1
|
Zhou S, Zhu C, Jin S, Cui C, Xiao L, Yang Z, Wang X, Yu J. OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6607908. [PMID: 35712898 PMCID: PMC9199189 DOI: 10.1093/femsle/fnac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/24/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to investigate the molecular mechanisms through which the intestinal microbiota and microRNAs (miRNAs) participate in colon cancer metastasis. Intestinal flora data, and the GSE29621 (messenger RNA/long non-coding RNA [mRNA/lncRNA]) and GSE29622 (miRNA) datasets, were downloaded from The Cancer Gene Atlas and Gene Expression Omnibus databases, respectively. Immune-related cells in M1 vs. M0 samples were analyzed using the Wilcoxon test. Furthermore, an lncRNA-miRNA-mRNA (competing endogenous RNA [ceRNA]) network was constructed, and survival analysis of RNAs in the network was performed. A total of 16 miRNA-genus co-expression pairs containing eight microbial genera and 15 miRNAs were screened; notably, Porphyromonas and Bifidobacterium spp. were found to be associated with most miRNAs, and has-miR-3943 was targeted by most microbial genera. Furthermore, five immune cell types, including activated natural killer cells, M1 macrophages, resting mast cells, activated mast cells and neutrophils, were differentially accumulated between the M1 and M0 groups. Enrichment analysis suggested that mRNAs related to colon cancer metastasis were mainly involved in pathways related to bacterial and immune responses. Survival analysis revealed that TMEM176A and PALM3 in the ceRNA network were significantly associated with the prognosis of patients with colon cancer. In conclusion, this study revealed a potential mechanism by which the intestinal microbiota influences the colon cancer microenvironment by targeting miRNAs.
Collapse
Affiliation(s)
| | | | | | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital of Southern Medical University, Guangzhou, 510000, China
| | - Linghui Xiao
- Department of Gastrointestinal Surgery, Huizhou First Hospital, Huizhou, Guangdong, 516003, China
| | - Zhi Yang
- The IVD Medical Marketing Department, 3D Medicines Inc., Shanghai, 201114, China
| | - Xi Wang
- Corresponding author: Department of Gastrointestinal Surgery, Huizhou First Hospital, Huizhou, Guangdong, 516003, China. E-mail:
| | - Jinlong Yu
- Corresponding author: Department of General Surgery, Zhujiang Hospital of Southern Medical University, 253 Gongye Road, Haizhu District, Guangzhou, 510000, Guangdong Province, China. E-mail:
| |
Collapse
|
2
|
Li H, Yang W, Zhang M, He T, Zhou F, G Herman J, Hu L, Guo M. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer. Epigenomics 2021; 13:1403-1419. [PMID: 34558311 DOI: 10.2217/epi-2021-0217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aim: The role of TMEM176A methylation in lung cancer and its therapeutic application remains unclear. Materials and methods: Nine lung cancer cell lines and 123 cases of cancer tissue samples were employed. Results: TMEM176A was methylated in 53.66% of primary lung cancer. Restoration of TMEM176A expression induced cell apoptosis and G2/M phase arrest, and inhibited colony formation, cell proliferation, migration and invasion. TMEM176A suppressed H1299 cell xenograft growth in mice. Methylation of TMEM176A activated ERK signaling and sensitized H1299 and H23 cells to AZD0156, an ATM inhibitor. Conclusion: The expression of TMEM176A is regulated by promoter region methylation. Methylation of TMEM176A is a potential lung cancer diagnostic marker and a novel synthetic lethal therapeutic marker for AZD0156.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Faculty of Environmental & Life Science, Beijing Key Laboratory of Environmental & Oncology, Beijing University of Technology, Beijing, 100124, China
| | - Weili Yang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Meiying Zhang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Tao He
- Department of Pathology, Characteristic Medical Center of The Chinese People's Armed Police Force, Tianjin, 300162, China
| | - Fuyou Zhou
- Department of Thoracic Surgery, Anyang Tumor Hospital, Anyang, 455000, Henan, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, 5117 Centre Avenue, Suite 2.18/Research, Pittsburgh, PA 15213, USA
| | - Liming Hu
- Faculty of Environmental & Life Science, Beijing Key Laboratory of Environmental & Oncology, Beijing University of Technology, Beijing, 100124, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.,Henan Key Laboratory for Esophageal Cancer Research, Zhengzhou University, 40 Daxue Road, Zhengzhou, Henan, 450052, China.,State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, #28 Fuxing Road, Beijing, 100853, China
| |
Collapse
|
3
|
Lan X, Bao H, Ge X, Cao J, Fan X, Zhang Q, Liu K, Zhang X, Tan Z, Zheng C, Wang A, Chen C, Zhu X, Wang J, Xu J, Zhu X, Wu X, Wang X, Shao Y, Ge M. Genomic landscape of metastatic papillary thyroid carcinoma and novel biomarkers for predicting distant metastasis. Cancer Sci 2020; 111:2163-2173. [PMID: 32187423 PMCID: PMC7293069 DOI: 10.1111/cas.14389] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common malignancy of the thyroid gland, with a relatively high cure rate. Distant metastasis (DM) of PTC is uncommon, but when it occurs, it significantly decreases the survival of PTC patients. The molecular mechanisms of DM in PTC have not been systematically studied. We performed whole exome sequencing and GeneseeqPrime (425 genes) panel sequencing of the primary tumor, plasma and matched white blood cell samples from 20 PTC with DM and 46 PTC without DM. We identified somatic mutations, gene fusions and copy number alterations and analyzed their relationships with DM of PTC. BRAF-V600E was identified in 73% of PTC, followed by RET fusions (14%) in a mutually exclusive manner (P < 0.0001). We found that gene fusions (RET, ALK or NTRK1) (P < 0.01) and chromosome 22q loss (P < 0.01) were independently associated with DM in both univariate and multivariate analyses. A nomogram model consisting of chromosome 22q loss, gene fusions and three clinical variables was built for predicting DM in PTC (C-index = 0.89). The plasma circulating tumor DNA (ctDNA) detection rate in PTC was only 38.9%; however, it was significantly associated with the metastatic status (P = 0.04), tumor size (P = 0.001) and invasiveness (P = 0.01). In conclusion, gene fusions and chromosome 22q loss were independently associated with DM in PTC and could serve as molecular biomarkers for predicting DM. The ctDNA detection rate was low in non-DM PTC but significantly higher in PTC with DM.
Collapse
Affiliation(s)
- Xiabin Lan
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Hua Bao
- Translational Medicine Research InstituteGeneseeq TechnologyTorontoONCanada
| | - Xinyang Ge
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
- Heartland Christian SchoolColumbianaOHUSA
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Xiaojun Fan
- Translational Medicine Research InstituteGeneseeq TechnologyTorontoONCanada
| | - Qihong Zhang
- Zhejiang Chinese Medical UniversityHangzhouChina
| | - Kaihua Liu
- Nanjing Geneseeq Technology Inc.NanjingChina
| | - Xian Zhang
- Nanjing Geneseeq Technology Inc.NanjingChina
| | - Zhuo Tan
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Chuanming Zheng
- Department of Head, Neck and Thyroid SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Ao Wang
- Translational Medicine Research InstituteGeneseeq TechnologyTorontoONCanada
| | - Chao Chen
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Xin Zhu
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Jiafeng Wang
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Jiajie Xu
- Department of Head, Neck and Thyroid SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| | - Xuhang Zhu
- Department of Head and Neck SurgeryCancer Hospital of the University of Chinese Academy of SciencesZhejiang Cancer HospitalHangzhouChina
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang ProvinceInstitute of Cancer and Basic MedicineChinese Academy of SciencesHangzhouChina
| | - Xue Wu
- Translational Medicine Research InstituteGeneseeq TechnologyTorontoONCanada
| | | | - Yang Shao
- Nanjing Geneseeq Technology Inc.NanjingChina
- School of Public HealthNanjing Medical UniversityNanjingChina
| | - Minghua Ge
- Department of Head, Neck and Thyroid SurgeryZhejiang Provincial People’s HospitalPeople’s Hospital of Hangzhou Medical CollegeHangzhouChina
| |
Collapse
|
4
|
Hovhannisyan G, Harutyunyan T, Aroutiounian R, Liehr T. DNA Copy Number Variations as Markers of Mutagenic Impact. Int J Mol Sci 2019; 20:ijms20194723. [PMID: 31554154 PMCID: PMC6801639 DOI: 10.3390/ijms20194723] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 12/26/2022] Open
Abstract
DNA copy number variation (CNV) occurs due to deletion or duplication of DNA segments resulting in a different number of copies of a specific DNA-stretch on homologous chromosomes. Implications of CNVs in evolution and development of different diseases have been demonstrated although contribution of environmental factors, such as mutagens, in the origin of CNVs, is poorly understood. In this review, we summarize current knowledge about mutagen-induced CNVs in human, animal and plant cells. Differences in CNV frequencies induced by radiation and chemical mutagens, distribution of CNVs in the genome, as well as adaptive effects in plants, are discussed. Currently available information concerning impact of mutagens in induction of CNVs in germ cells is presented. Moreover, the potential of CNVs as a new endpoint in mutagenicity test-systems is discussed.
Collapse
Affiliation(s)
- Galina Hovhannisyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Tigran Harutyunyan
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Rouben Aroutiounian
- Department of Genetics and Cytology, Yerevan State University, Alex Manoogian 1, 0025 Yerevan, Armenia.
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, D-07747 Jena, Germany.
| |
Collapse
|
5
|
Epigenetic silencing of TMEM176A activates ERK signaling in human hepatocellular carcinoma. Clin Epigenetics 2018; 10:137. [PMID: 30400968 PMCID: PMC6219251 DOI: 10.1186/s13148-018-0570-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Background The role of TMEM176A in human hepatocellular carcinoma (HCC) is unknown. This study explored the epigenetic regulation and function of TMEM176A in human HCC. Materials and methods Twelve HCC cell lines and 126 cases of primary cancer were analyzed. Methylation-specific PCR, immunohistochemistry, flow cytometry, and xenograft mouse models were employed. Results TMEM176A was highly expressed in SNU387, SNU182, Huh1, and SNU475 cells; reduced expression was observed in HepG2 and PLC/PRF/5 cells; and no expression was found in SNU449, HBXF344, SMMC7721, Huh7, and LM3 cells. Unmethylation of the TMEM176A promoter was detected in SNU387, SNU182, Huh1, and SNU475 cells; partial methylation was observed in HepG2 and PLC/PRF/5 cells; and complete methylation was found in SNU449, HBXF344, SMMC7721, Huh7, and LM3 cells. Upon treatment with 5-Aza-2-deoxycytidine, re-expression of TMEM176A was detected in SNU449, HBXF344, SMMC7721, Huh7, and LM3 cells; increased expression of TMEM176A was observed in HepG2 and PLC/PRF/5 cells; and no expression changes were found in SNU387, SNU182, Huh1, and SNU475 cells. The TMEM176A promoter region was methylated in 75.4% (95/126) of primary human HCC. Reduced expression of TMEM176A was associated with promoter region methylation (P < 0.05). No association was found between TMEM176A promoter methylation and age, gender, HBV infection, liver cirrhosis, tumor size, lymph node metastasis, vessel cancerous embolus, number of lesions, and TNM stage (all P > 0.05). These results demonstrated that the expression of TMEM176A is regulated by promoter region methylation. Methylation of the TMEM176A promoter was significantly associated with tumor cell differentiation (P < 0.05) and was an independent prognostic factor for poor 3-year overall survival (OS, P < 0.05). TMEM176A expression induced cell apoptosis; inhibited cell proliferation, migration, and invasion; suppressed human HCC cell xenograft growth in mice; and inhibited ERK signaling in HCC cells. Conclusion The promoter region of TMEM176A is frequently methylated in human HCC, and the expression of TMEM176A is regulated by promoter region methylation. Methylation of the TMEM176A promoter may serve as a diagnostic and prognostic marker in HCC. TMEM176A suppresses HCC growth by inhibiting the ERK signaling pathway.
Collapse
|
6
|
Wang Y, Zhang Y, Herman JG, Linghu E, Guo M. Epigenetic silencing of TMEM176A promotes esophageal squamous cell cancer development. Oncotarget 2017; 8:70035-70048. [PMID: 29050260 PMCID: PMC5642535 DOI: 10.18632/oncotarget.19550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 06/27/2017] [Indexed: 12/30/2022] Open
Abstract
The function of human transmembrane protein 176A (TMEM176A) in cancer remains unclear. To understand the function and mechanism of TMEM176A in human esophageal cancer development, 13 esophageal cancer cell lines and 267 cases of primary esophageal squamous cell cancer (ESCC) samples were analyzed by methylation specific PCR (MSP), flow cytometry, immunohistochemistry and transfection assays. TMEM176A was highly expressed in BIC1 cells and loss of TMEM176A expression was found in TE1, TE3, TE13, KYSE140, KYSE180, KYSE410, KYSE450, KYSE520, Segl, KYSE150, YES2 and COLO680N cells. Complete methylation was detected in TE1, TE3, TE13, KYSE140, KYSE180, KYSE410, KYSE450, KYSE520, Segl, KYSE150, YES2 and COLO680N cells, while unmethylation was detected in BIC1 cells. Restoration of TMEM176A expression was induced by 5-aza-2’-deoxycytidine treatment in methylated cell lines. TMEM176A was methylated in 66.7% (178/267) of primary esophageal cancer samples, and promoter region methylation was significantly associated with tumor differentiation (p<0.001) and loss off/reduced expression of TMEM176A (p<0.05). Methylation of TMEM176A was significantly associated with poor 5-year overall survival (p < 0.05). Cox proportional hazards model analysis suggest that TMEM176A methylation is an independent prognostic factor for poor 5-years OS. TMEM176A inhibited cell invasion and migration, and induced apoptosis in esophageal cancer cells. TMEM176A suppressed esophageal cancer cell growth both in vitro and in vivo. In conclusion, TMEM176A is frequently methylated in human ESCC and the expression of TMEM176A is regulated by promoter region methylation. TMEM176A methylation may serve as a diagnostic and prognostic marker in ESCC. TMEM176A is a potential tumor suppressor in human ESCC.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing 100853, China.,Department of Gastroenterology, The Affiliated Fu Xing Hospital of Capital Medical University, Beijing 100038, China
| | - You Zhang
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| | - James G Herman
- The Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Enqiang Linghu
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
7
|
Gao D, Han Y, Yang Y, Herman JG, Linghu E, Zhan Q, Fuks F, Lu ZJ, Guo M. Methylation of TMEM176A is an independent prognostic marker and is involved in human colorectal cancer development. Epigenetics 2017; 12:575-583. [PMID: 28678648 DOI: 10.1080/15592294.2017.1341027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy and the fourth most common cause of cancer related death worldwide. This study was designed to find tumor suppressors involved in CRC development by performing RNA-seq. Eight CRC cell lines and 130 cases of primary CRC samples were used. RNA-seq, methylation-specific PCR (MSP), flow cytometry, transwell assays, and a xenograft mouse model were used. Reduction of TMEM176A expression was confirmed in human CRC cells by RNA-seq. TMEM176A was expressed in LS180 and SW620 cells, loss of TMEM176A expression was observed in LOVO, HCT116, RKO, and DLD1 cells, and reduced TMEM176A expression was found in HT29 and SW480 cells. Unmethylation of the TMEM176A promoter was found in LS180 and SW620 cells, whereas complete methylation was found in LOVO, HCT116, RKO, and DLD1 cells, and partial methylation was found in HT29 and SW480 cells. Promoter region methylation correlated with loss of/reduced expression of TMEM176A. Re-expression of TMEM176A was induced by 5-aza-2'-deoxycytidine. TMEM176A was methylated in 50.77% of primary colorectal cancers. Methylation of TMEM176A was associated with tumor metastasis (P<0.05) and was an independent prognostic factor for 5-year overall survival (OS) according to Cox proportional hazards model analysis (P<0.05). TMEM176A induced apoptosis and inhibited cell migration and invasion in CRC cells. TMEM176A suppressed CRC cell growth both in vitro and in vivo. Our results suggest that expression of TMEM176A is regulated by promoter region methylation. TMEM176A methylation is an independent prognostic marker for 5-year OS in CRC, and may act as a tumor suppressor in CRC.
Collapse
Affiliation(s)
- Dan Gao
- a Department of Gastroenterology & Hepatology , Chinese PLA General Hospital , Beijing , China.,b School of Medicine, Nankai University , Tianjin , China
| | - Yingjie Han
- a Department of Gastroenterology & Hepatology , Chinese PLA General Hospital , Beijing , China.,b School of Medicine, Nankai University , Tianjin , China
| | - Yang Yang
- c MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing , China
| | - James G Herman
- d The Hillman Cancer Center, University of Pittsburgh Cancer Institute , Pittsburgh , PA , USA
| | - Enqiang Linghu
- a Department of Gastroenterology & Hepatology , Chinese PLA General Hospital , Beijing , China
| | - Qimin Zhan
- e Laboratory of Molecular Oncology , Peking University Cancer Hospital & Institute , Beijing , China
| | - François Fuks
- f Laboratory of Cancer Epigenetics , Free University of Brussels (U.L.B.) , Brussels , Belgium
| | - Zhi John Lu
- c MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing , China
| | - Mingzhou Guo
- a Department of Gastroenterology & Hepatology , Chinese PLA General Hospital , Beijing , China
| |
Collapse
|
8
|
Tronko ND, Pushkarev VM. Thirty years after the Chernobyl accident: Molecular genetic mechanisms of carcinogenesis of the thyroid gland. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716060098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Borczuk AC, Pei J, Taub RN, Levy B, Nahum O, Chen J, Chen K, Testa JR. Genome-wide analysis of abdominal and pleural malignant mesothelioma with DNA arrays reveals both common and distinct regions of copy number alteration. Cancer Biol Ther 2016; 17:328-35. [PMID: 26853494 DOI: 10.1080/15384047.2016.1145850] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Malignant mesothelioma (MM) is an aggressive tumor arising from mesothelial linings of the serosal cavities. Pleural space is the most common site, accounting for about 80% of cases, while peritoneum makes up the majority of the remaining 20%. While histologically similar, tumors from these sites are epidemiologically and clinically distinct and their attribution to asbestos exposure differs. We compared DNA array-based findings from 48 epithelioid peritoneal MMs and 41 epithelioid pleural MMs to identify similarities and differences in copy number alterations (CNAs). Losses in 3p (BAP1 gene), 9p (CDKN2A) and 22q (NF2) were seen in tumors from both tumor sites, although CDKN2A and NF2 losses were seen at a higher rate in pleural disease (p<0.01). Overall, regions of copy number gain were more common in peritoneal MM, whereas losses were more common in pleural MM, with regions of loss containing known tumor suppressor genes and regions of gain encompassing genes encoding receptor tyrosine kinase pathway members. Cases with known asbestos causation (n = 32 ) were compared with those linked to radiation exposure (n = 9 ). Deletions in 6q, 14q, 17p and 22q, and gain of 17q were seen in asbestos-associated but not radiation-related cases. As reported in post-radiation sarcoma, gains outnumbered losses in radiation-associated MM. The patterns of genomic imbalances suggest overlapping and distinct molecular pathways in MM of the pleura and peritoneum, and that differences in causation (i.e., asbestos vs. radiation) may account for some of these site-dependent differences.
Collapse
Affiliation(s)
- Alain C Borczuk
- a Department of Pathology and Medicine , Weill Cornell Medicine , New York , USA
| | - Jianming Pei
- b Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center , Philadelphia , USA
| | - Robert N Taub
- c Department of Medicine , Division of Hematology and Oncology
| | - Brynn Levy
- d Department of Pathology and Cell Biology , Columbia University Medical Center , New York , USA
| | - Odelia Nahum
- d Department of Pathology and Cell Biology , Columbia University Medical Center , New York , USA
| | - Jinli Chen
- d Department of Pathology and Cell Biology , Columbia University Medical Center , New York , USA
| | - Katherine Chen
- a Department of Pathology and Medicine , Weill Cornell Medicine , New York , USA
| | - Joseph R Testa
- b Cancer Biology Program and Genomics Facility, Fox Chase Cancer Center , Philadelphia , USA
| |
Collapse
|
10
|
Suzuki K, Mitsutake N, Saenko V, Yamashita S. Radiation signatures in childhood thyroid cancers after the Chernobyl accident: possible roles of radiation in carcinogenesis. Cancer Sci 2015; 106:127-33. [PMID: 25483826 PMCID: PMC4399027 DOI: 10.1111/cas.12583] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 12/11/2022] Open
Abstract
After the Tokyo Electric Power Company Fukushima Daiichi nuclear power plant accident, cancer risk from low-dose radiation exposure has been deeply concerning. The linear no-threshold model is applied for the purpose of radiation protection, but it is a model based on the concept that ionizing radiation induces stochastic oncogenic alterations in the target cells. As the elucidation of the mechanism of radiation-induced carcinogenesis is indispensable to justify the concept, studies aimed at the determination of molecular changes associated with thyroid cancers among children who suffered effects from the Chernobyl nuclear accident will be overviewed. We intend to discuss whether any radiation signatures are associated with radiation-induced childhood thyroid cancers.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | | | | | | |
Collapse
|
11
|
Gebauer N, Schmidt-Werthern C, Bernard V, Feller AC, Keck T, Begum N, Rades D, Lehnert H, Brabant G, Thorns C. Genomic landscape of pancreatic neuroendocrine tumors. World J Gastroenterol 2014; 20:17498-17506. [PMID: 25516664 PMCID: PMC4265611 DOI: 10.3748/wjg.v20.i46.17498] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/03/2014] [Accepted: 07/25/2014] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the prognostic role of genomic stability and copy number alterations (CNAs) pancreatic neuroendocrine tumors (PanNETs).
METHODS: A high-resolution array-based comparative genomic hybridization approach was utilized in order to investigate and quantify chromosomal aberrations in a panel of 37 primary PanNET and 11 metastatic samples. DNA samples were extracted from formalin-fixed and paraffin-embedded tumor specimen. Genomic findings were correlated with histopathological and immunohistochemical data. Moreover, the dataset was subjected to employing an unsupervised hierarchical clustering analysis approach utilizing Euclidean distance and average linkage and associations between genomically defined tumor groups and recurrent CNAs or clinicopathological features of the study group were assessed.
RESULTS: Numerous chromosomal aberrations were recurrently detected in both, primary tumor samples and metastases. Copy number gains were most frequently observed at 06p22.2-p22.1 (27.1%), 17p13.1 (20.8%), 07p21.3-p21.2 (18.8%), 09q34.11 (18.8%). Genomic losses were significantly less frequent and the only recurrent aberration affected 08q24.3 (6.3%). Moreover, we detected a high degree of genomic heterogeneity between primary tumors and metastatic lesions. Unsupervised hierarchical clustering of loci affected by CNAs in more than 3 primary tumor samples revealed two genetically distinct tumor groups as well as two chromosomal clusters of genomic imbalances indicating a small subset of tumors with common molecular features (13.5%). Aberrations affecting 6p22.2-22.1, 8q24.3, 9q34.11 and 17p13.1 (P = 0.011; 0.003; 0.003; 0.001), were significantly associated with a poorer survival prognosis.
CONCLUSION: This study suggests that several frequent CNAs in numerous candidate regions are involved in the pathogenesis and metastatic progression of PanNET.
Collapse
|
12
|
The chernobyl tissue bank - a repository for biomaterial and data used in integrative and systems biology modeling the human response to radiation. Genes (Basel) 2012; 3:278-90. [PMID: 24704918 PMCID: PMC3902794 DOI: 10.3390/genes3020278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 04/26/2012] [Accepted: 04/29/2012] [Indexed: 01/11/2023] Open
Abstract
The only unequivocal radiological effect of the Chernobyl accident on human health is the increase in thyroid cancer in those exposed in childhood or early adolescence. In response to the scientific interest in studying the molecular biology of thyroid cancer post Chernobyl, the Chernobyl Tissue Bank (CTB: www.chernobyltissuebank.com) was established in 1998. Thus far it is has collected biological samples from 3,861 individuals, and provided 27 research projects with 11,254 samples. The CTB was designed from its outset as a resource to promote the integration of research and clinical data to facilitate a systems biology approach to radiation related thyroid cancer. The project has therefore developed as a multidisciplinary collaboration between clinicians, dosimetrists, molecular biologists and bioinformaticians and serves as a paradigm for tissue banking in the omics era.
Collapse
|
13
|
Ory C, Ugolin N, Schlumberger M, Hofman P, Chevillard S. Discriminating gene expression signature of radiation-induced thyroid tumors after either external exposure or internal contamination. Genes (Basel) 2011; 3:19-34. [PMID: 24704841 PMCID: PMC3899964 DOI: 10.3390/genes3010019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 01/02/2023] Open
Abstract
Both external radiation exposure and internal radionuclide contamination are well known risk factors in the development of thyroid epithelial tumors. The identification of specific molecular markers deregulated in radiation-induced thyroid tumors is important for the etiological diagnosis since neither histological features nor genetic alterations can discriminate between sporadic and radiation-induced tumors. Identification of highly discriminating markers in radiation-induced tumors is challenging as it relies on the ability to identify marker deregulation which is associated with a cellular stress that occurred many years before in the thyroid cells. The existence of such a signature is still controversial, as it was not found in several studies while a highly discriminating signature was found in both post-radiotherapy and post-Chernobyl series in other studies. Overall, published studies searching for radiation-induced thyroid tumor specificities, using transcriptomic, proteomic and comparative genomic hybridization approaches, and bearing in mind the analytical constraints required to analyze such small series of tumors, suggest that such a molecular signature could be found. In comparison with sporadic tumors, we highlight molecular similarities and specificities in tumors occurring after high-dose external radiation exposure, such as radiotherapy, and in post-Chernobyl tumors that occurred after internal 131I contamination. We discuss the relevance of signature extrapolation from series of tumors developing after high and low doses in the identification of tumors induced at very low doses of radiation.
Collapse
Affiliation(s)
- Catherine Ory
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| | - Nicolas Ugolin
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| | - Martin Schlumberger
- Institut Gustave Roussy, Department on Nuclear Medicine and Endocrine Oncology, Villejuif, and University Paris-Sud, F-94800, France.
| | | | - Sylvie Chevillard
- CEA, DSV, IRCM, SREIT, Laboratoire de Cancérologie Expérimentale, BP6, Fontenay-aux-Roses, F-92265, France.
| |
Collapse
|
14
|
Thomas G, Tronko M, Tsyb A, Tuttle R. What Have We Learnt From Chernobyl? What Have We Still To Learn? Clin Oncol (R Coll Radiol) 2011; 23:229-33. [DOI: 10.1016/j.clon.2011.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
|
15
|
DNA Copy Number Alterations in Radiation-induced Thyroid Cancer. Clin Oncol (R Coll Radiol) 2011; 23:289-96. [DOI: 10.1016/j.clon.2011.01.154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/12/2011] [Indexed: 12/28/2022]
|
16
|
Hadj-Hamou NS, Ugolin N, Ory C, Britzen-Laurent N, Sastre-Garau X, Chevillard S, Malfoy B. A transcriptome signature distinguished sporadic from postradiotherapy radiation-induced sarcomas. Carcinogenesis 2011; 32:929-34. [PMID: 21470956 DOI: 10.1093/carcin/bgr064] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Exposure to ionizing radiation is a known risk factor for cancer. However, up to now, rigorously defined scientific criteria that could establish case-by-case the radiation-induced (RI) origin of a tumour have been lacking. To identify genes that could constitute a RI signature, we compared the transcriptome of 12 sarcomas arising in the irradiation field of a primary tumour following radiotherapy with the transcriptome of 12 sporadic sarcomas. This learning/training set contained four leiomyosarcomas, four osteosarcomas and four angiosarcomas in each subgroup. We identified a signature of 135 genes discriminating RI from sporadic sarcomas. The robustness of this signature was tested by the blind case-by-case classification of an independent set of 36 sarcomas of various histologies. Thirty-one sarcomas were classified as RI or sporadic; it was not possible to propose an aetiology for the five others. After the code break, it was found that one sporadic sarcoma was misclassified as RI. Thus, the signature is robust with a sensitivity of 96%, a positive and a negative predictive value of 96 and 100%, respectively and a specificity of 62%. The functions of the genes of the signature suggest that RI sarcomas were subject to chronic oxidative stress probably due to mitochondrial dysfunction.
Collapse
|
17
|
Ishida Y, Takabatake T, Kakinuma S, Doi K, Yamauchi K, Kaminishi M, Kito S, Ohta Y, Amasaki Y, Moritake H, Kokubo T, Nishimura M, Nishikawa T, Hino O, Shimada Y. Genomic and gene expression signatures of radiation in medulloblastomas after low-dose irradiation in Ptch1 heterozygous mice. Carcinogenesis 2010; 31:1694-701. [PMID: 20616149 DOI: 10.1093/carcin/bgq145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Accurate cancer risk assessment of low-dose radiation poses many challenges that are partly due to the inability to distinguish radiation-induced tumors from spontaneous ones. To elucidate characteristic features of radiation-induced tumors, we analyzed 163 medulloblastomas that developed either spontaneously or after X-ray irradiation at doses of 0.05-3 Gy in Ptch1 heterozygous mice. All spontaneous tumors showed loss of heterozygosity in broad regions on chromosome 13, with losses at all consecutive markers distal to Ptch1 locus (S-type). In contrast, all tumors that developed after 3 Gy irradiation exhibited interstitial losses around Ptch1 with distal markers retained (R-type). There was a clear dose-dependent increase in the proportion of R-type tumors within the intermediate dose range, indicating that the R-type change is a reliable radiation signature. Importantly, the incidence of R-type tumors increased significantly (P = 0.007) at a dose as low as 50 mGy. Integrated array-comparative genomic hybridization and expression microarray analyses demonstrated that expression levels of many genes around the Ptch1 locus faithfully reflected the signature-associated reduction in genomic copy number. Furthermore, 573 genes on other chromosomes were also expressed differently between S-type and R-type tumors. They include genes whose expression changes during early cerebellar development such as Plagl1 and Tgfb2, suggesting a recapitulation of gene subsets functioning at distinct developmental stages. These findings provide, for the first time, solid experimental evidence for a significant increase in cancer risk by low-dose radiation at diagnostic levels and imply that radiation-induced carcinogenesis accompanies both genomic and gene expression signatures.
Collapse
Affiliation(s)
- Yuka Ishida
- Department of Technical Support and Development, Fundamental Technology Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bi J, Lau SH, Hu L, Rao HL, Liu HB, Zhan WH, Chen G, Wen JM, Wang Q, Li B, Guan XY. Downregulation of ZIP kinase is associated with tumor invasion, metastasis and poor prognosis in gastric cancer. Int J Cancer 2009; 124:1587-93. [PMID: 19117059 DOI: 10.1002/ijc.24164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deletion of 19p13 is one of the most frequent genetic changes in gastric carcinoma (GC), implying the existence of a tumor suppressor gene (TSG) that plays an important role in GC development. To identify the candidate TSG at 19p, array-comparative genomic hybridization (CGH) was applied to study DNA copy-number changes on chromosomes 3, 5p, 13, 16q and 19. The result showed that gains of 16q21, 19q13.1, 5p15.1 and 3q26.31, and losses of 3p21.32, 3p22.2, 19q13.33 and 19p13.3, were frequently detected by array-CGH. One candidate TSG, ZIP kinase (ZIPK), at 19p13.3 was further characterized by immunohistochemistry using a tissue microarray containing 172 primary GCs. Downregulation of ZIPK was detected in 111/162 informative GCs, which was significantly associated with invasion, metastasis and poorer prognosis of GC. To investigate the association of the downregulation of ZIPK with apoptosis, apoptosis assay (TUNEL) was used to compare the apoptotic index between GCs with normal expression and downregulation of ZIPK. TUNEL assay showed that the apoptotic index in GCs with normal ZIPK expression was significantly higher than that in GCs with downregulation of ZIPK (p < 0.001), indicating that ZIPK plays an important pro-apoptotic role in GC. Taken together, we demonstrated here that ZIPK is a tumor suppresser gene and plays an important role in GC development through its pro-apoptotic function. Downregulation of ZIPK can be used to evaluate tumor invasiveness, metastasis and to predict survival of GC.
Collapse
Affiliation(s)
- Jiong Bi
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
There is much interest in the application of genome biology to the field of thyroid neoplasia, despite the relatively low mortality rate associated with thyroid cancer in general. The principal reason for this interest is that the field of thyroid neoplasia stands to benefit from the application of genomic information to address a variety of pathologic and clinical issues. In addition to practical patient care issues, there is an excellent opportunity of expand the basic understanding of thyroid carcinogenesis. In this article, the most relevant genomic work on thyroid tumors performed to date is reviewed along with some general comments about the potential impact of genomic biology on thyroid pathology and the management of patients with thyroid nodules and cancer.
Collapse
Affiliation(s)
- Thomas J Giordano
- Department of Pathology, 1150 West Medical Center Drive, MSRB-2, C570D, University of Michigan Health System, Ann Arbor, MI 48109, USA.
| |
Collapse
|
20
|
Kimmel RR, Agnani S, Yang Y, Jordan R, Schwartz JL. DNA copy-number instability in low-dose gamma-irradiated TK6 lymphoblastoid clones. Radiat Res 2008; 169:259-69. [PMID: 18302486 DOI: 10.1667/rr1096.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 10/24/2007] [Indexed: 11/03/2022]
Abstract
Genomic instability that might occur early during low-dose, fractionated radiation exposures may be traceable in radiogenic compared to spontaneous cancers. Using a human 18K cDNA microarray-based comparative genome hybridization protocol, we measured changes in DNA copy number at over 14,000 loci in nine low-dose (137)Cs gamma-irradiated (acute exposure to 10 cGy/day x 21 days) and nine unirradiated TK6 clones and estimated locus-specific copy-number differences between them. Radiation induced copy-number hypervariability at thousands of loci across all chromosomes, with a sevenfold increase in low-level, randomly positioned DNA gains. Recurrent gains at 40 loci occurred among irradiated clones and were distributed nonrandomly across the genome, with the highest densities in 3q, 13q and 20q at sites that were hypodiploid without irradiation. Another nonrandomly distributed set of 94 loci exhibited relative recurrent gains from a hypodiploid state to a diploid state, suggesting hemizygous-to-homozygous transitions. Frequently recurring losses at 57 loci were concentrated on the single X-chromosome but were sparsely distributed at 0-2 loci per autosome. These results suggest induced mitotic homologous recombination as a possible mechanism of low-dose radiation-induced genomic instability. Genomic instability induced in TK6 cells resembled that seen in radiogenic tumors and suggests a way that radiation could induce genomic instability in preneoplastic cells.
Collapse
Affiliation(s)
- Robert R Kimmel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
| | | | | | | | | |
Collapse
|
21
|
Port M, Boltze C, Wang Y, Röper B, Meineke V, Abend M. A radiation-induced gene signature distinguishes post-Chernobyl from sporadic papillary thyroid cancers. Radiat Res 2008; 168:639-49. [PMID: 18088181 DOI: 10.1667/rr0968.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 08/15/2007] [Indexed: 11/03/2022]
Abstract
We investigated selected gene targets to differentiate radiation-induced papillary thyroid cancers (PTCs) from other etiologies. Total RNA was isolated from 11 post-Chernobyl PTCs and 41 sporadic PTCs characterized by a more aggressive tumor type and lacking a radiation exposure history. RNA from 10 tumor samples from both groups was pooled and hybridized separately on a whole genome microarray for screening. Then 92 selected gene targets were examined quantitatively on each tumor sample using an RTQ-PCR-based low-density array (LDA). Screening for more than fivefold differences in gene expression between the groups by microarray detected 646 up-regulated and 677 down-regulated genes. Categorization of these genes revealed a significant (P < 0.0006) over-representation of the number of up-regulated genes coding for oxidoreductases, G-proteins and growth factors, while the number of genes coding for immunoglobulin appeared to be significantly down-regulated. With the LDA, seven genes (SFRP1, MMP1, ESM1, KRTAP2-1, COL13A1, BAALC and PAGE1) made a complete differentiation between the groups possible. Gene expression patterns known to be associated with a more aggressive tumor type in older patients appeared to be more pronounced in post-Chernobyl PTC, thus underlining the known aggressiveness of radiation-induced PTC. Seven genes were found that completely distinguished post-Chernobyl (PTC) from sporadic PTC.
Collapse
Affiliation(s)
- M Port
- Bundeswehr Institute of Radiobiology, German Armed Forces, Munich, Germany
| | | | | | | | | | | |
Collapse
|