1
|
Li N, Phuyal S, Smits E, Reid FE, Tamgue EN, Arriaga PA, Britten RA. Exposure to low (10 cGy) doses of 4He ions leads to an apparent increase in risk taking propensity in female rats. Behav Brain Res 2024; 474:115182. [PMID: 39117150 DOI: 10.1016/j.bbr.2024.115182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
The planned missions to the Moon and Mars will present more significant health challenges to astronauts compared to low earth orbit missions. During deep space missions, astronauts will be constantly exposed to Space radiation (SR). Multiple rodent studies suggest that < 25 cGy of SR impairs performance in executive functions, which play a key role in advanced cognitive processes, but also regulate response inhibition and impulse control. There is the possibility that SR exposure may exacerbate aberrant behaviors evoked by psychological stress related to exposure to isolated and confined (ICE) hostile environment or independently induce additional aberrant behaviors. This study has determined that female Wistar rats exposed to 10 cGy of 250 MeV/n He had an increased risk taking propensity (RTP)\compared to shams. The increased RTP of the He-exposed rats was associated with significantly increased reaction times during the trials, suggesting a SR-induced loss of processing speed. The response times of the He-exposed rats were even further reduced in trials that immediately followed a loss, raising the possibility that conflict and interference avoidance may be impaired after SR exposure. Whether these findings occur following other types of SR exposure, and/or in male rats remains to be determined.
Collapse
Affiliation(s)
- Nina Li
- School of Medicine, Eastern Virginia Health Sciences Center at Old Dominion University, Norfolk, VA 23507, USA
| | - Simran Phuyal
- School of Medicine, Eastern Virginia Health Sciences Center at Old Dominion University, Norfolk, VA 23507, USA
| | - Elliot Smits
- School of Medicine, Eastern Virginia Health Sciences Center at Old Dominion University, Norfolk, VA 23507, USA
| | - Faith E Reid
- School of Medicine, Eastern Virginia Health Sciences Center at Old Dominion University, Norfolk, VA 23507, USA
| | - Ella N Tamgue
- Radiation Oncology, Eastern Virginia Health Sciences Center at Old Dominion University, Norfolk, VA 23507, USA
| | - Paola Alvarado Arriaga
- Radiation Oncology, Eastern Virginia Health Sciences Center at Old Dominion University, Norfolk, VA 23507, USA
| | - Richard A Britten
- Radiation Oncology, Eastern Virginia Health Sciences Center at Old Dominion University, Norfolk, VA 23507, USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Health Sciences Center at Old Dominion University, Norfolk, VA 23507, USA.
| |
Collapse
|
2
|
Yun S, Kiffer FC, Bancroft GL, Guzman CS, Soler I, Haas HA, Shi R, Patel R, Lara-Jiménez J, Kumar PL, Tran FH, Ahn KJ, Rong Y, Luitel K, Shay JW, Eisch AJ. The longitudinal behavioral effects of acute exposure to galactic cosmic radiation in female C57BL/6J mice: Implications for deep space missions, female crews, and potential antioxidant countermeasures. J Neurochem 2024. [PMID: 39318241 DOI: 10.1111/jnc.16225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/07/2024] [Accepted: 08/24/2024] [Indexed: 09/26/2024]
Abstract
Galactic cosmic radiation (GCR) is an unavoidable risk to astronauts that may affect mission success. Male rodents exposed to 33-beam-GCR (33-GCR) show short-term cognitive deficits but reports on female rodents and long-term assessment are lacking. We asked: What are the longitudinal behavioral effects of 33-GCR on female mice? Also, can an antioxidant/anti-inflammatory compound (CDDO-EA) mitigate the impact of 33-GCR? Mature (6-month-old) C57BL/6J female mice received CDDO-EA (400 μg/g of food) or a control diet (vehicle, Veh) for 5 days and Sham-irradiation (IRR) or whole-body 33-GCR (0.75Gy) on the 4th day. Three-months post-IRR, mice underwent two touchscreen-platform tests: (1) location discrimination reversal (tests behavior pattern separation and cognitive flexibility, abilities reliant on the dentate gyrus) and (2) stimulus-response learning/extinction. Mice then underwent arena-based behavior tests (e.g. open field, 3-chamber social interaction). At the experiment's end (14.25-month post-IRR), an index relevant to neurogenesis was quantified (doublecortin-immunoreactive [DCX+] dentate gyrus immature neurons). Female mice exposed to Veh/Sham vs. Veh/33-GCR had similar pattern separation (% correct to 1st reversal). There were two effects of diet: CDDO-EA/Sham and CDDO-EA/33-GCR mice had better pattern separation vs. their respective control groups (Veh/Sham, Veh/33-GCR), and CDDO-EA/33-GCR mice had better cognitive flexibility (reversal number) vs. Veh/33-GCR mice. One radiation effect/CDDO-EA countereffect also emerged: Veh/33-GCR mice had slower stimulus-response learning (days to completion) vs. all other groups, including CDDO-EA/33-GCR mice. In general, all mice showed normal anxiety-like behavior, exploration, and habituation to novel environments. There was also a change relevant to neurogenesis: Veh/33-GCR mice had fewer DCX+ dentate gyrus immature neurons vs. Veh/Sham mice. Our study implies space radiation is a risk to a female crew's longitudinal mission-relevant cognitive processes and CDDO-EA is a potential dietary countermeasure for space-radiation CNS risks.
Collapse
Affiliation(s)
- Sanghee Yun
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederico C Kiffer
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Grace L Bancroft
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Caterina S Guzman
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ivan Soler
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Harley A Haas
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raymon Shi
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Riya Patel
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Jaysen Lara-Jiménez
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Priya L Kumar
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- School of Arts and Sciences, The University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fionya H Tran
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kyung Jin Ahn
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Yuying Rong
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Krishna Luitel
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amelia J Eisch
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Kotov R, Carpenter WT, Cicero DC, Correll CU, Martin EA, Young JW, Zald DH, Jonas KG. Psychosis superspectrum II: neurobiology, treatment, and implications. Mol Psychiatry 2024; 29:1293-1309. [PMID: 38351173 DOI: 10.1038/s41380-024-02410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
Alternatives to traditional categorical diagnoses have been proposed to improve the validity and utility of psychiatric nosology. This paper continues the companion review of an alternative model, the psychosis superspectrum of the Hierarchical Taxonomy of Psychopathology (HiTOP). The superspectrum model aims to describe psychosis-related psychopathology according to data on distributions and associations among signs and symptoms. The superspectrum includes psychoticism and detachment spectra as well as narrow subdimensions within them. Auxiliary domains of cognitive deficit and functional impairment complete the psychopathology profile. The current paper reviews evidence on this model from neurobiology, treatment response, clinical utility, and measure development. Neurobiology research suggests that psychopathology included in the superspectrum shows similar patterns of neural alterations. Treatment response often mirrors the hierarchy of the superspectrum with some treatments being efficacious for psychoticism, others for detachment, and others for a specific subdimension. Compared to traditional diagnostic systems, the quantitative nosology shows an approximately 2-fold increase in reliability, explanatory power, and prognostic accuracy. Clinicians consistently report that the quantitative nosology has more utility than traditional diagnoses, but studies of patients with frank psychosis are currently lacking. Validated measures are available to implement the superspectrum model in practice. The dimensional conceptualization of psychosis-related psychopathology has implications for research, clinical practice, and public health programs. For example, it encourages use of the cohort study design (rather than case-control), transdiagnostic treatment strategies, and selective prevention based on subclinical symptoms. These approaches are already used in the field, and the superspectrum provides further impetus and guidance for their implementation. Existing knowledge on this model is substantial, but significant gaps remain. We identify outstanding questions and propose testable hypotheses to guide further research. Overall, we predict that the more informative, reliable, and valid characterization of psychopathology offered by the superspectrum model will facilitate progress in research and clinical care.
Collapse
Affiliation(s)
- Roman Kotov
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
| | | | - David C Cicero
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - David H Zald
- Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Katherine G Jonas
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
4
|
Britten RA, Fesshaye A, Tidmore A, Liu A, Blackwell AA. Loss of Cognitive Flexibility Practice Effects in Female Rats Exposed to Simulated Space Radiation. Radiat Res 2023; 200:256-265. [PMID: 37527363 DOI: 10.1667/rade-22-00196.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023]
Abstract
During the planned missions to Mars, astronauts will be faced with many potential health hazards including prolonged exposure to space radiation. Ground-based studies have shown that exposure to space radiation impairs the performance of male rats in cognitive flexibility tasks which involve processes that are essential to rapidly and efficiently adapting to different situations. However, there is presently a paucity of information on the effects of space radiation on cognitive flexibility in female rodents. This study has determined the impact that exposure to a low (10 cGy) dose of ions from the simplified 5-ion galactic cosmic ray simulation [https://www.bnl.gov/nsrl/userguide/SimGCRSim.php (07/2023)] (GCRSim) beam or 250 MeV/n 4He ions has on the ability of female Wistar rats to perform in constrained [attentional set shifting (ATSET)] and unconstrained cognitive flexibility (UCFlex) tasks. Female rats exposed to GCRSim exhibited multiple decrements in ATSET performance. Firstly, GCRSim exposure impaired performance in the compound discrimination (CD) stage of the ATSET task. While the ability of rats to identify the rewarded cue was not compromised, the time the rats required to do so significantly increased. Secondly, both 4He and GCRSim exposure reduced the ability of rats to reach criterion in the compound discrimination reversal (CDR) stage. Approximately 20% of the irradiated rats were unable to complete the CDR task; furthermore, the irradiated rats that did reach criterion took more attempts to do so than did the sham-treated animals. Radiation exposure also altered the magnitude and/or nature of practice effects. A comparison of performance metrics from the pre-screen and post-exposure ATSET task revealed that while the sham-treated rats completed the post-exposure CD stage of the ATSET task in 30% less time than for completion of the pre-screen ATSET task, the irradiated rats took 30-50% longer to do so. Similarly, while sham-treated rats completed the CDR stage in ∼10% fewer attempts in the post-exposure task compared to the pre-screen task, in contrast, the 4He- and GCRSim-exposed cohorts took more (∼2-fold) attempts to reach criterion in the post-exposure task than in the pre-screen task. In conclusion, this study demonstrates that female rats are susceptible to radiation-induced loss of performance in the constrained ATSET cognitive flexibility task. Moreover, exposure to radiation leads to multiple performance decrements, including loss of practice effects, an increase in anterograde interference and reduced ability or unwillingness to switch attention. Should similar effects occur in humans, astronauts may have a compromised ability to perform complex tasks.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- EVMS Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Center for Integrative Neuroscience and Inflammatory diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Arriyam Fesshaye
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Alyssa Tidmore
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Aiyi Liu
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Ashley A Blackwell
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Center for Integrative Neuroscience and Inflammatory diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507
| |
Collapse
|
5
|
Britten RA, Limoli CL. New Radiobiological Principles for the CNS Arising from Space Radiation Research. Life (Basel) 2023; 13:1293. [PMID: 37374076 DOI: 10.3390/life13061293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Traditionally, the brain has been regarded as a relatively insensitive late-reacting tissue, with radiologically detectable damage not being reported at doses < 60 Gy. When NASA proposed interplanetary exploration missions, it was required to conduct an intensive health and safety evaluation of cancer, cardiovascular, and cognitive risks associated with exposure to deep space radiation (SR). The SR dose that astronauts on a mission to Mars are predicted to receive is ~300 mGy. Even after correcting for the higher RBE of the SR particles, the biologically effective SR dose (<1 Gy) would still be 60-fold lower than the threshold dose for clinically detectable neurological damage. Unexpectedly, the NASA-funded research program has consistently reported that low (<250 mGy) doses of SR induce deficits in multiple cognitive functions. This review will discuss these findings and the radical paradigm shifts in radiobiological principles for the brain that were required in light of these findings. These included a shift from cell killing to loss of function models, an expansion of the critical brain regions for radiation-induced cognitive impediments, and the concept that the neuron may not be the sole critical target for neurocognitive impairment. The accrued information on how SR exposure impacts neurocognitive performance may provide new opportunities to reduce neurocognitive impairment in brain cancer patients.
Collapse
Affiliation(s)
- Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Charles L Limoli
- Department Radiation Oncology, University of California-Irvine, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Stephenson S, Liu A, Blackwell AA, Britten RA. Multiple decrements in switch task performance in female rats exposed to space radiation. Behav Brain Res 2023; 449:114465. [PMID: 37142163 DOI: 10.1016/j.bbr.2023.114465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Astronauts on the Artemis missions to the Moon and Mars will be exposed to unavoidable Galactic Cosmic Radiation (GCR). Studies using male rats suggest that GCR exposure impairs several processes required for cognitive flexibility performance, including attention and task switching. Currently no comparable studies have been conducted with female rats. Given that both males and females will travel into deep space, this study determined whether simulated GCR (GCRsim) exposure impairs task switching performance in female rats. Female Wistar rats exposed to 10cGy GCRsim (n = 12) and shams (n=14) were trained to perform a touchscreen-based switch task that mimics a switch task used to evaluate pilots' response times. In comparison to sham rats, three-fold more GCRsim-exposed rats failed to complete the stimulus response stage of training, a high cognitive loading task. In the switch task, 50% of the GCRsim-exposed rats failed to consistently transition between the repeated and switch blocks of stimuli, which they completed during lower cognitive loading training stages. The GCRsim-exposed rats that completed the switch task only performed at 65% of the accuracy of shams. Female rats exposed to GCRsim thus exhibit multiple decrements in the switch task under high, but not low, cognitive loading conditions. While the operational significance of this performance decrement is unknown, if GCRSim exposure was to induce similar effects in astronauts, our data suggests there may be a reduced ability to execute task switching under high cognitive loading situations.
Collapse
Affiliation(s)
- Samuel Stephenson
- School of Medicine, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA
| | - Aiyi Liu
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA
| | - Ashley A Blackwell
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA
| | - Richard A Britten
- EVMS Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA; Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, Virginia 23507 USA.
| |
Collapse
|
7
|
Sanford LD, Adkins AM, Boden AF, Gotthold JD, Harris RD, Shuboni-Mulligan D, Wellman LL, Britten RA. Sleep and Core Body Temperature Alterations Induced by Space Radiation in Rats. Life (Basel) 2023; 13:life13041002. [PMID: 37109531 PMCID: PMC10144689 DOI: 10.3390/life13041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Sleep problems in astronauts can arise from mission demands and stress and can impact both their health and ability to accomplish mission objectives. In addition to mission-related physical and psychological stressors, the long durations of the proposed Mars missions will expose astronauts to space radiation (SR), which has a significant impact on the brain and may also alter sleep and physiological functions. Therefore, in this study, we assessed sleep, EEG spectra, activity, and core body temperature (CBT) in rats exposed to SR and compared them to age-matched nonirradiated rats. Male outbred Wistar rats (8-9 months old at the time of the study) received SR (15 cGy GCRsim, n = 15) or served as age- and time-matched controls (CTRL, n = 15) without irradiation. At least 90 days after SR and 3 weeks prior to recording, all rats were implanted with telemetry transmitters for recording EEG, activity, and CBT. Sleep, EEG spectra (delta, 0.5-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; sigma, 12-16 Hz; beta, 16-24 Hz), activity, and CBT were examined during light and dark periods and during waking and sleeping states. When compared to the CTRLs, SR produced significant reductions in the amounts of dark period total sleep time, total nonrapid eye movement sleep (NREM), and total rapid eye movement sleep (REM), with significant decreases in light and dark period NREM deltas and dark period REM thetas as well as increases in alpha and sigma in NREM and REM during either light or dark periods. The SR animals showed modest increases in some measures of activity. CBT was significantly reduced during waking and sleeping in the light period. These data demonstrate that SR alone can produce alterations to sleep and temperature control that could have consequences for astronauts and their ability to meet mission demands.
Collapse
Affiliation(s)
- Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Austin M Adkins
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Alea F Boden
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Justin D Gotthold
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ryan D Harris
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dorela Shuboni-Mulligan
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Laurie L Wellman
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Richard A Britten
- Center for Integrative Neuroscience and Inflammatory Diseases, Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
8
|
Huff JL, Poignant F, Rahmanian S, Khan N, Blakely EA, Britten RA, Chang P, Fornace AJ, Hada M, Kronenberg A, Norman RB, Patel ZS, Shay JW, Weil MM, Simonsen LC, Slaba TC. Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects. LIFE SCIENCES IN SPACE RESEARCH 2023; 36:90-104. [PMID: 36682835 DOI: 10.1016/j.lssr.2022.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
For missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The GCRsim technology is intended to represent major components of the space radiation environment in a ground analog laboratory setting where it can be used to improve understanding of biological risks and serve as a testbed for countermeasure development and validation. The current GCRsim consists of 33 energetic ion beams that collectively simulate the primary and secondary GCR field encountered by humans in space over the broad range of particle types, energies, and linear energy transfer (LET) of interest to health effects. A virtual workshop was held in December 2020 to assess the status of the NASA baseline GCRsim. Workshop attendees examined various aspects of simulator design, with a particular emphasis on beam selection strategies. Experimental results, modeling approaches, areas of consensus, and questions of concern were also discussed in detail. This report includes a summary of the GCRsim workshop and a description of the current status of the GCRsim. This information is important for future advancements and applications in space radiobiology.
Collapse
Affiliation(s)
- Janice L Huff
- NASA Langley Research Center, Hampton, VA, 23681, United States of America.
| | - Floriane Poignant
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Shirin Rahmanian
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Nafisah Khan
- National Institute of Aerospace, Hampton, VA, 23666, United States of America
| | - Eleanor A Blakely
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Richard A Britten
- Department of Radiation Oncology, Department of Microbiology and Molecular Cell Biology, Leroy T Canoles Jr. Cancer Center, School of Medicine, Eastern Virginia Medical School, Norfolk, VA, 23507, United States of America
| | - Polly Chang
- SRI International, Menlo Park, CA, 94025, United States of America
| | - Albert J Fornace
- Georgetown University, Washington, DC, 20057, United States of America
| | - Megumi Hada
- Prairie View A&M University, Prairie View, TX, 77446, United States of America
| | - Amy Kronenberg
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, United States of America
| | - Ryan B Norman
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| | - Zarana S Patel
- KBR Inc., Houston, TX, 77058, United States of America; NASA Johnson Space Center, Houston, TX, 77058, United States of America
| | - Jerry W Shay
- University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Michael M Weil
- Colorado State University, Fort Collins, CO, 80523, United States of America
| | - Lisa C Simonsen
- NASA Headquarters, Washington, DC, 20546, United States of America
| | - Tony C Slaba
- NASA Langley Research Center, Hampton, VA, 23681, United States of America
| |
Collapse
|
9
|
Laiakis EC, Pinheiro M, Nguyen T, Nguyen H, Beheshti A, Dutta SM, Russell WK, Emmett MR, Britten RA. Quantitative proteomic analytic approaches to identify metabolic changes in the medial prefrontal cortex of rats exposed to space radiation. Front Physiol 2022; 13:971282. [PMID: 36091373 PMCID: PMC9459391 DOI: 10.3389/fphys.2022.971282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
NASA’s planned mission to Mars will result in astronauts being exposed to ∼350 mSv/yr of Galactic Cosmic Radiation (GCR). A growing body of data from ground-based experiments indicates that exposure to space radiation doses (approximating those that astronauts will be exposed to on a mission to Mars) impairs a variety of cognitive processes, including cognitive flexibility tasks. Some studies report that 33% of individuals may experience severe cognitive impairment. Translating the results from ground-based rodent studies into tangible risk estimates for astronauts is an enormous challenge, but it would be germane for NASA to use the vast body of data from the rodent studies to start developing appropriate countermeasures, in the expectation that some level of space radiation (SR) -induced cognitive impairment could occur in astronauts. While some targeted studies have reported radiation-induced changes in the neurotransmission properties and/or increased neuroinflammation within space radiation exposed brains, there remains little information that can be used to start the development of a mechanism-based countermeasure strategy. In this study, we have employed a robust label-free mass spectrometry (MS) -based untargeted quantitative proteomic profiling approach to characterize the composition of the medial prefrontal cortex (mPFC) proteome in rats that have been exposed to 15 cGy of 600 MeV/n28Si ions. A variety of analytical techniques were used to mine the generated expression data, which in such studies is typically hampered by low and variable sample size. We have identified several pathways and proteins whose expression alters as a result of space radiation exposure, including decreased mitochondrial function, and a further subset of proteins differs in rats that have a high level of cognitive performance after SR exposure in comparison with those that have low performance levels. While this study has provided further insight into how SR impacts upon neurophysiology, and what adaptive responses can be invoked to prevent the emergence of SR-induced cognitive impairment, the main objective of this paper is to outline strategies that can be used by others to analyze sub-optimal data sets and to identify new information.
Collapse
Affiliation(s)
- Evagelia C. Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, United States
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, United States
- *Correspondence: Evagelia C. Laiakis,
| | - Maisa Pinheiro
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, United States
| | - Tin Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Hung Nguyen
- Department of Computer Science and Engineering, University of Nevada, Reno, NV, United States
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Sucharita M. Dutta
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Mark R. Emmett
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Radiation Oncology, University of Texas Medical Branch, Galveston, TX, United States
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
- Center for Integrative Neuroinflammatory and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, United States
| |
Collapse
|
10
|
Britten RA, Fesshaye A, Tidmore A, Blackwell AA. Similar Loss of Executive Function Performance after Exposure to Low (10 cGy) Doses of Single (4He) Ions and the Multi-Ion GCRSim Beam. Radiat Res 2022; 198:375-383. [DOI: 10.1667/rade-22-00022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
|
11
|
Ton ST, Laghi JR, Tsai SY, Blackwell AA, Adamczyk NS, Oltmanns JRO, Britten RA, Wallace DG, Kartje GL. Exposure to 5 cGy 28Si Particles Induces Long-Term Microglial Activation in the Striatum and Subventricular Zone and Concomitant Neurogenic Suppression. Radiat Res 2022; 198:28-39. [DOI: 10.1667/rade-21-00021.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/17/2022] [Indexed: 11/03/2022]
Abstract
The proposed mission to Mars will expose astronauts to space radiation that is known to adversely affect cognition and tasks that rely on fine sensorimotor function. Space radiation has also been shown to affect the microglial and neurogenic responses in the center nervous system (CNS). We recently reported that a low dose of 5 cGy 600 MeV/n 28Si results in impaired cognition and skilled motor behavior in adult rats. Since these tasks rely at least in part on the proper functioning of the striatum, we examined striatal microglial cells in these same subjects. Using morphometric analysis, we found that 28Si exposure increased activated microglial cells in the striatum. The majority of these striatal Iba1+ microglia were ED1–, indicating that they were in an alternatively activated state, where microglia do not have phagocytic activity but may be releasing cytokines that could negatively impact neuronal function. In the other areas studied, Iba1+ microglial cells were increased in the subventricular zone (SVZ), but not in the dentate gyrus (DG). Additionally, we examined the relationship between the microglial response and neurogenesis. An analysis of new neurons in the DG revealed an increase in doublecortin-positive (DCX+) hilar ectopic granule cells (hEGC) which correlated with Iba1+ cells, suggesting that microglial cells contributed to this aberrant distribution which may adversely affect hippocampal function. Taken together, these results indicate that a single dose of 28Si radiation results in persistent cellular effects in the CNS that may impact astronauts both in the short and long-term following deep space missions.
Collapse
Affiliation(s)
- Son T. Ton
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Julia R. Laghi
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | - Shih-Yen Tsai
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
| | | | | | | | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, DeKalb, Illinois
| | - Gwendolyn L. Kartje
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago Health Sciences Division, Maywood, Illinois
| |
Collapse
|
12
|
Blackwell AA, Fesshaye A, Tidmore A, I Lake R, Wallace DG, Britten RA. Rapid loss of fine motor skills after low dose space radiation exposure. Behav Brain Res 2022; 430:113907. [DOI: 10.1016/j.bbr.2022.113907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 01/04/2023]
|
13
|
Liu H, Huang X, Xu J, Mao H, Li Y, Ren K, Ma G, Xue Q, Tao H, Wu S, Wang W. Dissection of the relationship between anxiety and stereotyped self-grooming using the Shank3B mutant autistic model, acute stress model and chronic pain model. Neurobiol Stress 2021; 15:100417. [PMID: 34815987 PMCID: PMC8591549 DOI: 10.1016/j.ynstr.2021.100417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 12/27/2022] Open
Abstract
Self-grooming is an innate, cephalo-caudal progression of body cleaning behaviors that are found in normal rodents but exhibit repetitive and stereotyped patterns in several mouse models, such as autism spectrum disorders (ASDs). It is also recognized as a marker of stress and anxiety. Mice with Shank3B gene knockout (KO) exhibit typical ASD-like behavioral abnormalities, including stereotyped self-grooming and increased levels of anxiety. However, the exact relationship between anxiety and stereotyped self-grooming in certain types of animal models is not clear. We selected three animal models with high anxiety to compare their self-grooming parameters. First, we confirmed that Shank3B KO mice (ASD model), acute restraint stress mouse model (stress model), and chronic inflammatory pain mouse model (pain model) all showed increased anxiety levels in the open field test (OFT) and elevated plus maze (EPM). We found that only the ASD model and the stress model produced increased total grooming duration. The pain model only exhibited an increasing trend of mean self-grooming duration. We used the grooming analysis algorithm to examine the self-grooming microstructure and assess the cephalo-caudal progression of grooming behavior. The results showed distinct self-grooming microstructures in these three models. The anxiolytic drug diazepam relieved the anxiety level and the total time of grooming in the ASD and stress models. The grooming microstructure was not restored in Shank3B KO mice but was partially relieved in the stress model, which suggested that anxiety aggravated stereotyped self-grooming duration but not the grooming microstructure in the ASD mouse model. Our results indicated that stereotyped behavior and anxiety may be shared by separate, but interacting, neural circuits in distinct disease models, which may be useful to understand the mechanisms and develop potential treatments for stereotyped behaviors and anxiety.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xin Huang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jinwei Xu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Honghui Mao
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yaohao Li
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Keke Ren
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Guaiguai Ma
- Department of Physiology, Medicine College of Yan'an University, Yan'an, 716000, China
| | - Qian Xue
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
| | - Huiren Tao
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong, 518055, China
| | - Shengxi Wu
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
- Corresponding author. Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.
| | - Wenting Wang
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, PR China
- Corresponding author. Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, No. 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
14
|
Prelich MT, Matar M, Gokoglu SA, Gallo CA, Schepelmann A, Iqbal AK, Lewandowski BE, Britten RA, Prabhu RK, Myers JG. Predicting Space Radiation Single Ion Exposure in Rodents: A Machine Learning Approach. Front Syst Neurosci 2021; 15:715433. [PMID: 34720896 PMCID: PMC8555470 DOI: 10.3389/fnsys.2021.715433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
This study presents a data-driven machine learning approach to predict individual Galactic Cosmic Radiation (GCR) ion exposure for 4He, 16O, 28Si, 48Ti, or 56Fe up to 150 mGy, based on Attentional Set-shifting (ATSET) experimental tests. The ATSET assay consists of a series of cognitive performance tasks on irradiated male Wistar rats. The GCR ion doses represent the expected cumulative radiation astronauts may receive during a Mars mission on an individual ion basis. The primary objective is to synthesize and assess predictive models on a per-subject level through Machine Learning (ML) classifiers. The raw cognitive performance data from individual rodent subjects are used as features to train the models and to explore the capabilities of three different ML techniques for elucidating a range of correlations between received radiation on rodents and their performance outcomes. The analysis employs scores of selected input features and different normalization approaches which yield varying degrees of model performance. The current study shows that support vector machine, Gaussian naive Bayes, and random forest models are capable of predicting individual ion exposure using ATSET scores where corresponding Matthews correlation coefficients and F1 scores reflect model performance exceeding random chance. The study suggests a decremental effect on cognitive performance in rodents due to ≤150 mGy of single ion exposure, inasmuch as the models can discriminate between 0 mGy and any exposure level in the performance score feature space. A number of observations about the utility and limitations in specific normalization routines and evaluation scores are examined as well as best practices for ML with imbalanced datasets observed.
Collapse
Affiliation(s)
| | - Mona Matar
- NASA Glenn Research Center, Cleveland, OH, United States
| | | | | | | | - Asad K Iqbal
- ZIN Technologies, Inc., Cleveland, OH, United States
| | | | - Richard A Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - R K Prabhu
- Universities Space Research Association, Cleveland, OH, United States
| | - Jerry G Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| |
Collapse
|
15
|
Matar M, Gokoglu SA, Prelich MT, Gallo CA, Iqbal AK, Britten RA, Prabhu RK, Myers JG. Machine Learning Models to Predict Cognitive Impairment of Rodents Subjected to Space Radiation. Front Syst Neurosci 2021; 15:713131. [PMID: 34588962 PMCID: PMC8473791 DOI: 10.3389/fnsys.2021.713131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
This research uses machine-learned computational analyses to predict the cognitive performance impairment of rats induced by irradiation. The experimental data in the analyses is from a rodent model exposed to ≤15 cGy of individual galactic cosmic radiation (GCR) ions: 4He, 16O, 28Si, 48Ti, or 56Fe, expected for a Lunar or Mars mission. This work investigates rats at a subject-based level and uses performance scores taken before irradiation to predict impairment in attentional set-shifting (ATSET) data post-irradiation. Here, the worst performing rats of the control group define the impairment thresholds based on population analyses via cumulative distribution functions, leading to the labeling of impairment for each subject. A significant finding is the exhibition of a dose-dependent increasing probability of impairment for 1 to 10 cGy of 28Si or 56Fe in the simple discrimination (SD) stage of the ATSET, and for 1 to 10 cGy of 56Fe in the compound discrimination (CD) stage. On a subject-based level, implementing machine learning (ML) classifiers such as the Gaussian naïve Bayes, support vector machine, and artificial neural networks identifies rats that have a higher tendency for impairment after GCR exposure. The algorithms employ the experimental prescreen performance scores as multidimensional input features to predict each rodent's susceptibility to cognitive impairment due to space radiation exposure. The receiver operating characteristic and the precision-recall curves of the ML models show a better prediction of impairment when 56Fe is the ion in question in both SD and CD stages. They, however, do not depict impairment due to 4He in SD and 28Si in CD, suggesting no dose-dependent impairment response in these cases. One key finding of our study is that prescreen performance scores can be used to predict the ATSET performance impairments. This result is significant to crewed space missions as it supports the potential of predicting an astronaut's impairment in a specific task before spaceflight through the implementation of appropriately trained ML tools. Future research can focus on constructing ML ensemble methods to integrate the findings from the methodologies implemented in this study for more robust predictions of cognitive decrements due to space radiation exposure.
Collapse
Affiliation(s)
- Mona Matar
- NASA Glenn Research Center, Cleveland, OH, United States
| | | | | | | | - Asad K. Iqbal
- ZIN Technologies, Inc., Cleveland, OH, United States
| | - Richard A. Britten
- Department of Radiation Oncology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - R. K. Prabhu
- Universities Space Research Association, Cleveland, OH, United States
| | - Jerry G. Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| |
Collapse
|