1
|
Barty CPJ, Algots JM, Amador AJ, Barty JCR, Betts SM, Castañeda MA, Chu MM, Daley ME, De Luna Lopez RA, Diviak DA, Effarah HH, Feliciano R, Garcia A, Grabiel KJ, Griffin AS, Hartemann FV, Heid L, Hwang Y, Imeshev G, Jentschel M, Johnson CA, Kinosian KW, Lagzda A, Lochrie RJ, May MW, Molina E, Nagel CL, Nagel HJ, Peirce KR, Peirce ZR, Quiñonez ME, Raksi F, Ranganath K, Reutershan T, Salazar J, Schneider ME, Seggebruch MWL, Yang JY, Yeung NH, Zapata CB, Zapata LE, Zepeda EJ, Zhang J. Design, Construction, and Test of Compact, Distributed-Charge, X-Band Accelerator Systems that Enable Image-Guided, VHEE FLASH Radiotherapy. ARXIV 2025:arXiv:2408.04082v2. [PMID: 39148931 PMCID: PMC11326425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 μA of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x-rays via laser-Compton scattering for clinical imaging and does so from a machine of "clinical" footprint. At the same time, the production of 1000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.
Collapse
Affiliation(s)
- Christopher P. J. Barty
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, United States
| | | | | | | | | | | | | | | | | | | | - Haytham H. Effarah
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, United States
| | | | - Adan Garcia
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | | | | | - Leslie Heid
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
| | - Yoonwoo Hwang
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | | | | | | | - Agnese Lagzda
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | | | | | | | | | | | | | | | - Ferenc Raksi
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | - Trevor Reutershan
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, United States
| | | | | | - Michael W. L. Seggebruch
- Lumitron Technologies, Inc., Irvine, CA, United States
- Physics and Astronomy Department, University of California, Irvine, CA, United States
| | - Joy Y. Yang
- Lumitron Technologies, Inc., Irvine, CA, United States
| | | | | | | | | | | |
Collapse
|
2
|
Böhlen TT, Zeverino M, Germond JF, Kinj R, Schiappacasse L, Bochud F, Herrera F, Bourhis J, Moeckli R. Hybrid ultra-high and conventional dose rate treatments with electrons and photons for the clinical transfer of FLASH-RT to deep-seated targets: A treatment planning study. Radiother Oncol 2024; 201:110576. [PMID: 39395673 DOI: 10.1016/j.radonc.2024.110576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/17/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
PURPOSE This study explores the dosimetric feasibility and plan quality of hybrid ultra-high dose rate (UHDR) electron and conventional dose rate (CDR) photon (HUC) radiotherapy for treating deep-seated tumours with FLASH-RT. METHODS HUC treatment planning was conducted optimizing a broad UHDR electron beam (between 20-250 MeV) combined with a CDR VMAT for a glioblastoma, a pancreatic cancer, and a prostate cancer case. HUC plans were based on clinical prescription and fractionation schemes and compared against clinically delivered plans. Considering a HUC boost treatment for the glioblastoma consisting of a 15-Gy-single-fraction UHDR electron boost supplemented with VMAT, two scenarios for FLASH sparing were assessed using FLASH-modifying-factor-weighted doses. RESULTS For all three patient cases, HUC treatment plans demonstrated comparable dosimetric quality to clinical plans, with similar PTV coverage (V95% within 0.5 %), homogeneity, and critical OAR-sparing. At the same time, HUC plans delivered a substantial portion of the dose to the PTV (Dmedian of 50-69 %) and surrounding tissues at UHDR. For the HUC boost treatment of the glioblastoma, the first FLASH sparing scenario showed a moderate FLASH sparing magnitude (10 % for D2%,PTV) for the 15-Gy UHDR electron boost, while the second scenario indicated a more substantial sparing of brain tissues inside and outside the PTV (32 % for D2%,PTV, 31 % for D2%,Brain). CONCLUSIONS From a planning perspective, HUC treatments represent a feasible approach for delivering dosimetrically conformal UHDR treatments, potentially mitigating technical challenges associated with delivering conformal FLASH-RT for deep-seated tumours. While further research is needed to optimize HUC fractionation and delivery schemes for specific patient cohorts, HUC treatments offer a promising avenue for the clinical transfer of FLASH-RT.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Michele Zeverino
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Rémy Kinj
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Luis Schiappacasse
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Fernanda Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
3
|
Tobias Böhlen T, Psoroulas S, Aylward JD, Beddar S, Douralis A, Delpon G, Garibaldi C, Gasparini A, Schüler E, Stephan F, Moeckli R, Subiel A. Recording and reporting of ultra-high dose rate "FLASH" delivery for preclinical and clinical settings. Radiother Oncol 2024; 200:110507. [PMID: 39245070 DOI: 10.1016/j.radonc.2024.110507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Treatments at ultra-high dose rate (UHDR) have the potential to improve the therapeutic index of radiation therapy (RT) by sparing normal tissues compared to conventional dose rate irradiations. Insufficient and inconsistent reporting in physics and dosimetry of preclinical and translational studies may have contributed to a reproducibility crisis of radiobiological data in the field. Consequently, the development of a common terminology, as well as common recording, reporting, dosimetry, and metrology standards is required. In the context of UHDR irradiations, the temporal dose delivery parameters are of importance, and under-reporting of these parameters is also a concern.This work proposes a standardization of terminology, recording, and reporting to enhance comparability of both preclinical and clinical UHDR studies and and to allow retrospective analyses to aid the understanding of the conditions which give rise to the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland; Klinik für Radio-Onkologie, UniversitätsSpital Zürich, Switzerland
| | - Jack D Aylward
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, UK; Medical Physics, School of Applied Sciences, University of the West of England, Bristol, UK
| | - Sam Beddar
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Grégory Delpon
- Institut de Cancérologie de l'Ouest, Medical Physics Department, Saint-Herblain, France; Nantes Université, IMT Atlantique, CNRS/IN2P3, SUBATECH, Nantes, France
| | - Cristina Garibaldi
- IEO, Unit of Radiation Research, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Alessia Gasparini
- CORE, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Medical Physics Department, Iridium Netwerk, Wilrijk, Belgium
| | - Emil Schüler
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank Stephan
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738 Zeuthen, Germany
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Anna Subiel
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK; University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
4
|
Bedford JL, Oelfke U. Treatment planning for very high energy electrons: Studies that indicate the potential of the modality. Phys Imaging Radiat Oncol 2024; 32:100670. [PMID: 39583956 PMCID: PMC11585669 DOI: 10.1016/j.phro.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background and purpose Radiotherapy using Very High Energy Electrons (VHEE) has the potential to reduce dose to organs at risk compared to photons. This article therefore reviews treatment planning for VHEE, to clarify the potential benefit of the modality. Materials and methods Articles on VHEE were identified and those which focused on treatment planning were manually selected, particularly those which contained results on patient datasets. Benefits in absorbed dose to organs at risk were converted to percentages of prescription dose so as to provide uniform, clinically relevant reporting. Results Increased beam energy was found to reduce electron scatter and give rise to a narrower penumbra but lead to a rather constant depth dose curve, which was not as useful for sparing normal tissues as that of protons. The sharp penumbra of VHEE was of benefit in treatment planning for producing treatment plans with conformal dose shaping, with improved dose to critical structures being demonstrated for several treatment sites. Mean dose to critical structures, relative to the prescribed dose, was in the order of 0-10% lower than photons and 0-10% higher than protons. The delivery technology and dose distributions were also promising for radiotherapy with ultra-high dose rate (FLASH). Conclusion At present, the potential clinical benefit of VHEE relative to photons or protons is small. Further studies are needed to more precisely quantify the relative performance of broad beams versus pencil beam scanning and to investigate treatment sites that might benefit maximally from the use of VHEE beams.
Collapse
Affiliation(s)
- James L. Bedford
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London SM2 5PT, United Kingdom
| |
Collapse
|
5
|
Gesualdi F, de Marzi L, Dutreix M, Favaudon V, Fouillade C, Heinrich S. A multidisciplinary view of flash irradiation. Cancer Radiother 2024; 28:453-462. [PMID: 39343695 DOI: 10.1016/j.canrad.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 10/01/2024]
Abstract
The delivery of ultra-high dose rates of radiation, called flash irradiation or flash-RT, has emerged as a new modality of radiotherapy shaking up the paradigm of proportionality of effect and dose whatever the method of delivery of the radiation. The hallmark of flash-RT is healthy tissue sparing from the side effects of radiation without decrease of the antitumor efficiency in animal models. In this review we will define its specificities, the molecular mechanisms underlying the flash effect and the ongoing developments to bring this new modality to patient treatment.
Collapse
Affiliation(s)
- Flavia Gesualdi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France
| | - Ludovic de Marzi
- Institut Curie, Hospital Division, centre de protonthérapie d'Orsay, université Paris-Saclay, université PSL, centre universitaire, 91948 Orsay cedex, France; Institut Curie, université PSL, université Paris-Saclay, Inserm Lito U1288, centre universitaire, 91898 Orsay, France
| | - Marie Dutreix
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Vincent Favaudon
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Charles Fouillade
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France
| | - Sophie Heinrich
- Institut Curie, Research Division, Inserm U 1021-CNRS UMR 3347, université Paris-Saclay, université PSL, centre universitaire, 91401 Orsay cedex, France.
| |
Collapse
|
6
|
Böhlen TT, Germond JF, Desorgher L, Veres I, Bratel A, Landström E, Engwall E, Herrera FG, Ozsahin EM, Bourhis J, Bochud F, Moeckli R. Very high-energy electron therapy as light-particle alternative to transmission proton FLASH therapy - An evaluation of dosimetric performances. Radiother Oncol 2024; 194:110177. [PMID: 38378075 DOI: 10.1016/j.radonc.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
PURPOSE Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect. METHODS Basic physics characteristics of VHEE and TP beams were compared utilizing Monte Carlo simulations in water. A VHEE-enabled research treatment planning system was used to evaluate the plan quality achievable with VHEE beams of different energies, compared to 250 MeV TP beams for a glioblastoma, an oesophagus, and a prostate cancer case. RESULTS Like TP, VHEE above 100 MeV can treat targets with roughly flat (within ± 20 %) depth-dose distributions. The achievable dosimetric target conformity and adjacent organs-at-risk (OAR) sparing is consequently driven for both modalities by their lateral beam penumbrae. Electron beams of 400[500] MeV match the penumbra of 200[250] MeV TP beams and penumbra is increased for lower electron energies. For the investigated patient cases, VHEE plans with energies of 150 MeV and above achieved a dosimetric plan quality comparable to that of 250 MeV TP plans. For the glioblastoma and the oesophagus case, although having a decreased conformity, even 100 MeV VHEE plans provided a similar target coverage and OAR sparing compared to TP. CONCLUSIONS VHEE-based FLASH-RT using sufficiently high beam energies may provide a lighter-particle alternative to TP-based FLASH-RT with comparable dosimetric plan quality.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Izabella Veres
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | | | | | - Fernanda G Herrera
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| |
Collapse
|
7
|
Böhlen TT, Germond JF, Traneus E, Vallet V, Desorgher L, Ozsahin EM, Bochud F, Bourhis J, Moeckli R. 3D-conformal very-high energy electron therapy as candidate modality for FLASH-RT: A treatment planning study for glioblastoma and lung cancer. Med Phys 2023; 50:5745-5756. [PMID: 37427669 DOI: 10.1002/mp.16586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/27/2023] [Indexed: 07/11/2023] Open
Abstract
BACKGROUND Pre-clinical ultra-high dose rate (UHDR) electron irradiations on time scales of 100 ms have demonstrated a remarkable sparing of brain and lung tissues while retaining tumor efficacy when compared to conventional dose rate irradiations. While clinically-used gantries and intensity modulation techniques are too slow to match such time scales, novel very-high energy electron (VHEE, 50-250 MeV) radiotherapy (RT) devices using 3D-conformed broad VHEE beams are designed to deliver UHDR treatments that fulfill these timing requirements. PURPOSE To assess the dosimetric plan quality obtained using VHEE-based 3D-conformal RT (3D-CRT) for treatments of glioblastoma and lung cancer patients and compare the resulting treatment plans to those delivered by standard-of-care intensity modulated photon RT (IMRT) techniques. METHODS Seven glioblastoma patients and seven lung cancer patients were planned with VHEE-based 3D-CRT using 3 to 16 coplanar beams with equidistant angular spacing and energies of 100 and 200 MeV using a forward planning approach. Dose distributions, dose-volume histograms, coverage (V95% ) and homogeneity (HI98% ) for the planning target volume (PTV), as well as near-maximum doses (D2% ) and mean doses (Dmean ) for organs-at-risk (OAR) were evaluated and compared to clinical IMRT plans. RESULTS Mean differences of V95% and HI98% of all VHEE plans were within 2% or better of the IMRT reference plans. Glioblastoma plan dose metrics obtained with VHEE configurations of 200 MeV and 3-16 beams were either not significantly different or were significantly improved compared to the clinical IMRT reference plans. All OAR plan dose metrics evaluated for VHEE plans created using 5 beams of 100 MeV were either not significantly different or within 3% on average, except for Dmean for the body, Dmean for the brain, D2% for the brain stem, and D2% for the chiasm, which were significantly increased by 1, 2, 6, and 8 Gy, respectively (however below clinical constraints). Similarly, the dose metrics for lung cancer patients were also either not significantly different or were significantly improved compared to the reference plans for VHEE configurations with 200 MeV and 5 to 16 beams with the exception of D2% and Dmean to the spinal canal (however below clinical constraints). For the lung cancer cases, the VHEE configurations using 100 MeV or only 3 beams resulted in significantly worse dose metrics for some OAR. Differences in dose metrics were, however, strongly patient-specific and similar for some patient cases. CONCLUSIONS VHEE-based 3D-CRT may deliver conformal treatments to simple, mostly convex target shapes in the brain and the thorax with a limited number of critical adjacent OAR using a limited number of beams (as low as 3 to 7). Using such treatment techniques, a dosimetric plan quality comparable to that of standard-of-care IMRT can be achieved. Hence, from a treatment planning perspective, 3D-conformal UHDR VHEE treatments delivered on time scales of 100 ms represent a promising candidate technique for the clinical transfer of the FLASH effect.
Collapse
Affiliation(s)
- Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean-François Germond
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | | | - Veronique Vallet
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Laurent Desorgher
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Esat Mahmut Ozsahin
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - François Bochud
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Jean Bourhis
- Department of Radiation Oncology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
8
|
Siddique S, Ruda HE, Chow JCL. FLASH Radiotherapy and the Use of Radiation Dosimeters. Cancers (Basel) 2023; 15:3883. [PMID: 37568699 PMCID: PMC10417829 DOI: 10.3390/cancers15153883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. Monte Carlo (MC) simulation is a valuable tool for dose calculation in RT and has been investigated for optimizing FLASH RT. Various MC codes, such as EGSnrc, DOSXYZnrc, and Geant4, have been used to simulate dose distributions and optimize treatment plans. Accurate dosimetry is essential for FLASH RT, and radiation detectors play a crucial role in measuring dose delivery. Solid-state detectors, including diamond detectors such as microDiamond, have demonstrated linear responses and good agreement with reference detectors in UHDR and ultra-high dose per pulse (UHDPP) ranges. Ionization chambers are commonly used for dose measurement, and advancements have been made to address their response nonlinearities at UHDPP. Studies have proposed new calculation methods and empirical models for ion recombination in ionization chambers to improve their accuracy in FLASH RT. Additionally, strip-segmented ionization chamber arrays have shown potential for the experimental measurement of dose rate distribution in proton pencil beam scanning. Radiochromic films, such as GafchromicTM EBT3, have been used for absolute dose measurement and to validate MC simulation results in high-energy X-rays, triggering the FLASH effect. These films have been utilized to characterize ionization chambers and measure off-axis and depth dose distributions in FLASH RT. In conclusion, MC simulation provides accurate dose calculation and optimization for FLASH RT, while radiation detectors, including diamond detectors, ionization chambers, and radiochromic films, offer valuable tools for dosimetry in UHDR environments. Further research is needed to refine treatment planning techniques and improve detector performance to facilitate the widespread implementation of FLASH RT, potentially revolutionizing cancer treatment.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada;
| | - Harry E. Ruda
- Centre of Advance Nanotechnology, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada;
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
9
|
Rahman M, Trigilio A, Franciosini G, Moeckli R, Zhang R, Böhlen TT. FLASH radiotherapy treatment planning and models for electron beams. Radiother Oncol 2022; 175:210-221. [PMID: 35964763 DOI: 10.1016/j.radonc.2022.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 12/18/2022]
Abstract
The FLASH effect designates normal tissue sparing at ultra-high dose rate (UHDR, >40 Gy/s) compared to conventional dose rate (∼0.1 Gy/s) irradiation while maintaining tumour control and has the potential to improve the therapeutic ratio of radiotherapy (RT). UHDR high-energy electron (HEE, 4-20 MeV) beams are currently a mainstay for investigating the clinical potential of FLASH RT for superficial tumours. In the future very-high energy electron (VHEE, 50-250 MeV) UHDR beams may be used to treat deep-seated tumours. UHDR HEE treatment planning focused at its initial stage on accurate dosimetric modelling of converted and dedicated UHDR electron RT devices for the clinical transfer of FLASH RT. VHEE treatment planning demonstrated promising dosimetric performance compared to clinical photon RT techniques in silico and was used to evaluate and optimise the design of novel VHEE RT devices. Multiple metrics and models have been proposed for a quantitative description of the FLASH effect in treatment planning, but an improved experimental characterization and understanding of the FLASH effect is needed to allow for an accurate and validated modelling of the effect in treatment planning. The importance of treatment planning for electron FLASH RT will augment as the field moves forward to treat more complex clinical indications and target sites. In this review, TPS developments in HEE and VHEE are presented considering beam models, characteristics, and future FLASH applications.
Collapse
Affiliation(s)
- Mahbubur Rahman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Antonio Trigilio
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Gaia Franciosini
- Physics Department, "La Sapienza" University of Rome, Rome, Italy; INFN National Institute of Nuclear Physics, Rome Section, Rome, Italy
| | - Raphaël Moeckli
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland.
| | - Rongxiao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Till Tobias Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| |
Collapse
|
10
|
Schwarz M, Traneus E, Safai S, Kolano A, van de Water S. Treatment planning for Flash radiotherapy: general aspects and applications to proton beams. Med Phys 2022; 49:2861-2874. [PMID: 35213040 DOI: 10.1002/mp.15579] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
The increased radioresistence of healthy tissues when irradiated at very high dose rates (known as the Flash effect) is a radiobiological mechanism that is currently investigated in order to increase the therapeutic ratio of radiotherapy treatments. To maximize the benefits of the clinical application of Flash, a patient-specific balance between different properties of the dose distribution should be found, i.e. Flash needs to be one of the variables considered in treatment planning. We investigated the Flash potential of three proton therapy planning and beam delivery techniques, each on a different anatomical region. Based on a set of beam delivery parameters, on hypotheses on the dose and dose rate thresholds needed for the Flash effect to occur, and on two definitions of Flash dose rate, we generated exemplary illustrations of the capabilities of current proton therapy equipment to generate Flash dose distributions. All techniques investigated could both produce dose distributions comparable with a conventional proton plan and reach the Flash regime, to an extent that was strongly dependent on the dose per fraction and the Flash dose threshold. The beam current, Flash dose rate threshold and dose rate definition typically had a more moderate effect on the amount of Flash dose in normal tissue. A systematic estimation of the impact of Flash on different patient anatomies and treatment protocols is possible only if Flash-specific treatment planning features become readily available. Planning evaluation tools such as a voxel-based dose delivery time structure, and the inclusion in the optimization cost function of parameters directly associated with Flash (e.g. beam current, spot delivery sequence and scanning speed), are needed to generate treatment plans that are taking full advantage of the potential benefits of the Flash effect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Schwarz
- Proton therapy Department, Trento Hospital and TIFPA-INFN, Trento, Italy
| | - Erik Traneus
- RaySearch Laboratories AB, Stockholm SE-103 65, Sweden
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Anna Kolano
- Advanced Oncotherapy plc, London, England - Application of Detectors and Accelerators to Medicine(ADAM), Geneva, Switzerland
| | - Steven van de Water
- Department of Radiation Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Sarti A, De Maria P, Battistoni G, De Simoni M, Di Felice C, Dong Y, Fischetti M, Franciosini G, Marafini M, Marampon F, Mattei I, Mirabelli R, Muraro S, Pacilio M, Palumbo L, Rocca L, Rubeca D, Schiavi A, Sciubba A, Tombolini V, Toppi M, Traini G, Trigilio A, Patera V. Deep Seated Tumour Treatments With Electrons of High Energy Delivered at FLASH Rates: The Example of Prostate Cancer. Front Oncol 2022; 11:777852. [PMID: 35024354 PMCID: PMC8744000 DOI: 10.3389/fonc.2021.777852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 12/25/2022] Open
Abstract
Different therapies are adopted for the treatment of deep seated tumours in combination or as an alternative to surgical removal or chemotherapy: radiotherapy with photons (RT), particle therapy (PT) with protons or even heavier ions like 12C, are now available in clinical centres. In addition to these irradiation modalities, the use of Very High Energy Electron (VHEE) beams (100–200 MeV) has been suggested in the past, but the diffusion of that technique was delayed due to the needed space and budget, with respect to standard photon devices. These disadvantages were not paired by an increased therapeutic efficacy, at least when comparing to proton or carbon ion beams. In this contribution we investigate how recent developments in electron beam therapy could reshape the treatments of deep seated tumours. In this respect we carefully explored the application of VHEE beams to the prostate cancer, a well-known and studied example of deep seated tumour currently treated with high efficacy both using RT and PT. The VHEE Treatment Planning System was obtained by means of an accurate Monte Carlo (MC) simulation of the electrons interactions with the patient body. A simple model of the FLASH effect (healthy tissues sparing at ultra-high dose rates), has been introduced and the results have been compared with conventional RT. The study demonstrates that VHEE beams, even in absence of a significant FLASH effect and with a reduced energy range (70–130 MeV) with respect to implementations already explored in literature, could be a good alternative to standard RT, even in the framework of technological developments that are nowadays affordable.
Collapse
Affiliation(s)
- Alessio Sarti
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy
| | - Patrizia De Maria
- Scuola post-laurea in Fisica Medica, Dipartimento di Scienze e Biotecnologie medico-chirurgiche, Sapienza Università di Roma, Roma, Italy
| | - Giuseppe Battistoni
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Milano, Milano, Italy
| | - Micol De Simoni
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
| | - Cinzia Di Felice
- Unità di Fisica Sanitaria, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Roma, Italy
| | - Yunsheng Dong
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Milano, Milano, Italy
| | - Marta Fischetti
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy
| | - Gaia Franciosini
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
| | - Michela Marafini
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy.,Museo Storico della Fisica e Centro Studi e Ricerche "E. Fermi", Roma, Italy
| | - Francesco Marampon
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Sapienza Università di Roma, Roma, Italy
| | - Ilaria Mattei
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Milano, Milano, Italy
| | - Riccardo Mirabelli
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
| | - Silvia Muraro
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Milano, Milano, Italy
| | - Massimiliano Pacilio
- Unità di Fisica Sanitaria, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Roma, Italy
| | - Luigi Palumbo
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy
| | - Loredana Rocca
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy
| | - Damiana Rubeca
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy
| | - Angelo Schiavi
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy
| | - Adalberto Sciubba
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) Sezione dei Laboratori di Frascati, Roma, Italy
| | - Vincenzo Tombolini
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomo Patologiche, Sapienza Università di Roma, Roma, Italy
| | - Marco Toppi
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) Sezione dei Laboratori di Frascati, Roma, Italy
| | - Giacomo Traini
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy
| | - Antonio Trigilio
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy.,Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
| | - Vincenzo Patera
- Dipartimento di Scienze di Base e Applicate per l'Ingegneria, Sapienza Università di Roma, Roma, Italy.,Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Roma I, Roma, Italy
| |
Collapse
|
12
|
Wang X, Luo H, Zheng X, Ge H. FLASH radiotherapy: Research process from basic experimentation to clinical application. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaohui Wang
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hui Luo
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Xiaoli Zheng
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| | - Hong Ge
- Department of Radiation Oncology Affiliated Cancer Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|