1
|
Manring HR, Fleming JL, Meng W, Gamez M, Blakaj DM, Chakravarti A. FLASH Radiotherapy: From In Vivo Data to Clinical Translation. Hematol Oncol Clin North Am 2025:S0889-8588(24)00153-9. [PMID: 39828472 DOI: 10.1016/j.hoc.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Delivery of radiotherapy (RT) at ultra-high dose rates or FLASH radiotherapy (FLASH-RT) is an emerging treatment option for patients with cancer that could increase survival outcomes and quality of life. In vivo data across a multitude of normal tissues and associated tumors have been published demonstrating the FLASH effect while bringing attention to the need for additional research. Combination of FLASH-RT with other treatment options including spatially fractionated RT, immunotherapy, and usage in the setting of reirradiation could also provide additional benefit. Phase I clinical trials have shown promising results, yet research is warranted before routine clinical use of FLASH-RT.
Collapse
Affiliation(s)
- Heather R Manring
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jessica L Fleming
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Wei Meng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Mauricio Gamez
- Department of Radiation Oncology, Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA
| | - Dukagjin M Blakaj
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
2
|
Ma Y, Zhang W, Zhao Z, Lv J, Chen J, Yan X, Lin X, Zhang J, Wang B, Gao S, Xiao J, Yang G. Current views on mechanisms of the FLASH effect in cancer radiotherapy. Natl Sci Rev 2024; 11:nwae350. [PMID: 39479528 PMCID: PMC11523052 DOI: 10.1093/nsr/nwae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/02/2024] Open
Abstract
FLASH radiotherapy (FLASH-RT) is a new modality of radiotherapy that delivers doses with ultra-high dose rates. The FLASH effect was defined as the ability of FLASH-RT to suppress tumor growth while sparing normal tissues. Although the FLASH effect has been proven to be valid in various models by different modalities of irradiation and clinical trials of FLASH-RT have achieved promising initial success, the exact underlying mechanism is still unclear. This article summarizes mainstream hypotheses of the FLASH effect at physicochemical and biological levels, including oxygen depletion and free radical reactions, nuclear and mitochondria damage, as well as immune response. These hypotheses contribute reasonable explanations to the FLASH effect and are interconnected according to the chronological order of the organism's response to ionizing radiation. By collating the existing consensus, evidence and hypotheses, this article provides a comprehensive overview of potential mechanisms of the FLASH effect and practical guidance for future investigation in the field of FLASH-RT.
Collapse
Affiliation(s)
- Yuqi Ma
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Wenkang Zhang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Ziming Zhao
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Jianfeng Lv
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Junyi Chen
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - Xueqin Yan
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| | - XiaoJi Lin
- Oncology Discipline Group, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325003, China
| | - Junlong Zhang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Guangdong Basic Research Center of Excellence for Functional Molecular Engineering, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China
| | - Jie Xiao
- KIRI Precision Particle Therapy Flash Technologies Research Center, Guangzhou 510700, China
| | - Gen Yang
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Cucinotta FA, Smirnova OA. Effects of Partial-Body, Continuous/Pulse Irradiation at Dose Rates from FLASH to Conventional Rates on the Level of Surviving Blood Lymphocytes: Modeling Approach II. Two- and Multiple-Pulse Irradiation. Radiat Res 2024; 201:546-557. [PMID: 38623828 DOI: 10.1667/rade-23-00221.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/22/2024] [Indexed: 04/17/2024]
Abstract
Mathematical models, which describe effects of partial-body, two- and multiple-pulse irradiation at high total doses D and at average dose rates N from FLASH to conventional rates on the level of surviving blood lymphocytes in humans and mice, have been developed originating in the previously proposed approach. These models predict that levels of surviving blood lymphocytes in humans and mice increase with increasing the dose rate from N=D/TR (TR is the time of the blood flowing into or out of the irradiated segment of the blood circulatory system) to FLASH rates and approach an upper limiting level equal to (1-vR), where vR is the fraction of blood volume in the irradiated segment of the blood circulatory system. Levels of surviving blood lymphocytes computed at total doses D of 10-40 Gy and at average of dose rates N, which are equal to or exceed 40 Gy/s for humans and 400 Gy/s for mice, are nearly indistinguishable from the upper limiting level. These results can be interpreted as the models reproducing the optimal blood lymphocyte sparing in these mammals after such exposures. With decreasing the dose rate from N=D/TR to conventional rates, at multiple-pulse irradiation the levels of surviving blood lymphocytes in humans and mice decrease to lower limiting levels, whereas at two-pulse irradiation they change cyclically and do not fall below their values for the delivery time equal to TR. Additionally, effects of two- and multiple-pulse irradiation of the whole abdomen in mice on the level of surviving blood lymphocytes are simulated within the developed models. Regimens of two- and multiple-pulse irradiation are taken the same as those reported in experiments, where effects of such exposures on the level of surviving crypts in mice were studied. Juxtaposing the modeling results with the experimental data reveals that the level of surviving blood lymphocytes in mice after two- and multiple-pulse irradiation of the abdomen at average dose rates N from FLASH to conventional rates modulates the level of surviving crypts in these animals after such exposures. A hypothesis is proposed to explain this phenomenon.
Collapse
|
4
|
Cucinotta FA, Smirnova OA. Effects of Partial-Body, Continuous/Pulse Irradiation at Dose Rates from FLASH to Conventional Rates on the Level of Surviving Blood Lymphocytes: Modeling Approach. I. Continuous Irradiation. Radiat Res 2024; 201:535-545. [PMID: 38616047 DOI: 10.1667/rade-23-00222.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
A mathematical model developed by Cucinotta and Smirnova is extended to describe effects of continuous, partial-body irradiation at high doses D and at dose rates N from FLASH to conventional rates on the level of surviving blood lymphocytes in humans and small laboratory animals (mice). Specifically, whereas the applicability of the model is limited to the exposure times shorter than a single cardiac cycle T0, the extended model is capable of describing such effects for the aforementioned and longer exposure times. The extended model is implemented as the algebraic equations. It predicts that the level of surviving blood lymphocytes in humans and mice increases with increasing the dose rate from N= D/T0 to FLASH rates and approaches the upper limiting level of 1-vR, where vR is the fraction of blood volume in the irradiated part of the blood circulatory system. Levels of surviving blood lymphocytes computed at doses from 10 Gy to 40 Gy and at dose rates N, which equal or exceed 40 Gy/s for humans and 400 Gy/s for mice, are nearly indistinguishable from the upper limiting level. In turn, the level of surviving blood lymphocytes in humans and mice decreases with decreasing the dose rate from N= D/T0 to conventional rates and approaches a lower limiting level. This level strongly depends on the dose D (it is smaller at larger values of D) with a slight dependence on the dose rate N. The model with the parameters specified for mice (together with the model of the dynamics of lymphopoietic system in mice after partial-body irradiation) reproduce, on a quantitative level, the experimental data, according to which the concentration of blood lymphocytes measured in mice in one day after continuous, partial-body irradiation at a high dose and conventional dose rate is smaller at the larger value of vR. Additionally, the model predicts at the same high dose (>10 Gy) a faster restoration of the blood lymphocyte population in humans exposed to continuous, partial-body irradiation at a FLASH dose rate compared to a conventional dose rate.
Collapse
|
5
|
Shiraishi Y, Matsuya Y, Fukunaga H. Possible mechanisms and simulation modeling of FLASH radiotherapy. Radiol Phys Technol 2024; 17:11-23. [PMID: 38184508 DOI: 10.1007/s12194-023-00770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 01/08/2024]
Abstract
FLASH radiotherapy (FLASH-RT) has great potential to improve patient outcomes. It delivers radiation doses at an ultra-high dose rate (UHDR: ≥ 40 Gy/s) in a single instant or a few pulses. Much higher irradiation doses can be administered to tumors with FLASH-RT than with conventional dose rate (0.01-0.40 Gy/s) radiotherapy. UHDR irradiation can suppress toxicity in normal tissues while sustaining antitumor efficiency, which is referred to as the FLASH effect. However, the mechanisms underlying the effects of the FLASH remain unclear. To clarify these mechanisms, the development of simulation models that can contribute to treatment planning for FLASH-RT is still underway. Previous studies indicated that transient oxygen depletion or augmented reactions between secondary reactive species produced by irradiation may be involved in this process. To discuss the possible mechanisms of the FLASH effect and its clinical potential, we summarized the physicochemical, chemical, and biological perspectives as well as the development of simulation modeling for FLASH-RT.
Collapse
Affiliation(s)
- Yuta Shiraishi
- Graduate School of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
- Faculty of Health Sciences, Japan Healthcare University, 3-11-1-50 Tsukisamu-Higashi, Toyohira-Ku, Sapporo, Hokkaido, 062-0053, Japan
| | - Yusuke Matsuya
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan
| | - Hisanori Fukunaga
- Faculty of Health Sciences, Hokkaido University, N12 W5 Kita-Ku, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
6
|
Borghini A, Labate L, Piccinini S, Panaino CMV, Andreassi MG, Gizzi LA. FLASH Radiotherapy: Expectations, Challenges, and Current Knowledge. Int J Mol Sci 2024; 25:2546. [PMID: 38473799 PMCID: PMC10932202 DOI: 10.3390/ijms25052546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/12/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Major strides have been made in the development of FLASH radiotherapy (FLASH RT) in the last ten years, but there are still many obstacles to overcome for transfer to the clinic to become a reality. Although preclinical and first-in-human clinical evidence suggests that ultra-high dose rates (UHDRs) induce a sparing effect in normal tissue without modifying the therapeutic effect on the tumor, successful clinical translation of FLASH-RT depends on a better understanding of the biological mechanisms underpinning the sparing effect. Suitable in vitro studies are required to fully understand the radiobiological mechanisms associated with UHDRs. From a technical point of view, it is also crucial to develop optimal technologies in terms of beam irradiation parameters for producing FLASH conditions. This review provides an overview of the research progress of FLASH RT and discusses the potential challenges to be faced before its clinical application. We critically summarize the preclinical evidence and in vitro studies on DNA damage following UHDR irradiation. We also highlight the ongoing developments of technologies for delivering FLASH-compliant beams, with a focus on laser-driven plasma accelerators suitable for performing basic radiobiological research on the UHDR effects.
Collapse
Affiliation(s)
| | - Luca Labate
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | - Simona Piccinini
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | - Costanza Maria Vittoria Panaino
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| | | | - Leonida Antonio Gizzi
- Intense Laser Irradiation Laboratory (ILIL), CNR Istituto Nazionale di Ottica, 56124 Pisa, Italy; (L.L.); (S.P.); (C.M.V.P.); (L.A.G.)
| |
Collapse
|
7
|
Polevoy GG, Kumar DS, Daripelli S, Prasanna M. Flash Therapy for Cancer: A Potentially New Radiotherapy Methodology. Cureus 2023; 15:e46928. [PMID: 38021805 PMCID: PMC10640654 DOI: 10.7759/cureus.46928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
In traditional treatment modalities and standard clinical practices, FLASH radiotherapy (FL-RT) administers radiation therapy at an exceptionally high dosage rate. When compared to standard dose rate radiation therapy, numerous preclinical investigations have demonstrated that FL-RT provides similar benefits in conserving normal tissue while maintaining equal antitumor efficacy, a phenomenon possible due to the 'FLASH effect' (FE) of FL-RT. The methodologies involve proton radiotherapy, intensity-modulated radiation treatment, and managing high-throughput damage by radiation to solid tissues. Recent results from animal studies indicate that FL-RT can reduce radiation-induced tissue damage, significantly enhancing anticancer potency. Focusing on the potential benefits of FL proton beam treatment in the years to come, this review details the FL-RT research that has been done so far and the existing theories illuminating the FL effects. This subject remains of interest, with many issues still needing to be answered. We offer a brief review to emphasize a few of the key efforts and difficulties in moving FL radiation research forward. The existing research state of FL-RT, its affecting variables, and its different specific impacts are presented in this current review. Key topics discussed include the biochemical mechanism during FL therapy, beam sources for FL therapy, the FL effect on immunity, clinical and preclinical studies on the protective effect of FL therapy, and parameters for effective FL therapy.
Collapse
Affiliation(s)
| | - Devika S Kumar
- Department of Research and Development, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, IND
| | - Sushma Daripelli
- Department of Anatomy, Government Medical College (GMC) Jangaon, Jangaon, IND
| | - Muthu Prasanna
- Department of Pharmaceutical Biotechnology, Surya Group of Institutions, Tamil Nadu, IND
| |
Collapse
|
8
|
Paganetti H. A review on lymphocyte radiosensitivity and its impact on radiotherapy. Front Oncol 2023; 13:1201500. [PMID: 37601664 PMCID: PMC10435323 DOI: 10.3389/fonc.2023.1201500] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
It is well known that radiation therapy causes lymphopenia in patients and that this is correlated with a negative outcome. The mechanism is not well understood because radiation can have both immunostimulatory and immunosuppressive effects. How tumor dose conformation, dose fractionation, and selective lymph node irradiation in radiation therapy does affect lymphopenia and immune response is an active area of research. In addition, understanding the impact of radiation on the immune system is important for the design and interpretation of clinical trials combining radiation with immune checkpoint inhibitors, both in terms of radiation dose and treatment schedules. Although only a few percent of the total lymphocyte population are circulating, it has been speculated that their increased radiosensitivity may contribute to, or even be the primary cause of, lymphopenia. This review summarizes published data on lymphocyte radiosensitivity based on human, small animal, and in vitro studies. The data indicate differences in radiosensitivity among lymphocyte subpopulations that affect their relative contribution and thus the dynamics of the immune response. In general, B cells appear to be more radiosensitive than T cells and NK cells appear to be the most resistant. However, the reported dose-response data suggest that in the context of lymphopenia in patients, aspects other than cell death must also be considered. Not only absolute lymphocyte counts, but also lymphocyte diversity and activity are likely to be affected by radiation. Taken together, the reviewed data suggest that it is unlikely that radiation-induced cell death in lymphocytes is the sole factor in radiation-induced lymphopenia.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston MA, United States
- Harvard Medical School, Boston MA, United States
| |
Collapse
|