1
|
Hasapis S, Caraballo I, Sears TJ, Brock KD, Cart JB, Moding EJ, Lee CL. Characterizing the role of Phlda3 in the development of acute toxicity and malignant transformation of hematopoietic cells induced by total-body irradiation in mice. Sci Rep 2023; 13:12916. [PMID: 37558703 PMCID: PMC10412554 DOI: 10.1038/s41598-023-39678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The tumor suppressor p53 is a transcriptional factor that plays a crucial role in controlling acute toxicity and long-term malignant transformation of hematopoietic cells induced by genotoxic stress such as ionizing radiation. Among all transcriptional targets of p53, one gene that is robustly induced by radiation is the pleckstrin homology domain-only protein Phlda3. However, the role that Phlda3 plays in regulating the response of hematopoietic cells to radiation is unknown. Here, using isogenic cell lines and genetically engineered mouse models, we showed that radiation induces Phlda3 in human leukemia cells and mouse normal hematopoietic cells in a p53-dependent manner. However, deletion of the Phlda3 gene did not ameliorate radiation-induced acute hematologic toxicity. In addition, distinct from mice that lose p53, loss of Phlda3 did not alter the latency and incidence of radiation-induced thymic lymphoma in mice. Remarkably, whole-exome sequencing data showed that lymphomas in irradiated Phlda3+/+ mice harbor a significantly higher number of single nucleotide variants (SNVs) and indels compared to lymphomas in irradiated Phlda3+/- and Phlda3-/- littermates. Together, our results indicate that although deletion of Phlda3 does not accelerate the development of radiation-induced thymic lymphoma, fewer SNVs and indels are necessary to initiate lymphomagenesis after radiation exposure when Phlda3 is silenced.
Collapse
Affiliation(s)
- Stephanie Hasapis
- Department of Radiation Oncology, Duke University School of Medicine, Duke University Medical Center, Box 3813, Durham, NC, 27708, USA
| | - Isibel Caraballo
- Department of Radiation Oncology, Duke University School of Medicine, Duke University Medical Center, Box 3813, Durham, NC, 27708, USA
| | - Timothy J Sears
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University, 875 Blake Wilbur Drive, Stanford, CA, 94305-5847, USA
| | - Kennedy D Brock
- Department of Radiation Oncology, Duke University School of Medicine, Duke University Medical Center, Box 3813, Durham, NC, 27708, USA
| | - John B Cart
- Department of Radiation Oncology, Duke University School of Medicine, Duke University Medical Center, Box 3813, Durham, NC, 27708, USA
| | - Everett J Moding
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford University, 875 Blake Wilbur Drive, Stanford, CA, 94305-5847, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University School of Medicine, Duke University Medical Center, Box 3813, Durham, NC, 27708, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
2
|
Nakajima T, Ninomiya Y, Unno K, Morioka T, Nishimura M, Kakinuma S. Impacts of psychological stress on high dose-rate radiation acute effects in a mouse experimental model. JOURNAL OF RADIATION RESEARCH 2022; 63:602-608. [PMID: 35726341 PMCID: PMC9303612 DOI: 10.1093/jrr/rrac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Indexed: 06/15/2023]
Abstract
Psychological stress affects health. Radiation workers in the medical field or astronauts living in space have possible risks of exposure to radiation, and psychological stress is considered to be easily induced in them due to activities performed in small areas or stress conditions. The impact of psychological stress on the effects of radiation was evaluated in senescence-accelerated mouse prone 10 (SAMP10) mice and ddY mice using a confrontational housing model, which makes dominant and subordinate mice in a cage live together without severe quarrel. Mice of ddY and SAMP10 have been previously demonstrated to be influenced in terms of acute and late effects, respectively, under psychological stress by this model. In SAMP10 mice, irradiation with 4 Gy induced the death of irradiated mice under psychological stress. In ddY mice, irradiation with 5 Gy X-rays alone had almost no effect on the mouse survival, but irradiation in conditions of psychological stress promoted acute death of irradiated mice. In addition, hypocellular bone marrow was also observed histopathologically in irradiated ddY mice under stress. Psychological stress may promote damage caused by radiation through modulation of radio-sensitivity in bone marrow in mice. This model would be useful for evaluation of modulation of radiation-induced various effects by psychological stress.
Collapse
Affiliation(s)
- Tetsuo Nakajima
- Corresponding author. Department of Radiation Effects Research, National Institute of Radiological Sciences, QST, Chibashi, 263-8555 Japan. Tel/Fax +81-43-206-3086/+81-43-255-6497 E-mail:
| | - Yasuharu Ninomiya
- Department of Radiation Effects Research, National Institute of Radiological Sciences, QST, Chiba-shi, 263-8555 Japan
| | - Keiko Unno
- Tea Science Center, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takamitsu Morioka
- Department of Radiation Effects Research, National Institute of Radiological Sciences, QST, Chiba-shi, 263-8555 Japan
| | - Mayumi Nishimura
- Department of Radiation Effects Research, National Institute of Radiological Sciences, QST, Chiba-shi, 263-8555 Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences, QST, Chiba-shi, 263-8555 Japan
| |
Collapse
|
3
|
Daniel AR, Lee CL, Oh P, Luo L, Ma Y, Kirsch DG. Inhibiting Glycogen Synthase Kinase-3 Mitigates the Hematopoietic Acute Radiation Syndrome in a Sex- and Strain-dependent Manner in Mice. HEALTH PHYSICS 2020; 119:315-321. [PMID: 32175929 PMCID: PMC7398824 DOI: 10.1097/hp.0000000000001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Radiation and Nuclear Countermeasures Program at the National Institute of Allergy and Infectious Diseases (NIAID) mandated that medical countermeasures for treating Acute Radiation Syndrome (ARS) must have efficacy when administered at least 24 h after radiation exposure. At this time point, many cells within key target tissues, such as the hematopoietic system and the gastrointestinal (GI) tract, will already be dead. Therefore, drugs that promote the regeneration of surviving cells may improve outcomes. The serine/threonine kinase glycogen synthase kinase-3 (GSK-3) regulates stem and progenitor cell self-renewal and regeneration in the hematopoietic and GI compartments. We tested inhibition of GSK-3β by SB216763 24 h after total body irradiation (TBI) and sub-total body irradiation (SBI). Here, we show that subcutaneous administration of SB216763 promotes the regeneration of surviving hematopoietic stem/progenitor cells (HSPCs), including myeloid progenitor cells, and improves survival of C57Bl/6 male mice when administered 24 h after TBI. However, these results were not recapitulated in female C57Bl/6 animals, suggesting a sex difference in GSK-3β signaling in HSPCs. Subcutaneous administration of SB216763 in male mice stimulated activation of Sox2 transcription but failed to induce Sox2 transcription in female C57Bl/6 mice. Using TCF/lef-GFP reporter mice, we examined Wnt signaling in HSPCs of irradiated male and female mice treated with SB216763. GSK-3 inhibition elevated Wnt reporter activity in HSPCs isolated from male but not female mice. SB216763 did not mitigate hematopoietic ARS in males or females of a second strain of wild-type mice, C3H. In addition, administration of SB216763 did not mitigate hematopoietic ARS beyond the currently available standard approved therapy of ciprofloxacin and granulocyte-colony stimulating factor (G-CSF) in male C57Bl/6 mice. Further, SB216763 did not mitigate GI-ARS after SBI in C57Bl/6 male mice. The lack of efficacy in both sexes and multiple strains of mice indicate that SB216763 is not suitable for further drug development as a mitigator of ARS. Our studies demonstrate that activation of Wnt signaling in HSPCs promotes hematopoietic regeneration following radiation exposure, and targeting this pathway downstream of GSK-3β may mitigate ARS in a sex- and strain-independent manner.
Collapse
Affiliation(s)
- Andrea R. Daniel
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Patrick Oh
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - David G. Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
4
|
Grebenyuk AN, Gladkikh VD. Modern Condition and Prospects for the Development of Medicines towards Prevention and Early Treatment of Radiation Damage. BIOL BULL+ 2020. [DOI: 10.1134/s1062359019110141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Riehl TE, Alvarado D, Ee X, Zuckerman A, Foster L, Kapoor V, Thotala D, Ciorba MA, Stenson WF. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut 2019; 68:1003-1013. [PMID: 29934438 PMCID: PMC7202371 DOI: 10.1136/gutjnl-2018-316226] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/14/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Lactobacillus rhamnosus GG (LGG), a probiotic, given by gavage is radioprotective of the mouse intestine. LGG-induced radioprotection is toll-like receptor 2 (TLR2) and cyclooxygenase-2 (COX-2)-dependent and is associated with the migration of COX-2+mesenchymal stem cells (MSCs) from the lamina propria of the villus to the lamina propria near the crypt epithelial stem cells. Our goals were to define the mechanism of LGG radioprotection including identification of the TLR2 agonist, and the mechanism of the MSC migration and to determine the safety and efficacy of this approach in models relevant to clinical radiation therapy. DESIGN Intestinal radioprotection was modelled in vitro with cell lines and enteroids as well as in vivo by assaying clinical outcomes and crypt survival. Fractionated abdominal and single dose radiation were used along with syngeneic CT26 colon tumour grafts to assess tumour radioprotection. RESULTS LGG with a mutation in the processing of lipoteichoic acid (LTA), a TLR2 agonist, was not radioprotective, while LTA agonist and native LGG were. An agonist of CXCR4 blocked LGG-induced MSC migration and LGG-induced radioprotection. LGG given by gavage induced expression of CXCL12, a CXCR4 agonist, in pericryptal macrophages and depletion of macrophages by clodronate liposomes blocked LGG-induced MSC migration and radioprotection. LTA effectively protected the normal intestinal crypt, but not tumours in fractionated radiation regimens. CONCLUSIONS LGG acts as a 'time-release capsule' releasing radioprotective LTA. LTA then primes the epithelial stem cell niche to protect epithelial stem cells by triggering a multicellular, adaptive immune signalling cascade involving macrophages and PGE2 secreting MSCs. TRIAL REGISTRATION NUMBER NCT01790035; Pre-results.
Collapse
Affiliation(s)
- Terrence E. Riehl
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO USA
| | - David Alvarado
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO USA
| | - Xueping Ee
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO USA
| | - Aaron Zuckerman
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO USA
| | - Lynn Foster
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO USA
| | - Vaishali Kapoor
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO USA
| | - Dinesh Thotala
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO USA
| | - Matthew A. Ciorba
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO USA
| | - William F. Stenson
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
6
|
Cui M, Xiao H, Li Y, Zhou L, Zhao S, Luo D, Zheng Q, Dong J, Zhao Y, Zhang X, Zhang J, Lu L, Wang H, Fan S. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol Med 2017; 9:448-461. [PMID: 28242755 PMCID: PMC5376756 DOI: 10.15252/emmm.201606932] [Citation(s) in RCA: 220] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Severe radiation exposure may cause acute radiation syndrome, a possibly fatal condition requiring effective therapy. Gut microbiota can be manipulated to fight against many diseases. We explored whether intestinal microbe transplantation could alleviate radiation‐induced toxicity. High‐throughput sequencing showed that gastrointestinal bacterial community composition differed between male and female mice and was associated with susceptibility to radiation toxicity. Faecal microbiota transplantation (FMT) increased the survival rate of irradiated animals, elevated peripheral white blood cell counts and improved gastrointestinal tract function and intestinal epithelial integrity in irradiated male and female mice. FMT preserved the intestinal bacterial composition and retained mRNA and long non‐coding RNA expression profiles of host small intestines in a sex‐specific fashion. Despite promoting angiogenesis, sex‐matched FMT did not accelerate the proliferation of cancer cells in vivo. FMT might serve as a therapeutic to mitigate radiation‐induced toxicity and improve the prognosis of tumour patients after radiotherapy.
Collapse
Affiliation(s)
- Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Huiwen Xiao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lixin Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Shuyi Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dan Luo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qisheng Zheng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jiali Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yu Zhao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Junling Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Lu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Haichao Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Emergency Medicine, North Shore University Hospital, Laboratory of Emergency Medicine, the Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
7
|
Singh VK, Hanlon BK, Santiago PT, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part III. Countermeasures under early stages of development along with 'standard of care' medicinal and procedures not requiring regulatory approval for use. Int J Radiat Biol 2017; 93:885-906. [PMID: 28657400 DOI: 10.1080/09553002.2017.1332440] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Terrorist attacks, with their intent to maximize psychological and economic damage as well as inflicting sickness and death on given targeted populations, are an ever-growing worldwide concern in government and public sectors as they become more frequent, violent, and sensational. If given the chance, it is likely that terrorists will use radiological or nuclear weapons. To thwart these sinister efforts, both physical and medical countermeasures against these weapons are currently being researched and developed so that they can be utilized by the first responders, military, and medical providers alike. This is the third article of a three-part series in which we have reviewed additional radiation countermeasures that are currently under early preclinical phases of development using largely animal models and have listed and discussed clinical support measures, including agents used for radiation-induced emesis, as well as countermeasures not requiring Food and Drug Administration approval. CONCLUSIONS Despite the significant progress that has been made in this area during the last several years, additional effort is needed in order to push promising new agents, currently under development, through the regulatory pipeline. This pipeline for new promising drugs appears to be unreasonably slow and cumbersome; possible reasons for this inefficiency are briefly discussed. Significant and continued effort needs to be afforded to this research and development area, as to date, there is no approved radioprotector that can be administered prior to high dose radiation exposure. This represents a very significant, unmet medical need and a significant security issue. A large number of agents with potential to interact with different biological targets are under development. In the next few years, several additional radiation countermeasures will likely receive Food and Drug Administration approval, increasing treatment options for victims exposed to unwanted ionizing irradiation.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Briana K Hanlon
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | - Paola T Santiago
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , U.S.A
| | | |
Collapse
|
8
|
Radioprotection as a Method to Enhance the Therapeutic Ratio of Radiotherapy. CANCER DRUG DISCOVERY AND DEVELOPMENT 2017. [DOI: 10.1007/978-3-319-40854-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
9
|
Sharlow ER, Leimgruber S, Lira A, McConnell MJ, Norambuena A, Bloom GS, Epperly MW, Greenberger JS, Lazo JS. A Small Molecule Screen Exposes mTOR Signaling Pathway Involvement in Radiation-Induced Apoptosis. ACS Chem Biol 2016; 11:1428-37. [PMID: 26938669 DOI: 10.1021/acschembio.5b00909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Individuals are at risk of exposure to acute ionizing radiation (IR) from a nuclear accident or terrorism, but we lack effective therapies to mitigate the lethal IR effects. In the current study, we exploited an optimized, cell-based, high throughput screening assay to interrogate a small molecule library comprising 3437 known pharmacologically active compounds for mitigation against IR-induced apoptosis. Thirty-three library compounds significantly reduced apoptosis when administered 1 h after 4 Gy IR. Two- or three-dimensional computational structural analyses of the compounds indicated only one or two chemical clusters with most of the compounds being unique structures. The mechanistic target of rapamycin complex 1 (mTORC1) inhibitor, rapamycin, was the most potent compound, and it mitigated apoptosis by 50% at 200 ± 50 pM. Other mTOR inhibitors, namely everolimus, AZD8055, and torin 1, also suppressed apoptosis, providing additional pharmacological evidence for mTOR pathway involvement in regulating cell death after IR. Everolimus and torin 1 treatment after IR decreased the S phase population and enforced both G1 and G2 phase arrest. This prorogation of cell cycle progression was accompanied by decreased IR-induced DNA damage measured by γH2AX phosphorylation at Ser139. RNA interference-mediated knockdown of the respective mTORC1 and mTORC2 subunits, Raptor or Rictor, also mitigated IR-induced apoptosis. Collectively, this study suggests a central role for the mTOR signaling in the cytotoxic response to IR and offers a useful platform to probe for additional agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael W. Epperly
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Joel S. Greenberger
- Department
of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | | |
Collapse
|
10
|
Recombinant human thrombopoietin promotes hematopoietic reconstruction after severe whole body irradiation. Sci Rep 2015; 5:12993. [PMID: 26403418 PMCID: PMC4585893 DOI: 10.1038/srep12993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/06/2015] [Indexed: 12/14/2022] Open
Abstract
Recombinant human thrombopoietin (rHuTPO) is a drug that is used clinically to promote megakaryocyte and platelet generation. Here, we report the mitigative effect of rHuTPO (administered after exposure) against severe whole body irradiation in mice. Injection of rHuTPO for 14 consecutive days following exposure significantly improved the survival rate of lethally irradiated mice. RHuTPO treatment notably increased bone marrow cell density and LSK cell numbers in the mice after sub-lethal irradiation primarily by promoting residual HSC proliferation. In lethally irradiated mice with hematopoietic cell transplantation, rHuTPO treatment increased the survival rate and enhanced hematopoietic cell engraftment compared with the placebo treatment. Our observations indicate that recombinant human TPO might have a therapeutic role in promoting hematopoietic reconstitution and HSC engraftment.
Collapse
|
11
|
Lee CL, Castle KD, Moding EJ, Blum JM, Williams N, Luo L, Ma Y, Borst LB, Kim Y, Kirsch DG. Acute DNA damage activates the tumour suppressor p53 to promote radiation-induced lymphoma. Nat Commun 2015; 6:8477. [PMID: 26399548 PMCID: PMC4586051 DOI: 10.1038/ncomms9477] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/26/2015] [Indexed: 11/10/2022] Open
Abstract
Genotoxic cancer therapies, such as chemoradiation, cause haematological toxicity primarily by activating the tumour suppressor p53. While inhibiting p53-mediated cell death during cancer therapy ameliorates haematologic toxicity, whether it also impacts carcinogenesis remains unclear. Here we utilize a mouse model of inducible p53 short hairpin RNA (shRNA) to show that temporarily blocking p53 during total-body irradiation (TBI) not only ameliorates acute toxicity, but also improves long-term survival by preventing lymphoma development. Using KrasLA1 mice, we show that TBI promotes the expansion of a rare population of thymocytes that express oncogenic KrasG12D. However, blocking p53 during TBI significantly suppresses the expansion of KrasG12D-expressing thymocytes. Mechanistically, bone marrow transplant experiments demonstrate that TBI activates p53 to decrease the ability of bone marrow cells to suppress lymphoma development through a non-cell-autonomous mechanism. Together, our results demonstrate that the p53 response to acute DNA damage promotes the development of radiation-induced lymphoma. p53 can be activated by oncogenic stress to suppress tumourigenesis, but its role in radiation carcinogenesis has not been studied in p53 wild-type mice. Here, Lee et al. show that knocking down p53 during total-body irradiation not only reduces acute toxicity, but prevents the formation of radiation-induced lymphoma.
Collapse
Affiliation(s)
- Chang-Lung Lee
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Katherine D Castle
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Everett J Moding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Jordan M Blum
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Nerissa Williams
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Lixia Luo
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yan Ma
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Luke B Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Yongbaek Kim
- Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea
| | - David G Kirsch
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|