Nadine Hempel
- Center for Immunology and Microbial Diseases, Albany Medical College, 47 New Scotland Avenue, Albany NY 12208, USA
| | | | | |
Collapse
|