1
|
Videvall E, Burraco P, Orizaola G. Impact of ionizing radiation on the environmental microbiomes of Chornobyl wetlands. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121774. [PMID: 37178954 DOI: 10.1016/j.envpol.2023.121774] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Radioactive contamination has the potential to cause damage to DNA and other biomolecules. Anthropogenic sources of radioactive contamination include accidents in nuclear power plants, such as the one in Chornobyl in 1986 which caused long-term radioactive pollution. Studies on animals within radioactive zones have provided us with a greater understanding of how wildlife can persevere despite chronic radiation exposure. However, we still know very little about the effects of radiation on the microbial communities in the environment. We examined the impact of ionizing radiation and other environmental factors on the diversity and composition of environmental microbiomes in the wetlands of Chornobyl. We combined detailed field sampling along a gradient of radiation together with 16 S rRNA high-throughput metabarcoding. While radiation did not affect the alpha diversity of the microbiomes in sediment, soil, or water, it had a significant effect on the beta diversity in all environment types, indicating that the microbial composition was affected by ionizing radiation. Specifically, we detected several microbial taxa that were more abundant in areas with high radiation levels within the Chornobyl Exclusion Zone, including bacteria and archaea known to be radioresistant. Our results reveal the existence of rich and diverse microbiomes in Chornobyl wetlands, with multiple taxonomic groups that are able to thrive despite the radioactive contamination. These results, together with additional field and laboratory-based approaches examining how microbes cope with ionizing radiation will help to forecast the functionality and re-naturalization dynamics of radiocontaminated environments.
Collapse
Affiliation(s)
- Elin Videvall
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI, 02912, USA; Institute at Brown for Environment and Society, Brown University, Providence, RI, 02912, USA; Center for Conservation Genomics, Smithsonian Conservation Biology Institute, 20013, Washington, DC, USA; Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Pablo Burraco
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden; Doñana Biological Station, Spanish Research Council (EBD-CSIC), 41092, Sevilla, Spain
| | - Germán Orizaola
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princip. Asturias), 33600, Mieres, Asturias, Spain; Zoology Unit, Department of Biology of Organisms and Systems, University of Oviedo, 33071, Oviedo, Asturias, Spain.
| |
Collapse
|
2
|
Wu JH, McGenity TJ, Rettberg P, Simões MF, Li WJ, Antunes A. The archaeal class Halobacteria and astrobiology: Knowledge gaps and research opportunities. Front Microbiol 2022; 13:1023625. [PMID: 36312929 PMCID: PMC9608585 DOI: 10.3389/fmicb.2022.1023625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/07/2022] [Indexed: 09/19/2023] Open
Abstract
Water bodies on Mars and the icy moons of the outer solar system are now recognized as likely being associated with high levels of salt. Therefore, the study of high salinity environments and their inhabitants has become increasingly relevant for Astrobiology. Members of the archaeal class Halobacteria are the most successful microbial group living in hypersaline conditions and are recognized as key model organisms for exposure experiments. Despite this, data for the class is uneven across taxa and widely dispersed across the literature, which has made it difficult to properly assess the potential for species of Halobacteria to survive under the polyextreme conditions found beyond Earth. Here we provide an overview of published data on astrobiology-linked exposure experiments performed with members of the Halobacteria, identifying clear knowledge gaps and research opportunities.
Collapse
Affiliation(s)
- Jia-Hui Wu
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Terry J. McGenity
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Petra Rettberg
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany
| | - Marta F. Simões
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Taipa, Macau SAR, China
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Taipa, Macau SAR, China
| |
Collapse
|
3
|
Zhang Y, Wu L, Wang Z, Wang J, Roychoudhury S, Tomasik B, Wu G, Wang G, Rao X, Zhou R. Replication Stress: A Review of Novel Targets to Enhance Radiosensitivity-From Bench to Clinic. Front Oncol 2022; 12:838637. [PMID: 35875060 PMCID: PMC9305609 DOI: 10.3389/fonc.2022.838637] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/15/2022] [Indexed: 11/22/2022] Open
Abstract
DNA replication is a process fundamental in all living organisms in which deregulation, known as replication stress, often leads to genomic instability, a hallmark of cancer. Most malignant tumors sustain persistent proliferation and tolerate replication stress via increasing reliance to the replication stress response. So whilst replication stress induces genomic instability and tumorigenesis, the replication stress response exhibits a unique cancer-specific vulnerability that can be targeted to induce catastrophic cell proliferation. Radiation therapy, most used in cancer treatment, induces a plethora of DNA lesions that affect DNA integrity and, in-turn, DNA replication. Owing to radiation dose limitations for specific organs and tumor tissue resistance, the therapeutic window is narrow. Thus, a means to eliminate or reduce tumor radioresistance is urgently needed. Current research trends have highlighted the potential of combining replication stress regulators with radiation therapy to capitalize on the high replication stress of tumors. Here, we review the current body of evidence regarding the role of replication stress in tumor progression and discuss potential means of enhancing tumor radiosensitivity by targeting the replication stress response. We offer new insights into the possibility of combining radiation therapy with replication stress drugs for clinical use.
Collapse
Affiliation(s)
- Yuewen Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinpeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shrabasti Roychoudhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Bartlomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Geng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Experimental evolution of extremophile resistance to ionizing radiation. Trends Genet 2021; 37:830-845. [PMID: 34088512 DOI: 10.1016/j.tig.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/22/2022]
Abstract
A growing number of known species possess a remarkable characteristic - extreme resistance to the effects of ionizing radiation (IR). This review examines our current understanding of how organisms can adapt to and survive exposure to IR, one of the most toxic stressors known. The study of natural extremophiles such as Deinococcus radiodurans has revealed much. However, the evolution of Deinococcus was not driven by IR. Another approach, pioneered by Evelyn Witkin in 1946, is to utilize experimental evolution. Contributions to the IR-resistance phenotype affect multiple aspects of cell physiology, including DNA repair, removal of reactive oxygen species, the structure and packaging of DNA and the cell itself, and repair of iron-sulfur centers. Based on progress to date, we overview the diversity of mechanisms that can contribute to biological IR resistance arising as a result of either natural or experimental evolution.
Collapse
|
5
|
Selveshwari S, Lele K, Dey S. Genomic signatures of UV resistance evolution in
Escherichia coli
depend on the growth phase during exposure. J Evol Biol 2021; 34:953-967. [DOI: 10.1111/jeb.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/27/2020] [Accepted: 01/13/2021] [Indexed: 11/28/2022]
Affiliation(s)
- S Selveshwari
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| | - Kasturi Lele
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| | - Sutirth Dey
- Population Biology Laboratory, Biology Division Indian Institute of Science Education and Research Pune Maharashtra India
| |
Collapse
|
6
|
Abstract
Single-stranded (ss) DNA-binding proteins are found in all three domains of life where they play vital roles in nearly all aspects of DNA metabolism by binding to and stabilizing exposed ssDNA and acting as platforms onto which DNA-processing activities can assemble. The ssDNA-binding factors SSB and RPA are extremely well conserved across bacteria and eukaryotes, respectively, and comprise one or more OB-fold ssDNA-binding domains. In the third domain of life, the archaea, multiple types of ssDNA-binding protein are found with a variety of domain architectures and subunit compositions, with OB-fold ssDNA-binding domains being a characteristic of most, but not all. This chapter summarizes current knowledge of the distribution, structure, and biological function of the archaeal ssDNA-binding factors, highlighting key features shared between clades and those that distinguish the proteins of different clades from one another. The likely cellular functions of the proteins are discussed and gaps in current knowledge identified.
Collapse
Affiliation(s)
- Najwa Taib
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France
- Hub Bioinformatics and Biostatistics, Department of Computational Biology, Institut Pasteur, Paris, France
| | - Simonetta Gribaldo
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institut Pasteur, Paris, France
| | - Stuart A MacNeill
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
7
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
8
|
Kunka KS, Griffith JM, Holdener C, Bischof KM, Li H, DasSarma P, DasSarma S, Slonczewski JL. Acid Experimental Evolution of the Haloarchaeon Halobacterium sp. NRC-1 Selects Mutations Affecting Arginine Transport and Catabolism. Front Microbiol 2020; 11:535. [PMID: 32390952 PMCID: PMC7193027 DOI: 10.3389/fmicb.2020.00535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/12/2020] [Indexed: 11/13/2022] Open
Abstract
Halobacterium sp. NRC-1 (NRC-1) is an extremely halophilic archaeon that is adapted to multiple stressors such as UV, ionizing radiation and arsenic exposure; it is considered a model organism for the feasibility of microbial life in iron-rich brine on Mars. We conducted experimental evolution of NRC-1 under acid and iron stress. NRC-1 was serially cultured in CM+ medium modified by four conditions: optimal pH (pH 7.5), acid stress (pH 6.3), iron amendment (600 μM ferrous sulfate, pH 7.5), and acid plus iron (pH 6.3, with 600 μM ferrous sulfate). For each condition, four independent lineages of evolving populations were propagated. After 500 generations, 16 clones were isolated for phenotypic characterization and genomic sequencing. Genome sequences of all 16 clones revealed 378 mutations, of which 90% were haloarchaeal insertion sequences (ISH) and ISH-mediated large deletions. This proportion of ISH events in NRC-1 was five-fold greater than that reported for comparable evolution of Escherichia coli. One acid-evolved clone had increased fitness compared to the ancestral strain when cultured at low pH. Seven of eight acid-evolved clones had a mutation within or upstream of arcD, which encodes an arginine-ornithine antiporter; no non-acid adapted strains had arcD mutations. Mutations also affected the arcR regulator of arginine catabolism, which protects bacteria from acid stress by release of ammonia. Two acid-adapted strains shared a common mutation in bop, which encodes bacterio-opsin, apoprotein for the bacteriorhodopsin light-driven proton pump. Thus, in the haloarchaeon NRC-1, as in bacteria, pH adaptation was associated with genes involved in arginine catabolism and proton transport. Our study is among the first to report experimental evolution with multiple resequenced genomes of an archaeon. Haloarchaea are polyextremophiles capable of growth under environmental conditions such as concentrated NaCl and desiccation, but little is known about pH stress. Interesting parallels appear between the molecular basis of pH adaptation in NRC-1 and in bacteria, particularly the acid-responsive arginine-ornithine system found in oral streptococci.
Collapse
Affiliation(s)
- Karina S. Kunka
- Department of Biology, Kenyon College, Gambier, OH, United States
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jessie M. Griffith
- Department of Biology, Kenyon College, Gambier, OH, United States
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chase Holdener
- Department of Biology, Kenyon College, Gambier, OH, United States
| | | | - Haofan Li
- Department of Biology, Kenyon College, Gambier, OH, United States
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
9
|
Abstract
Despite the typical human notion that the Earth is a habitable planet, over three quarters of our planet is uninhabitable by us without assistance. The organisms that live and thrive in these “inhospitable” environments are known by the name extremophiles and are found in all Domains of Life. Despite our general lack of knowledge about them, they have already assisted humans in many ways and still have much more to give. In this review, I describe how they have adapted to live/thrive/survive in their niches, helped scientists unlock major scientific discoveries, advance the field of biotechnology, and inform us about the boundaries of Life and where we might find it in the Universe.
Collapse
Affiliation(s)
- James A Coker
- Department of Sciences, University of Maryland Global Campus, Adelphi, MD, USA
| |
Collapse
|
10
|
DasSarma S, DasSarma P, Laye VJ, Schwieterman EW. Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 2019; 24:31-41. [PMID: 31463573 DOI: 10.1007/s00792-019-01126-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Recent progress in extremophile biology, exploration of planetary bodies in the solar system, and the detection and characterization of extrasolar planets are leading to new insights in the field of astrobiology and possible distribution of life in the universe. Among the many extremophiles on Earth, the halophilic Archaea (Haloarchaea) are especially attractive models for astrobiology, being evolutionarily ancient and physiologically versatile, potentially surviving in a variety of planetary environments and with relevance for in situ life detection. Haloarchaea are polyextremophilic with tolerance of saturating salinity, anaerobic conditions, high levels of ultraviolet and ionizing radiation, subzero temperatures, desiccation, and toxic ions. Haloarchaea survive launches into Earth's stratosphere encountering conditions similar to those found on the surface of Mars. Studies of their unique proteins are revealing mechanisms permitting activity and function in high ionic strength, perchlorates, and subzero temperatures. Haloarchaea also produce spectacular blooms visible from space due to synthesis of red-orange isoprenoid carotenoids used for photoprotection and photorepair processes and purple retinal chromoproteins for phototrophy and phototaxis. Remote sensing using visible and infrared spectroscopy has shown that haloarchaeal pigments exhibit both a discernable peak of absorption and a reflective "green edge". Since the pigments produce remotely detectable features, they may influence the spectrum from an inhabited exoplanet imaged by a future large space-based telescope. In this review, we focus primarily on studies of two Haloarchaea, Halobacterium sp. NRC-1 and Halorubrum lacusprofundi.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victoria J Laye
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward W Schwieterman
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
11
|
Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, Giovannelli D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front Microbiol 2019; 10:780. [PMID: 31037068 PMCID: PMC6476344 DOI: 10.3389/fmicb.2019.00780] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 01/21/2023] Open
Abstract
Prokaryotic life has dominated most of the evolutionary history of our planet, evolving to occupy virtually all available environmental niches. Extremophiles, especially those thriving under multiple extremes, represent a key area of research for multiple disciplines, spanning from the study of adaptations to harsh conditions, to the biogeochemical cycling of elements. Extremophile research also has implications for origin of life studies and the search for life on other planetary and celestial bodies. In this article, we will review the current state of knowledge for the biospace in which life operates on Earth and will discuss it in a planetary context, highlighting knowledge gaps and areas of opportunity.
Collapse
Affiliation(s)
- Nancy Merino
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Biosciences and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Lab, Livermore, CA, United States
| | - Heidi S Aronson
- Department of Biology, University of Southern California, Los Angeles, CA, United States
| | - Diana P Bojanova
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, United States
| | - Michael L Wong
- Department of Astronomy - Astrobiology Program, University of Washington, Seattle, WA, United States.,NASA Astrobiology Institute's Virtual Planetary Laboratory, University of Washington, Seattle, WA, United States
| | - Shu Zhang
- Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, CA, United States
| | - Donato Giovannelli
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Department of Biology, University of Naples "Federico II", Naples, Italy.,Department of Marine and Coastal Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.,Institute for Biological Resources and Marine Biotechnology, National Research Council of Italy, Ancona, Italy
| |
Collapse
|
12
|
Shuryak I. Review of microbial resistance to chronic ionizing radiation exposure under environmental conditions. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 196:50-63. [PMID: 30388428 DOI: 10.1016/j.jenvrad.2018.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Ionizing radiation (IR) produces multiple types of damage to nucleic acids, proteins and other crucial cellular components. Nevertheless, various microorganisms from phylogenetically distant taxa (bacteria, archaea, fungi) can resist IR levels many orders of magnitude above natural background. This intriguing phenomenon of radioresistance probably arose independently many times throughout evolution as a byproduct of selective pressures from other stresses (e.g. desiccation, UV radiation, chemical oxidants). Most of the literature on microbial radioresistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures grown under near-optimal conditions. There is much less information about the upper limits of radioresistance in the field, such as in radioactively-contaminated areas, where several radiation types (e.g. α and β, as well as γ) and other stressors (e.g. non-optimal temperature and nutrient levels, toxic chemicals, interspecific competition) act over multiple generations. Here we discuss several examples of radioresistant microbes isolated from extremely radioactive locations (e.g. Chernobyl and Mayak nuclear plant sites) and estimate the radiation dose rates they were able to tolerate. Some of these organisms (e.g. the fungus Cladosporium cladosporioides, the cyanobacterium Geitlerinema amphibium) are widely-distributed and colonize a variety of habitats. These examples suggest that resistance to chronic IR and chemical contamination is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap between mechanisms of resistance to IR and other stressors.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University, 630 West 168(th) street, VC-11-234/5, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Evans JJ, Gygli PE, McCaskill J, DeVeaux LC. Divergent Roles of RPA Homologs of the Model Archaeon Halobacterium salinarum in Survival of DNA Damage. Genes (Basel) 2018; 9:genes9040223. [PMID: 29677156 PMCID: PMC5924565 DOI: 10.3390/genes9040223] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/08/2018] [Accepted: 04/12/2018] [Indexed: 01/23/2023] Open
Abstract
The haloarchaea are unusual in possessing genes for multiple homologs to the ubiquitous single-stranded DNA binding protein (SSB or replication protein A, RPA) found in all three domains of life. Halobacterium salinarum contains five homologs: two are eukaryotic in organization, two are prokaryotic and are encoded on the minichromosomes, and one is uniquely euryarchaeal. Radiation-resistant mutants previously isolated show upregulation of one of the eukaryotic-type RPA genes. Here, we have created deletions in the five RPA operons. These deletion mutants were exposed to DNA-damaging conditions: ionizing radiation, UV radiation, and mitomycin C. Deletion of the euryarchaeal homolog, although not lethal as in Haloferax volcanii, causes severe sensitivity to all of these agents. Deletion of the other RPA/SSB homologs imparts a variable sensitivity to these DNA-damaging agents, suggesting that the different RPA homologs have specialized roles depending on the type of genomic insult encountered.
Collapse
Affiliation(s)
- Jessica J Evans
- South Dakota School of Mines and Technology, Biomedical Engineering Program, Rapid City, SD 57701, USA.
| | - Patrick E Gygli
- Idaho State University Department of Biological Sciences, Pocatello, ID 83209, USA.
| | - Julienne McCaskill
- Idaho State University Department of Biological Sciences, Pocatello, ID 83209, USA.
| | - Linda C DeVeaux
- New Mexico Institute of Mining and Technology, Department of Biology, Socorro, NM 87801, USA.
| |
Collapse
|
14
|
Transcriptional Landscape and Regulatory Roles of Small Noncoding RNAs in the Oxidative Stress Response of the Haloarchaeon Haloferax volcanii. J Bacteriol 2018; 200:JB.00779-17. [PMID: 29463600 PMCID: PMC5892119 DOI: 10.1128/jb.00779-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Haloarchaea in their natural environment are exposed to hypersalinity, intense solar radiation, and desiccation, all of which generate high levels of oxidative stress. Previous work has shown that haloarchaea are an order of magnitude more resistant to oxidative stress than most mesophilic organisms. Despite this resistance, the pathways haloarchaea use to respond to oxidative stress damage are similar to those of nonresistant organisms, suggesting that regulatory processes might be key to their robustness. Recently, small regulatory noncoding RNAs (sRNAs) were discovered in Archaea under a variety of environmental conditions. We report here the transcriptional landscape and functional roles of sRNAs in the regulation of the oxidative stress response of the model haloarchaeon Haloferax volcanii. Thousands of sRNAs, both intergenic and antisense, were discovered using strand-specific sRNA sequencing (sRNA-seq), comprising 25 to 30% of the total transcriptome under no-challenge and oxidative stress conditions, respectively. We identified hundreds of differentially expressed sRNAs in response to hydrogen peroxide-induced oxidative stress in H. volcanii. The targets of a group of antisense sRNAs decreased in expression when these sRNAs were upregulated, suggesting that sRNAs are potentially playing a negative regulatory role on mRNA targets at the transcript level. Target enrichment of these antisense sRNAs included mRNAs involved in transposon mobility, chemotaxis signaling, peptidase activity, and transcription factors. IMPORTANCE While a substantial body of experimental work has been done to uncover the functions of small regulatory noncoding RNAs (sRNAs) in gene regulation in Bacteria and Eukarya, the functional roles of sRNAs in Archaea are still poorly understood. This study is the first to establish the regulatory effects of sRNAs on mRNAs during the oxidative stress response in the haloarchaeon Haloferax volcanii. Our work demonstrates that common principles for the response to a major cellular stress exist across the 3 domains of life while uncovering pathways that might be specific to the Archaea. This work also underscores the relevance of sRNAs in adaptation to extreme environmental conditions.
Collapse
|
15
|
Laye VJ, DasSarma S. An Antarctic Extreme Halophile and Its Polyextremophilic Enzyme: Effects of Perchlorate Salts. ASTROBIOLOGY 2018; 18:412-418. [PMID: 29189043 PMCID: PMC5910040 DOI: 10.1089/ast.2017.1766] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
Effects of perchlorate salts prevalent on the surface of Mars are of significant interest to astrobiology from the perspective of potential life on the Red Planet. Halorubrum lacusprofundi, a cold-adapted halophilic Antarctic archaeon, was able to grow anaerobically on 0.04 M concentration of perchlorate. With increasing concentrations of perchlorate, growth was inhibited, with half-maximal growth rate in ca. 0.3 M NaClO4 and 0.1 M Mg(ClO4)2 under aerobic conditions. Magnesium ions were also inhibitory for growth, but at considerably higher concentrations, with half-maximal growth rate above 1 M. For a purified halophilic β-galactosidase enzyme of H. lacusprofundi expressed in Halobacterium sp. NRC-1, 50% inhibition of catalytic activity was observed at 0.88 M NaClO4 and 0.13 M Mg(ClO4)2. Magnesium ions were a more potent inhibitor of the enzyme than of cell growth. Steady-state kinetic analysis showed that Mg(ClO4)2 acts as a mixed inhibitor (KI = 0.04 M), with magnesium alone being a competitive inhibitor (KI = 0.3 M) and perchlorate alone acting as a very weak noncompetitive inhibitor (KI = 2 M). Based on the estimated concentrations of perchlorate salts on the surface of Mars, our results show that neither sodium nor magnesium perchlorates would significantly inhibit growth and enzyme activity of halophiles. This is the first study of perchlorate effects on a purified enzyme. Key Words: Halophilic archaea-Perchlorate-Enzyme inhibition-Magnesium. Astrobiology 18, 412-418.
Collapse
Affiliation(s)
- Victoria J Laye
- University of Maryland School of Medicine, Institute of Marine and Environmental Technology , Baltimore, Maryland
| | - Shiladitya DasSarma
- University of Maryland School of Medicine, Institute of Marine and Environmental Technology , Baltimore, Maryland
| |
Collapse
|
16
|
McMillan LJ, Hwang S, Farah RE, Koh J, Chen S, Maupin-Furlow JA. Multiplex quantitative SILAC for analysis of archaeal proteomes: a case study of oxidative stress responses. Environ Microbiol 2017; 20:385-401. [PMID: 29194950 DOI: 10.1111/1462-2920.14014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/27/2017] [Accepted: 11/28/2017] [Indexed: 01/08/2023]
Abstract
Stable isotope labelling of amino acids in cell culture (SILAC) is a quantitative proteomic method that can illuminate new pathways used by cells to adapt to different lifestyles and niches. Archaea, while thriving in extreme environments and accounting for ∼20%-40% of the Earth's biomass, have not been analyzed with the full potential of SILAC. Here, we report SILAC for quantitative comparison of archaeal proteomes, using Haloferax volcanii as a model. A double auxotroph was generated that allowed for complete incorporation of 13 C/15 N-lysine and 13 C-arginine such that each peptide derived from trypsin digestion was labelled. This strain was found amenable to multiplex SILAC by case study of responses to oxidative stress by hypochlorite. A total of 2565 proteins was identified by LC-MS/MS analysis (q-value ≤ 0.01) that accounted for 64% of the theoretical proteome. Of these, 176 proteins were altered at least 1.5-fold (p-value < 0.05) in abundance during hypochlorite stress. Many of the differential proteins were of unknown function. Those of known function included transcription factor homologs related to oxidative stress by 3D-homology modelling and orthologous group comparisons. Thus, SILAC is found to be an ideal method for quantitative proteomics of archaea that holds promise to unravel gene function.
Collapse
Affiliation(s)
- Lana J McMillan
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Sungmin Hwang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Rawan E Farah
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA
| | - Sixue Chen
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32611, USA.,Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
17
|
DasSarma P, DasSarma S. Survival of microbes in Earth's stratosphere. Curr Opin Microbiol 2017; 43:24-30. [PMID: 29156444 DOI: 10.1016/j.mib.2017.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/01/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022]
Abstract
The remarkable survival of microorganisms high above the surface of the Earth is of increasing interest. At stratospheric levels, multiple stressors including ultraviolet and ionizing radiation, low temperatures, hypobaric conditions, extreme desiccation, and nutrient scarcity are all significant challenges. Our understanding of which microorganisms are capable of tolerating such stressful conditions has been addressed by stratospheric sample collection and survival assays, through launching and recovery, and exposure to simulated conditions in the laboratory. Here, we review stratospheric microbiology studies providing our current perspective on microbial life at extremely high altitudes and discuss implications for health and agriculture, climate change, planetary protection, and astrobiology.
Collapse
Affiliation(s)
- Priya DasSarma
- University of Maryland School of Medicine and Institute of Marine and Environmental Technology, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Shiladitya DasSarma
- University of Maryland School of Medicine and Institute of Marine and Environmental Technology, 701 East Pratt Street, Baltimore, MD 21202, USA.
| |
Collapse
|
18
|
Morten MJ, Gamsjaeger R, Cubeddu L, Kariawasam R, Peregrina J, Penedo JC, White MF. High-affinity RNA binding by a hyperthermophilic single-stranded DNA-binding protein. Extremophiles 2017; 21:369-379. [PMID: 28074284 PMCID: PMC5346138 DOI: 10.1007/s00792-016-0910-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/19/2016] [Indexed: 12/30/2022]
Abstract
Single-stranded DNA-binding proteins (SSBs), including replication protein A (RPA) in eukaryotes, play a central role in DNA replication, recombination, and repair. SSBs utilise an oligonucleotide/oligosaccharide-binding (OB) fold domain to bind DNA, and typically oligomerise in solution to bring multiple OB fold domains together in the functional SSB. SSBs from hyperthermophilic crenarchaea, such as Sulfolobus solfataricus, have an unusual structure with a single OB fold coupled to a flexible C-terminal tail. The OB fold resembles those in RPA, whilst the tail is reminiscent of bacterial SSBs and mediates interaction with other proteins. One paradigm in the field is that SSBs bind specifically to ssDNA and much less strongly to RNA, ensuring that their functions are restricted to DNA metabolism. Here, we use a combination of biochemical and biophysical approaches to demonstrate that the binding properties of S. solfataricus SSB are essentially identical for ssDNA and ssRNA. These features may represent an adaptation to a hyperthermophilic lifestyle, where DNA and RNA damage is a more frequent event.
Collapse
Affiliation(s)
- Michael J Morten
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Roland Gamsjaeger
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Liza Cubeddu
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Ruvini Kariawasam
- School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jose Peregrina
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - J Carlos Penedo
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, KY16 9ST, UK.
| |
Collapse
|
19
|
Leuko S, Rettberg P. The Effects of HZE Particles, γ and X-ray Radiation on the Survival and Genetic Integrity of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae. ASTROBIOLOGY 2017; 17:110-117. [PMID: 28151694 DOI: 10.1089/ast.2015.1458] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Three halophilic archaea, Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae, have been exposed to different regimes of simulated outer space ionizing radiation. Strains were exposed to high-energy heavy ion (HZE) particles, namely iron and argon ions, as well as to γ radiation (60Co) and X-rays, and the survival and the genetic integrity of the 16S rRNA gene were evaluated. Exposure to 1 kGy of argon or iron ions at the Heavy Ion Medical Accelerator in Chiba (HIMAC) facility at the National Institute for Radiological Sciences (NIRS) in Japan did not lead to a detectable loss in viability; only after exposure to 2 kGy of iron ions a decline in survival was observed. Furthermore, a delay in growth was manifested following exposure to 2 kGy iron ions. DNA integrity of the 16S rRNA was not compromised up to 1 kGy, with the exception of Hcc. hamelinensis following exposure to argon particles. All three strains showed a high resistance toward X-rays (exposed at the DLR in Cologne, Germany), where Hcc. hamelinensis and Hcc. morrhuae displayed better survival compared to Hbt. salinarum NRC-1. In all three organisms the DNA damage increased in a dose-dependent manner. To determine a biological endpoint for survival following exposure to γ radiation, strains were exposed to up to 112 kGy at the Beta-Gamma-Service GmbH (BGS) in Germany. Although all strains were incubated for up to 4 months, only Hcc. hamelinensis and Hcc. morrhuae recovered from 6 kGy of γ radiation. In comparison, Hbt. salinarum NRC-1 did not recover. The 16S rRNA gene integrity stayed remarkably well preserved up to 48 kGy for both halococci. This research presents novel data on the survival and genetic stability of three halophilic archaea following exposure to simulated outer space radiation. Key Words: Halophilic archaea-Radiation-Survival. Astrobiology 17, 110-117.
Collapse
Affiliation(s)
- Stefan Leuko
- Astrobiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| | - Petra Rettberg
- Astrobiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine , German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
20
|
Ranawat P, Rawat S. Stress response physiology of thermophiles. Arch Microbiol 2017; 199:391-414. [DOI: 10.1007/s00203-016-1331-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
|
21
|
Unraveling Fungal Radiation Resistance Regulatory Networks through the Genome-Wide Transcriptome and Genetic Analyses of Cryptococcus neoformans. mBio 2016; 7:mBio.01483-16. [PMID: 27899501 PMCID: PMC5137497 DOI: 10.1128/mbio.01483-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The basidiomycetous fungus Cryptococcus neoformans has been known to be highly radiation resistant and has been found in fatal radioactive environments such as the damaged nuclear reactor at Chernobyl. To elucidate the mechanisms underlying the radiation resistance phenotype of C. neoformans, we identified genes affected by gamma radiation through genome-wide transcriptome analysis and characterized their functions. We found that genes involved in DNA damage repair systems were upregulated in response to gamma radiation. Particularly, deletion of recombinase RAD51 and two DNA-dependent ATPase genes, RAD54 and RDH54, increased cellular susceptibility to both gamma radiation and DNA-damaging agents. A variety of oxidative stress response genes were also upregulated. Among them, sulfiredoxin contributed to gamma radiation resistance in a peroxiredoxin/thioredoxin-independent manner. Furthermore, we found that genes involved in molecular chaperone expression, ubiquitination systems, and autophagy were induced, whereas genes involved in the biosynthesis of proteins and fatty acids/sterols were downregulated. Most importantly, we discovered a number of novel C. neoformans genes, the expression of which was modulated by gamma radiation exposure, and their deletion rendered cells susceptible to gamma radiation exposure, as well as DNA damage insults. Among these genes, we found that a unique transcription factor containing the basic leucine zipper domain, named Bdr1, served as a regulator of the gamma radiation resistance of C. neoformans by controlling expression of DNA repair genes, and its expression was regulated by the evolutionarily conserved DNA damage response protein kinase Rad53. Taken together, the current transcriptome and functional analyses contribute to the understanding of the unique molecular mechanism of the radiation-resistant fungus C. neoformans. Although there are no natural environments under intense radiation, some living organisms have been found to show high radiation resistance. Organisms harboring the ability of radiation resistance have unique regulatory networks to overcome this stress. Cryptococcus neoformans is one of the radiation-resistant fungi and is found in highly radioactive environments. However, it remains elusive how radiation-resistant eukaryotic microorganisms work differentially from radiation-sensitive ones. Here, we performed transcriptome analysis of C. neoformans to explore gene expression profiles after gamma radiation exposure and functionally characterized some of identified radiation resistance genes. Notably, we identified a novel regulator of radiation resistance, named Bdr1 (a bZIP TF for DNA damage response 1), which is a transcription factor (TF) that is not closely homologous to any known TF and is transcriptionally controlled by the Rad53 kinase. Therefore, our work could shed light on understanding not only the radiation response but also the radiation resistance mechanism of C. neoformans.
Collapse
|
22
|
Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud ME, Paulino-Lima IG, Singer K, Walther-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azúa-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kaçar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stüeken EE, Tamez-Hidalgo P, Imari Walker S, Wong T. The Astrobiology Primer v2.0. ASTROBIOLOGY 2016; 16:561-653. [PMID: 27532777 PMCID: PMC5008114 DOI: 10.1089/ast.2015.1460] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Shawn D Domagal-Goldman
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland, USA
- 2 Virtual Planetary Laboratory , Seattle, Washington, USA
| | - Katherine E Wright
- 3 University of Colorado at Boulder , Colorado, USA
- 4 Present address: UK Space Agency, UK
| | - Katarzyna Adamala
- 5 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota, USA
| | | | - Jade Bond
- 7 Department of Physics, University of New South Wales , Sydney, Australia
| | | | | | - Kennda Lynch
- 10 Division of Biological Sciences, University of Montana , Missoula, Montana, USA
| | - Marie-Eve Naud
- 11 Institute for research on exoplanets (iREx) , Université de Montréal, Montréal, Canada
| | - Ivan G Paulino-Lima
- 12 Universities Space Research Association , Mountain View, California, USA
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | - Kelsi Singer
- 14 Southwest Research Institute , Boulder, Colorado, USA
| | | | - Ximena C Abrevaya
- 16 Instituto de Astronomía y Física del Espacio (IAFE) , UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rika Anderson
- 17 Department of Biology, Carleton College , Northfield, Minnesota, USA
| | - Giada Arney
- 18 University of Washington Astronomy Department and Astrobiology Program , Seattle, Washington, USA
| | - Dimitra Atri
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Jeff S Bowman
- 19 Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York, USA
| | | | | | - Regina Carns
- 22 Polar Science Center, Applied Physics Laboratory, University of Washington , Seattle, Washington, USA
| | - Aditya Chopra
- 23 Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Jesse Colangelo-Lillis
- 24 Earth and Planetary Science, McGill University , and the McGill Space Institute, Montréal, Canada
| | | | - Julia DeMarines
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Carie Frantz
- 27 Department of Geosciences, Weber State University , Ogden, Utah, USA
| | - Eduardo de la Fuente
- 28 IAM-Departamento de Fisica, CUCEI , Universidad de Guadalajara, Guadalajara, México
| | - Douglas Galante
- 29 Brazilian Synchrotron Light Laboratory , Campinas, Brazil
| | - Jennifer Glass
- 30 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia , USA
| | | | | | - Colin Goldblatt
- 33 School of Earth and Ocean Sciences, University of Victoria , Victoria, Canada
| | - Rachel Horak
- 34 American Society for Microbiology , Washington, DC, USA
| | | | - Betül Kaçar
- 36 Harvard University , Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
| | - Akos Kereszturi
- 37 Research Centre for Astronomy and Earth Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | - Emily Knowles
- 38 Johnson & Wales University , Denver, Colorado, USA
| | - Paul Mayeur
- 39 Rensselaer Polytechnic Institute , Troy, New York, USA
| | - Shawn McGlynn
- 40 Earth Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Yamila Miguel
- 41 Laboratoire Lagrange, UMR 7293, Université Nice Sophia Antipolis , CNRS, Observatoire de la Côte d'Azur, Nice, France
| | | | - Catherine Neish
- 43 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Lena Noack
- 44 Royal Observatory of Belgium , Brussels, Belgium
| | - Sarah Rugheimer
- 45 Department of Astronomy, Harvard University , Cambridge, Massachusetts, USA
- 46 University of St. Andrews , St. Andrews, UK
| | - Eva E Stüeken
- 47 University of Washington , Seattle, Washington, USA
- 48 University of California , Riverside, California, USA
| | | | - Sara Imari Walker
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
- 50 School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University , Tempe, Arizona, USA
| | - Teresa Wong
- 51 Department of Earth and Planetary Sciences, Washington University in St. Louis , St. Louis, Missouri, USA
| |
Collapse
|
23
|
Jaakkola ST, Pfeiffer F, Ravantti JJ, Guo Q, Liu Y, Chen X, Ma H, Yang C, Oksanen HM, Bamford DH. The complete genome of a viable archaeum isolated from 123-million-year-old rock salt. Environ Microbiol 2016; 18:565-79. [DOI: 10.1111/1462-2920.13130] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 12/01/2022]
Affiliation(s)
- Salla T. Jaakkola
- Department of Biosciences; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Friedhelm Pfeiffer
- Department of Membrane Biochemistry; Max Planck Institute of Biochemistry; München Germany
| | - Janne J. Ravantti
- Department of Biosciences; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Qinggong Guo
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Wuhan China
| | - Ying Liu
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Wuhan China
| | - Xiangdong Chen
- State Key Laboratory of Virology; College of Life Sciences; Wuhan University; Wuhan China
| | - Hongling Ma
- State Key Laboratory of Geomechanics and Geotechnical Engineering; Institute of Rock and Soil Mechanics; The Chinese Academy of Science; Wuhan China
| | - Chunhe Yang
- State Key Laboratory of Geomechanics and Geotechnical Engineering; Institute of Rock and Soil Mechanics; The Chinese Academy of Science; Wuhan China
| | - Hanna M. Oksanen
- Department of Biosciences; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Dennis H. Bamford
- Department of Biosciences; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| |
Collapse
|
24
|
Unraveling the mechanisms of extreme radioresistance in prokaryotes: Lessons from nature. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 767:92-107. [PMID: 27036069 DOI: 10.1016/j.mrrev.2015.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 10/29/2015] [Accepted: 10/30/2015] [Indexed: 12/27/2022]
Abstract
The last 50 years, a variety of archaea and bacteria able to withstand extremely high doses of ionizing radiation, have been discovered. Several lines of evidence suggest a variety of mechanisms explaining the extreme radioresistance of microorganisms found usually in isolated environments on Earth. These findings are discussed thoroughly in this study. Although none of the strategies discussed here, appear to be universal against ionizing radiation, a general trend was found. There are two cellular mechanisms by which radioresistance is achieved: (a) protection of the proteome and DNA from damage induced by ionizing radiation and (b) recruitment of advanced and highly sophisticated DNA repair mechanisms, in order to reconstruct a fully functional genome. In this review, we critically discuss various protecting (antioxidant enzymes, presence or absence of certain elements, high metal ion or salt concentration etc.) and repair (Homologous Recombination, Single-Strand Annealing, Extended Synthesis-Dependent Strand Annealing) mechanisms that have been proposed to account for the extraordinary abilities of radioresistant organisms and the homologous radioresistance signature genes in these organisms. In addition, and based on structural comparative analysis of major radioresistant organisms, we suggest future directions and how humans could innately improve their resistance to radiation-induced toxicity, based on this knowledge.
Collapse
|
25
|
Leuko S, Domingos C, Parpart A, Reitz G, Rettberg P. The Survival and Resistance of Halobacterium salinarum NRC-1, Halococcus hamelinensis, and Halococcus morrhuae to Simulated Outer Space Solar Radiation. ASTROBIOLOGY 2015; 15:987-997. [PMID: 26539978 DOI: 10.1089/ast.2015.1310] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Solar radiation is among the most prominent stress factors organisms face during space travel and possibly on other planets. Our analysis of three different halophilic archaea, namely Halobacterium salinarum NRC-1, Halococcus morrhuae, and Halococcus hamelinensis, which were exposed to simulated solar radiation in either dried or liquid state, showed tremendous differences in tolerance and survivability. We found that Hcc. hamelinensis is not able to withstand high fluences of simulated solar radiation compared to the other tested organisms. These results can be correlated to significant differences in genomic integrity following exposure, as visualized by random amplified polymorphic DNA (RAPD)-PCR. In contrast to the other two tested strains, Hcc. hamelinensis accumulates compatible solutes such as trehalose for osmoprotection. The addition of 100 mM trehalose to the growth medium of Hcc. hamelinensis improved its survivability following exposure. Exposure of cells in liquid at different temperatures suggests that Hbt. salinarum NRC-1 is actively repairing cellular and DNA damage during exposure, whereas Hcc. morrhuae exhibits no difference in survival. For Hcc. morrhuae, the high resistance against simulated solar radiation may be explained with the formation of cell clusters. Our experiments showed that these clusters shield cells on the inside against simulated solar radiation, which results in better survival rates at higher fluences when compared to Hbt. salinarum NRC-1 and Hcc. hamelinensis. Overall, this study shows that some halophilic archaea are highly resistant to simulated solar radiation and that they are of high astrobiological significance. KEY WORDS Halophiles-Solar radiation-Stress resistance-Survival.
Collapse
Affiliation(s)
- S Leuko
- 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin , Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Köln, Germany
| | - C Domingos
- 2 Faculty of Sciences, University of Lisbon , Lisbon, Portugal
| | - A Parpart
- 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin , Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Köln, Germany
| | - G Reitz
- 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin , Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Köln, Germany
| | - P Rettberg
- 1 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin , Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Köln, Germany
| |
Collapse
|
26
|
Abstract
Halophilic archaebacteria (Haloarchaea) can survive extreme desiccation, starvation and radiation, sometimes apparently for millions of years. Several of the strategies that are involved appear specific for Haloarchaea (for example, the formation of halomucin, survival in fluid inclusions of halite), and some are known from other prokaryotes (dwarfing of cells, reduction of ATP). Several newly-discovered haloarchaeal strategies that were inferred to possibly promote long-term survival—halomucin, polyploidy, usage of DNA as a phosphate storage polymer, production of spherical dormant stages—remain to be characterized in detail. More information on potential strategies is desirable, since evidence for the presence of halite on Mars and on several moons in the solar system increased interest in halophiles with respect to the search for extraterrestrial life. This review deals in particular with novel findings and hypotheses on haloarchaeal long-term survival.
Collapse
|
27
|
Soppa J. Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 2015; 24:409-19. [PMID: 25732342 DOI: 10.1159/000368855] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During recent years, it has become clear that many species of archaea and bacteria are polyploid and contain more than 10 copies of their chromosome. In this contribution, eight examples are discussed to highlight different aspects of polyploidy in prokaryotes. The species discussed are the bacteria Azotobacter vinelandii, Deinococcus radiodurans, Sinorhizobium meliloti, and Epulopiscium as well as the archaea Methanocaldococcus jannaschii, Methanococcus maripaludis, Haloferax volcanii, and haloarchaeal isolates from salt deposits. The topics include possible laboratory artifacts, resistance against double-strand breaks, long-term survival, relaxation of DNA segregation and septum formation, enforced polyploidy by a eukaryotic host, genome equalization by gene conversion, and the nongenetic usage of genomic DNA as a phosphate storage polymer. Together, the selected topics give an overview of the biodiversity of polyploidy in archaea and bacteria.
Collapse
Affiliation(s)
- Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
28
|
Moran-Reyna A, Coker JA. The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea. F1000Res 2014; 3:168. [PMID: 25285207 PMCID: PMC4176423 DOI: 10.12688/f1000research.4789.2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2014] [Indexed: 12/03/2022] Open
Abstract
The halophilic archaea (haloarchaea) live in saline environments, which are found across the globe. In addition to salinity, these niches can be quite dynamic and experience extreme conditions such as low oxygen content, radiation (gamma and UV), pH and temperature. However, of all the naturally occurring stresses faced by the haloarchaea, only one, pH, has not been previously investigated in regard to the changes induced in the transcriptome. Therefore, we endeavored to determine the responses in three haloarchaea:
Halorubrum lacusprofundi (Hla),
Haloferax volcanii (Hvo), and
Halobacterium sp. NRC-1 (NRC-1) to growth under acidic and alkaline pH. Our observations showed that the transcriptomes of Hvo and NRC-1 regulated stress, motility, and ABC transporters in a similar manner, which is in line with previous reports from other prokaryotes when grown in an acidic environment. However, the pattern for Hla was more species specific. For alkaline stress, all three haloarchaea responded in a manner similar to well-studied archaea and bacteria showing the haloarchaeal response was general to prokaryotes. Additionally, we performed an analysis on the changes in the transcriptomes of the three haloarchaea when shifting from one pH extreme to the other. The results showed that the transcriptomes of all three haloarchaea respond more similarly when moving from alkaline to acidic conditions compared to a shift in the opposite direction. Interestingly, our studies also showed that individual genes of multiple paralogous gene families (
tbp,
tfb,
orc/
cdc6, etc.) found in the haloarchaea were regulated under specific stresses thereby providing evidence that they modulate the response to various environmental stresses. The studies described here are the first to catalog the changes in the haloarchaeal transcriptomes under growth in extreme pH and help us understand how life is able to thrive under all conditions present on Earth and, if present, on extraterrestrial bodies as well.
Collapse
Affiliation(s)
- Aida Moran-Reyna
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA
| | - James A Coker
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35294-1170, USA ; The Graduate School, University of Maryland, University College, Largo, MD, 20774, USA
| |
Collapse
|
29
|
Zerulla K, Soppa J. Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 2014; 5:274. [PMID: 24982654 PMCID: PMC4056108 DOI: 10.3389/fmicb.2014.00274] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/19/2014] [Indexed: 02/02/2023] Open
Abstract
The investigated haloarchaeal species, Halobacterium salinarum, Haloferax mediterranei, and H. volcanii, have all been shown to be polyploid. They contain several replicons that have independent copy number regulation, and most have a higher copy number during exponential growth phase than in stationary phase. The possible evolutionary advantages of polyploidy for haloarchaea, most of which have experimental support for at least one species, are discussed. These advantages include a low mutation rate and high resistance toward X-ray irradiation and desiccation, which depend on homologous recombination. For H. volcanii, it has been shown that gene conversion operates in the absence of selection, which leads to the equalization of genome copies. On the other hand, selective forces might lead to heterozygous cells, which have been verified in the laboratory. Additional advantages of polyploidy are survival over geological times in halite deposits as well as at extreme conditions on earth and at simulated Mars conditions. Recently, it was found that H. volcanii uses genomic DNA as genetic material and as a storage polymer for phosphate. In the absence of phosphate, H. volcanii dramatically decreases its genome copy number, thereby enabling cell multiplication, but diminishing the genetic advantages of polyploidy. Stable storage of phosphate is proposed as an alternative driving force for the emergence of DNA in early evolution. Several additional potential advantages of polyploidy are discussed that have not been addressed experimentally for haloarchaea. An outlook summarizes selected current trends and possible future developments.
Collapse
Affiliation(s)
- Karolin Zerulla
- Biocentre, Institute for Molecular Biosciences, Department of Biological Sciences, Goethe University Frankfurt Frankfurt, Germany
| | - Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Department of Biological Sciences, Goethe University Frankfurt Frankfurt, Germany
| |
Collapse
|
30
|
Enhanced Radiosensitivity and G2/M Arrest were Observed in Radioresistant Esophageal Cancer Cells by Knocking Down RPA Expression. Cell Biochem Biophys 2014; 70:887-91. [DOI: 10.1007/s12013-014-9995-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
31
|
Leuko S, Rettberg P, Pontifex AL, Burns BP. On the response of halophilic archaea to space conditions. Life (Basel) 2014; 4:66-76. [PMID: 25370029 PMCID: PMC4187150 DOI: 10.3390/life4010066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are ubiquitous and can be found in almost every habitat and ecological niche on Earth. They thrive and survive in a broad spectrum of environments and adapt to rapidly changing external conditions. It is of great interest to investigate how microbes adapt to different extreme environments and with modern human space travel, we added a new extreme environment: outer space. Within the last 50 years, technology has provided tools for transporting microbial life beyond Earth's protective shield in order to study in situ responses to selected conditions of space. This review will focus on halophilic archaea, as, due to their ability to survive in extremes, they are often considered a model group of organisms to study responses to the harsh conditions associated with space. We discuss ground-based simulations, as well as space experiments, utilizing archaea, examining responses and/or resistance to the effects of microgravity and UV in particular. Several halophilic archaea (e.g., Halorubrum chaoviator) have been exposed to simulated and actual space conditions and their survival has been determined as well as the protective effects of halite shown. Finally, the intriguing potential of archaea to survive on other planets or embedded in a meteorite is postulated.
Collapse
Affiliation(s)
- Stefan Leuko
- Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin, Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Linder Höhe, Köln 51147, Germany.
| | - Petra Rettberg
- Deutsches Zentrum für Luft- und Raumfahrt, Institut für Luft- und Raumfahrtmedizin, Abteilung Strahlenbiologie, Arbeitsgruppe Astrobiologie, Linder Höhe, Köln 51147, Germany.
| | - Ashleigh L Pontifex
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
32
|
Zhou X, Lu XH, Li XH, Xin ZJ, Xie JR, Zhao MR, Wang L, Du WY, Liang JP. Radiation induces acid tolerance of Clostridium tyrobutyricum and enhances bioproduction of butyric acid through a metabolic switch. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:22. [PMID: 24533663 PMCID: PMC3931924 DOI: 10.1186/1754-6834-7-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Butyric acid as a renewable resource has become an increasingly attractive alternative to petroleum-based fuels. Clostridium tyrobutyricum ATCC 25755T is well documented as a fermentation strain for the production of acids. However, it has been reported that butyrate inhibits its growth, and the accumulation of acetate also inhibits biomass synthesis, making production of butyric acid from conventional fermentation processes economically challenging. The present study aimed to identify whether irradiation of C. tyrobutyricum cells makes them more tolerant to butyric acid inhibition and increases the production of butyrate compared with wild type. RESULTS In this work, the fermentation kinetics of C. tyrobutyricum cultures after being classically adapted for growth at 3.6, 7.2 and 10.8 g·L-1 equivalents were studied. The results showed that, regardless of the irradiation used, there was a gradual inhibition of cell growth at butyric acid concentrations above 10.8 g·L-1, with no growth observed at butyric acid concentrations above 3.6 g·L-1 for the wild-type strain during the first 54 h of fermentation. The sodium dodecyl sulfate polyacrylamide gel electrophoresis also showed significantly different expression levels of proteins with molecular mass around the wild-type and irradiated strains. The results showed that the proportion of proteins with molecular weights of 85 and 106 kDa was much higher for the irradiated strains. The specific growth rate decreased by 50% (from 0.42 to 0.21 h-1) and the final concentration of butyrate increased by 68% (from 22.7 to 33.4 g·L-1) for the strain irradiated at 114 AMeV and 40 Gy compared with the wild-type strains. CONCLUSIONS This study demonstrates that butyric acid production from glucose can be significantly improved and enhanced by using 12C6+ heavy ion-irradiated C. tyrobutyricum. The approach is economical, making it competitive compared with similar fermentation processes. It may prove useful as a first step in a combined method employing long-term continuous fermentation of acid-production processes.
Collapse
Affiliation(s)
- Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Xi-Hong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Xue-Hu Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Zhi-Jun Xin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Jia-Rong Xie
- China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Mei-Rong Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Liang Wang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Wen-Yue Du
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| | - Jian-Ping Liang
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, Gansu 730000, PR China
| |
Collapse
|
33
|
Bioengineering radioresistance by overproduction of RPA, a mammalian-type single-stranded DNA-binding protein, in a halophilic archaeon. Appl Microbiol Biotechnol 2013; 98:1737-47. [PMID: 24292079 PMCID: PMC4096848 DOI: 10.1007/s00253-013-5368-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 10/21/2013] [Accepted: 10/25/2013] [Indexed: 10/26/2022]
Abstract
Halobacterium sp. NRC-1 is a wild-type extremophilic microbe that is naturally tolerant to high levels of ionizing radiation. Mutants of strain NRC-1 with even higher levels of resistance to ionizing radiation, named RAD, were previously isolated after selecting survival to extremely high doses of ionizing radiation. These RAD mutants displayed higher transcription levels for the rfa3 operon, coding two subunits of the RPA-like putative single-stranded binding protein, rfa3 and rfa8, and a third downstream gene, ral. In order to bioengineer cells with increased tolerance to ionizing radiation and further explore the genetic basis of the RAD phenotype, we placed the rfa3 operon under control of the gvpA promoter in a Halobacterium expression plasmid, pDRK1. When pDRK1 was introduced into the wild-type NRC-1 strain, overproduction of the Rfa3 and Rfa8 proteins was observed by Western blotting and proteomic analysis. The Halobacterium strains expressing Rfa3 and Rfa8 also displayed improved survival after exposure to ionizing radiation, similar to the RAD mutants, when compared to wild-type strain NRC-1. The Rfa3 and Rfa8 proteins co-purified by affinity chromatography on single-stranded DNA cellulose columns, confirming the ability of the proteins to bind to single-stranded DNA as well as their relative abundance in the wild-type, RAD mutants, and rfa3 operon overexpression strains. These results clearly establish that overexpression of haloarchaeal RPA promotes ionizing radiation resistance in Halobacterium sp. NRC-1 and that the Rfa3 and Rfa8 subunits bind single-stranded DNA. Bioengineering cells with increased levels of ionizing radiation resistance may have potential value in medical and environmental applications.
Collapse
|
34
|
Lockhart JS, DeVeaux LC. The essential role of the Deinococcus radiodurans ssb gene in cell survival and radiation tolerance. PLoS One 2013; 8:e71651. [PMID: 23951213 PMCID: PMC3739723 DOI: 10.1371/journal.pone.0071651] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022] Open
Abstract
Recent evidence has implicated single-stranded DNA-binding protein (SSB) expression level as an important factor in microbial radiation resistance. The genome of the extremely radiation resistant bacterium Deinococcus radiodurans contains genes for two SSB homologs: the homodimeric, canonical Ssb, encoded by the gene ssb, and a novel pentameric protein encoded by the gene ddrB. ddrB is highly induced upon exposure to radiation, and deletions result in decreased radiation-resistance, suggesting an integral role of the protein in the extreme resistance exhibited by this organism. Although expression of ssb is also induced after irradiation, Ssb is thought to be involved primarily in replication. In this study, we demonstrate that Ssb in D. radiodurans is essential for cell survival. The lethality of an ssb deletion cannot be complemented by providing ddrB in trans. In addition, the radiation-sensitive phenotype conferred by a ddrB deletion is not alleviated by providing ssb in trans. By altering expression of the ssb gene, we also show that lower levels of transcription are required for optimal growth than are necessary for high radiation resistance. When expression is reduced to that of E. coli, ionizing radiation resistance is similarly reduced. UV resistance is also decreased under low ssb transcript levels where growth is unimpaired. These results indicate that the expression of ssb is a key component of both normal cellular metabolism as well as pathways responsible for the high radiation tolerance of D. radiodurans.
Collapse
Affiliation(s)
- J. Scott Lockhart
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
| | - Linda C. DeVeaux
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho, United States of America
- * E-mail:
| |
Collapse
|
35
|
Abstract
Several species of haloarchaea have been shown to be polyploid and thus this trait might be typical for and widespread in haloarchaea. In the present paper, nine different possible evolutionary advantages of polyploidy for haloarchaea are discussed, including low mutation rate, radiation/desiccation resistance, gene redundancy and survival over geological times and at extraterrestrial sites. Experimental indications exist for all but one of these evolutionary advantages. Several of the advantages require gene conversion, which has been shown to be present and active in haloarchaea.
Collapse
|
36
|
Effects of intracellular Mn on the radiation resistance of the halophilic archaeon Halobacterium salinarum. Extremophiles 2013; 17:485-97. [DOI: 10.1007/s00792-013-0533-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 03/07/2013] [Indexed: 02/01/2023]
|
37
|
Radiation Resistance in Extremophiles: Fending Off Multiple Attacks. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2013. [DOI: 10.1007/978-94-007-6488-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Fröls S, Dyall-Smith M, Pfeifer F. Biofilm formation by haloarchaea. Environ Microbiol 2012; 14:3159-74. [DOI: 10.1111/j.1462-2920.2012.02895.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Sabrina Fröls
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| | - Mike Dyall-Smith
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; 2678; Australia
| | - Felicitas Pfeifer
- Department of Biology; Technische Universität Darmstadt; Schnittspahnstrasse 10; 64287; Darmstadt; Germany
| |
Collapse
|
39
|
Genome-wide responses of the model archaeon Halobacterium sp. strain NRC-1 to oxygen limitation. J Bacteriol 2012; 194:5530-7. [PMID: 22865851 DOI: 10.1128/jb.01153-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As part of a comprehensive postgenomic investigation of the model archaeon Halobacterium sp. strain NRC-1, we used whole-genome DNA microarrays to compare transcriptional profiles of cells grown under anaerobic or aerobic conditions. When anaerobic growth supported by arginine fermentation was compared to aerobic growth, genes for arginine fermentation (arc) and anaerobic respiration (dms), using trimethylamine N-oxide (TMAO) as the terminal electron acceptor, were highly upregulated, as was the bop gene, required for phototrophic growth. When arginine fermentation was compared to anaerobic respiration with TMAO, the arc and dms genes were both induced with arginine, while TMAO induced the bop gene and major gas vesicle protein (gvpAC) genes specifying buoyant gas vesicles. Anaerobic conditions with either TMAO or arginine also upregulated the cba genes, encoding one of three cytochrome oxidases. In-frame deletion of two COG3413 family regulatory genes, bat and dmsR, showed downregulation of the bop gene cluster and loss of purple membrane synthesis and downregulation of the dms operon and loss of anaerobic respiration capability, respectively. Bioinformatic analysis identified additional regulatory and sensor genes that are likely involved in the full range of cellular responses to oxygen limitation. Our results show that the Halobacterium sp. has evolved a carefully orchestrated set of responses to oxygen limitation. As conditions become more reducing, cells progressively increase buoyancy, as well as capabilities for phototrophy, scavenging of molecular oxygen, anaerobic respiration, and fermentation.
Collapse
|
40
|
Novel 16S rRNA based PCR method targeting Deinococcus spp. and its application to assess the diversity of deinococcal populations in environmental samples. J Microbiol Methods 2012; 90:197-205. [PMID: 22609328 DOI: 10.1016/j.mimet.2012.05.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 11/23/2022]
Abstract
The members of the genus Deinococcus are extensively studied because of their exemplary radiation resistance. Both ionizing and non-ionizing rays are routinely employed to select upon the radiation resistant deinococcal population and isolate them from the majority of radiation sensitive population. There are no studies on the development of molecular tools for the rapid detection and identification of deinococci from a mixed population without causing the bias of radiation enrichment. Here we present a Deinococcus specific two-step hemi-nested PCR for the rapid detection of deinococci from environmental samples. The method is sensitive and specific to detect deinococci without radiation exposure of the sample. The new protocol was successfully employed to detect deinococci from several soil samples from different geographical regions of India. The PCR method could be adapted to a three-step protocol to study the diversity of the environmental deinococcal population by denaturing gradient gel electrophoresis (DGGE). Sequence analysis of the DGGE bands revealed that the samples harbor diverse populations of deinococci, many of which were not recovered by culturing and may represent novel clades. We demonstrate that the genus specific primers are also suitable for the rapid identification of the bacterial isolates that are obtained from a typical radiation enrichment isolation technique. Therefore the primers and the protocols described in this study can be used to study deinococcal diversity from environmental samples and can be employed for the rapid detection of deinococci in samples or identifying pure culture isolates as Deinococcus species.
Collapse
|
41
|
Capes MD, DasSarma P, DasSarma S. The core and unique proteins of haloarchaea. BMC Genomics 2012; 13:39. [PMID: 22272718 PMCID: PMC3287961 DOI: 10.1186/1471-2164-13-39] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/24/2012] [Indexed: 11/10/2022] Open
Abstract
Background Since the first genome of a halophilic archaeon was sequenced in 2000, biologists have been advancing the understanding of genomic characteristics that allow for survival in the harsh natural environments of these organisms. An increase in protein acidity and GC-bias in the genome have been implicated as factors in tolerance to extreme salinity, desiccation, and high solar radiation. However, few previous attempts have been made to identify novel genes that would permit survival in such extreme conditions. Results With the recent release of several new complete haloarchaeal genome sequences, we have conducted a comprehensive comparative genomic analysis focusing on the identification of unique haloarchaeal conserved proteins that likely play key roles in environmental adaptation. Using bioinformatic methods, we have clustered 31,312 predicted proteins from nine haloarchaeal genomes into 4,455 haloarchaeal orthologous groups (HOGs). We assigned likely functions by association with established COG and KOG databases in NCBI. After identifying homologs in four additional haloarchaeal genomes, we determined that there were 784 core haloarchaeal protein clusters (cHOGs), of which 83 clusters were found primarily in haloarchaea. Further analysis found that 55 clusters were truly unique (tucHOGs) to haloarchaea and qualify as signature proteins while 28 were nearly unique (nucHOGs), the vast majority of which were coded for on the haloarchaeal chromosomes. Of the signature proteins, only one example with any predicted function, Ral, involved in desiccation/radiation tolerance in Halobacterium sp. NRC-1, was identified. Among the core clusters, 33% was predicted to function in metabolism, 25% in information transfer and storage, 10% in cell processes and signaling, and 22% belong to poorly characterized or general function groups. Conclusion Our studies have established conserved groups of nearly 800 protein clusters present in all haloarchaea, with a subset of 55 which are predicted to be accessory proteins that may be critical or essential for success in an extreme environment. These studies support core and signature genes and proteins as valuable concepts for understanding phylogenetic and phenotypic characteristics of coherent groups of organisms.
Collapse
Affiliation(s)
- Melinda D Capes
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland, 701 East Pratt Street, Baltimore, MD 21202 USA
| | | | | |
Collapse
|
42
|
Rolfsmeier ML, Laughery MF, Haseltine CA. Repair of DNA Double-Strand Breaks Induced by Ionizing Radiation Damage Correlates with Upregulation of Homologous Recombination Genes in Sulfolobus solfataricus. J Mol Biol 2011; 414:485-98. [DOI: 10.1016/j.jmb.2011.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 10/05/2011] [Accepted: 10/12/2011] [Indexed: 10/16/2022]
|
43
|
Skowyra A, MacNeill SA. Identification of essential and non-essential single-stranded DNA-binding proteins in a model archaeal organism. Nucleic Acids Res 2011; 40:1077-90. [PMID: 21976728 PMCID: PMC3273820 DOI: 10.1093/nar/gkr838] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) play vital roles in all aspects of DNA metabolism in all three domains of life and are characterized by the presence of one or more OB fold ssDNA-binding domains. Here, using the genetically tractable euryarchaeon Haloferax volcanii as a model, we present the first genetic analysis of SSB function in the archaea. We show that genes encoding the OB fold and zinc finger-containing RpaA1 and RpaB1 proteins are individually non-essential for cell viability but share an essential function, whereas the gene encoding the triple OB fold RpaC protein is essential. Loss of RpaC function can however be rescued by elevated expression of RpaB, indicative of functional overlap between the two classes of haloarchaeal SSB. Deletion analysis is used to demonstrate important roles for individual OB folds in RpaC and to show that conserved N- and C-terminal domains are required for efficient repair of DNA damage. Consistent with a role for RpaC in DNA repair, elevated expression of this protein leads to enhanced resistance to DNA damage. Taken together, our results offer important insights into archaeal SSB function and establish the haloarchaea as a valuable model for further studies.
Collapse
Affiliation(s)
- Agnieszka Skowyra
- School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9TF, UK
| | | |
Collapse
|
44
|
Growth phase-dependent UV-C resistance of Bacillus subtilis: data from a short-term evolution experiment. Arch Microbiol 2011; 193:823-32. [DOI: 10.1007/s00203-011-0722-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/25/2011] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
|
45
|
Gramain A, Díaz GC, Demergasso C, Lowenstein TK, McGenity TJ. Archaeal diversity along a subterranean salt core from the Salar Grande (Chile). Environ Microbiol 2011; 13:2105-21. [DOI: 10.1111/j.1462-2920.2011.02435.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
|
47
|
Capes MD, Coker JA, Gessler R, Grinblat-Huse V, DasSarma SL, Jacob CG, Kim JM, DasSarma P, DasSarma S. The information transfer system of halophilic archaea. Plasmid 2010; 65:77-101. [PMID: 21094181 DOI: 10.1016/j.plasmid.2010.11.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Information transfer is fundamental to all life forms. In the third domain of life, the archaea, many of the genes functioning in these processes are similar to their eukaryotic counterparts, including DNA replication and repair, basal transcription, and translation genes, while many transcriptional regulators and the overall genome structure are more bacterial-like. Among halophilic (salt-loving) archaea, the genomes commonly include extrachromosomal elements, many of which are large megaplasmids or minichromosomes. With the sequencing of genomes representing ten different genera of halophilic archaea and the availability of genetic systems in two diverse models, Halobacterium sp. NRC-1 and Haloferax volcanii, a large number of genes have now been annotated, classified, and studied. Here, we review the comparative genomic, genetic, and biochemical work primarily aimed at the information transfer system of halophilic archaea, highlighting gene conservation and differences in the chromosomes and the large extrachromosomal elements among these organisms.
Collapse
Affiliation(s)
- Melinda D Capes
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Previous studies revealed that one species of methanogenic archaea, Methanocaldococcus jannaschii, is polyploid, while a second species, Methanothermobacter thermoautotrophicus, is diploid. To further investigate the distribution of ploidy in methanogenic archaea, species of two additional genera-Methanosarcina acetivorans and Methanococcus maripaludis-were investigated. M. acetivorans was found to be polyploid during fast growth (t(D) = 6 h; 17 genome copies) and oligoploid during slow growth (doubling time = 49 h; 3 genome copies). M. maripaludis has the highest ploidy level found for any archaeal species, with up to 55 genome copies in exponential phase and ca. 30 in stationary phase. A compilation of archaeal species with quantified ploidy levels reveals a clear dichotomy between Euryarchaeota and Crenarchaeota: none of seven euryarchaeal species of six genera is monoploid (haploid), while, in contrast, all six crenarchaeal species of four genera are monoploid, indicating significant genetic differences between these two kingdoms. Polyploidy in asexual species should lead to accumulation of inactivating mutations until the number of intact chromosomes per cell drops to zero (called "Muller's ratchet"). A mechanism to equalize the genome copies, such as gene conversion, would counteract this phenomenon. Making use of a previously constructed heterozygous mutant strain of the polyploid M. maripaludis we could show that in the absence of selection very fast equalization of genomes in M. maripaludis took place probably via a gene conversion mechanism. In addition, it was shown that the velocity of this phenomenon is inversely correlated to the strength of selection.
Collapse
|
49
|
Leuko S, Neilan BA, Burns BP, Walter MR, Rothschild LJ. Molecular assessment of UVC radiation-induced DNA damage repair in the stromatolitic halophilic archaeon, Halococcus hamelinensis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 102:140-5. [PMID: 21074452 DOI: 10.1016/j.jphotobiol.2010.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/10/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
The halophilic archaeon Halococcus hamelinensis was isolated from living stromatolites in Shark Bay, Western Australia, that are known to be exposed to extreme conditions of salinity, desiccation, and UV radiation. Modern stromatolites are considered analogues of very early life on Earth and thus inhabitants of modern stromatolites, and Hcc. hamelinensis in particular, are excellent candidates to examine responses to high UV radiation. This organism was exposed to high dosages (up to 500 J/m(2)) of standard germicidal UVC (254 nm) radiation and overall responses such as survival, thymine-thymine cyclobutane pyrimidine dimer formation, and DNA repair have been assessed. Results show that Hcc. hamelinensis is able to survive high UVC radiation dosages and that intact cells give an increased level of DNA protection over purified DNA. The organism was screened for the bacterial-like nucleotide excision repair (NER) genes uvrA, uvrB, uvrC, as well as for the photolyase phr2 gene. All four genes were discovered and changes in the expression levels of those genes during repair in either light or dark were investigated by means of quantitative Real-Time (qRT) PCR. The data obtained and presented in this study show that the uvrA, uvrB, and uvrC genes were up-regulated during both repair conditions. The photolyase phr2 was not induced during dark repair, yet showed a 20-fold increase during repair in light conditions. The data presented is the first molecular study of different repair mechanisms in the genus Halococcus following exposure to high UVC radiation levels.
Collapse
Affiliation(s)
- S Leuko
- NASA Ames Research Center, Moffett Field, CA 94035-1000, USA.
| | | | | | | | | |
Collapse
|
50
|
Rouillon C, White MF. The evolution and mechanisms of nucleotide excision repair proteins. Res Microbiol 2010; 162:19-26. [PMID: 20863882 DOI: 10.1016/j.resmic.2010.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Nucleotide excision repair (NER) pathways remove a wide variety of bulky and helix-distorting lesions from DNA, and involve the coordinated action of damage detection, helicase and nuclease proteins. Most archaeal genomes encode eucaryal-type NER proteins, including the helicases XPB and XPD and nuclease XPF. These have been a valuable resource, yielding important mechanistic and structural insights relevant to human health. However, the nature of archaeal NER remains very uncertain. Here we review recent studies of archaeal NER proteins relevant to both eucaryal and archaeal NER systems and the evolution of repair pathways.
Collapse
Affiliation(s)
- Christophe Rouillon
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews, Fife KY169ST, UK
| | | |
Collapse
|