1
|
Chelnokova IA, Nikitina IA, Starodubtseva MN. Mechanical properties of blood exosomes and lipoproteins after the rat whole blood irradiation with X-rays in vitro explored by atomic force microscopy. Micron 2024; 184:103662. [PMID: 38838454 DOI: 10.1016/j.micron.2024.103662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Blood is a two-component system with two levels of hierarchy: the macrosystem of blood formed elements and the dispersed system of blood nanoparticles. Biological nanoparticles are the key participants in communication between the irradiated and non-irradiated cells and inducers of the non-targeted effects of ionizing radiation. The work aimed at studying by atomic force microscopy the structural, mechanical, and electrical properties of exosomes and lipoproteins (LDL/VLDL) isolated from rat blood after its exposure to X-rays in vitro. MATERIALS AND METHODS The whole blood of Wistar rats fed with a high-fat diet was irradiated with X-rays (1 and 100 Gy) in vitro. The structural and mechanical properties (the elastic modulus and nonspecific adhesion force) of exosome and lipoprotein isolates from the blood by ultracentrifugation method were studied using Bruker Bioscope Resolve atomic force microscope in PF QNM mode, their electric properties (the zeta-potential) was measured by electrophoretic mobility. RESULTS Lipoproteins isolated from non-irradiated blood were softer (Me(LQ; UQ): 7.8(4.9;12.1) MPa) compared to blood nanoparticles of its exosome fraction (34.8(22.6;44.9) MPa) containing both exosomes and non-membrane nanoparticles. X-ray blood irradiation with a dose of 1 Gy significantly weakened the elastic properties of lipoproteins. Exposure of the blood to 100 Gy X-rays made lipoproteins stiffer and their nonspecific adhesive properties stronger. The radiation effects on the mechanical parameters of exosomes and non-membrane nanoparticles in exosome fractions differed. The significant radiation-induced change in electric properties of the studied nanoparticles was detected only for lipoproteins in the blood irradiated with 1 Gy X-rays. The low-dose radiation-induced changes in zeta-potential and increase in lipoprotein size with the appearance of a soft thick surface layer indicate the formation of the modified lipoproteins covered with a corona from macromolecules of irradiated blood. CONCLUSION Our data obtained using the nanomechanical mapping mode of AFM are the first evidence of the significant radiation-induced changes in the structural and mechanical properties of the dispersed system of blood nanoparticles after the X-ray irradiation of the blood.
Collapse
Affiliation(s)
- Irina A Chelnokova
- Institute of Radiobiology of the National Academy of Sciences of Belarus, Gomel, Belarus.
| | | | | |
Collapse
|
2
|
Dainiak N. Biology of Exfoliation of Plasma Membrane-Derived Vesicles and the Radiation Response: Historical Background, Applications in Biodosimetry and Cell-Free Therapeutics, and Quantal Mechanisms for Their Release and Function with Implications for Space Travel. Radiat Res 2024; 202:328-354. [PMID: 38981604 DOI: 10.1667/rade-24-00078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/09/2024] [Indexed: 07/11/2024]
Abstract
This historical review of extracellular vesicles in the setting of exposure to ionizing radiation (IR) traces our understanding of how vesicles were initially examined and reported in the literature in the late 1970s (for secreted exosomes) and early 1980s (for plasma membrane-derived, exfoliated vesicles) to where we are now and where we may be headed in the next decade. An emphasis is placed on biophysical properties of extracellular vesicles, energy consumption and the role of vesiculation as an essential component of membrane turnover. The impact of intercellular signal trafficking by vesicle surface and intra-vesicular lipids, proteins, nucleic acids and metabolites is reviewed in the context of biomarkers for estimating individual radiation dose after exposure to radiation, pathogenesis of disease and development of cell-free therapeutics. Since vesicles express both growth stimulatory and inhibitory molecules, a hypothesis is proposed to consider superposition in a shared space and entanglement of molecules by energy sources that are external to human cells. Implications of this approach for travel in deep space are briefly discussed in the context of clinical disorders that have been observed after space travel.
Collapse
Affiliation(s)
- Nicholas Dainiak
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
3
|
Sukhnanan K, Ross JR, Chao NJ, Chen BJ. Endothelial Cell Derived Extracellular Vesicles and Hematopoiesis. Radiat Res 2024; 202:215-226. [PMID: 38918003 DOI: 10.1667/rade-24-00039.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
Extracellular vesicles (EVs) have been recognized as a novel way of cell-to-cell communication in the last several decades. It is believed that EVs exert their functions on nearby or distant cells through transfer of the cargo that they carry. In this review, we focus on EVs produced by endothelial cells, with emphasis on their role in hematopoiesis. We first describe how endothelial cells interact with hematopoietic stem/progenitor cells during development and in disease conditions. We then discuss EVs, ranging from their subtypes to isolation methods and analysis of EVs. With the above background information, we next review the literature related to endothelial cell derived EVs (ECEVs), including physiological functions and their clinical uses. In the last sections, we summarize the current results about the effect of ECEVs on hematopoiesis under physiological and stress conditions.
Collapse
Affiliation(s)
| | - Joel R Ross
- Department of Medicine, Duke University, Durham, North Carolina
| | - Nelson J Chao
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Pathology, Duke University, Durham, North Carolina
- Department of Immunology, Duke University, Durham, North Carolina
- Duke Cancer Institute, Duke University, Durham, North Carolina
- Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Benny J Chen
- Department of Medicine, Duke University, Durham, North Carolina
- Department of Immunology, Duke University, Durham, North Carolina
- Duke Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina
- Duke Regeneration Center, Duke University, Durham, North Carolina
| |
Collapse
|
4
|
Yang R, Zhang S, Wang L, Chen Y, Chen X, Xia J, Ren X, Cheng B, Chen X. Radiation-induced exosomes promote oral squamous cell carcinoma progression via enhancing SLC1A5-glutamine metabolism. J Oral Pathol Med 2024; 53:458-467. [PMID: 38802300 DOI: 10.1111/jop.13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/16/2024] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Radiotherapy (RT) can drive cancer cells to enter a state of cellular senescence in which cells can secrete senescence-associated secretory phenotype (SASP) and produce small extracellular vesicles (sEVs) to interact with cells in the tumor microenvironment (TME). Tumor-derived sEVs that are taken up by recipient cells contribute to cancer cell metabolic plasticity, resistance to anticancer therapy, and adaptation to the TME. However, how radiation-induced sEVs support oral squamous cell carcinoma (OSCC) progression remains unclear. METHODS Beta-galactosidase staining and SASP mRNA expression analysis were used to evaluate the senescence-associated activity of OSCC cells after irradiation. Nanoparticle tracking analysis was performed to identify radiation-induced sEVs. Liquid chromatography-tandem mass spectrometry (LC-MS) was used to explore changes in the levels of proteins in radiation-induced sEVs. Cell Counting Kit-8 and colony formation assays were performed to investigate the function of radiation-induced SASP and sEVs in vitro. A xenograft tumor model was established to investigate the functions of radiation-induced sEVs and V-9302 in vivo as well as the underlying mechanisms. Bioinformatics analysis was performed to determine the relationship between glutamine metabolism and OSCC recurrence. RESULTS We determined that the radiation-induced SASP triggered OSCC cell proliferation. Additionally, radiation-induced sEVs exacerbated OSCC cell malignancy. LC-MS/MS and bioinformatics analyses revealed that SLC1A5, which is a cellular receptor that participates in glutamine uptake, was significantly enriched in radiation-induced sEVs. In vitro and in vivo, inhibiting SLC1A5 could block the oncogenic effects of radiation-induced sEVs in OSCC. CONCLUSION Radiation-induced sEVs might promote the proliferation of unirradiated cancer cells by enhancing glutamine metabolism; this might be a novel molecular mechanism underlying radiation resistance in OSCC patients.
Collapse
Affiliation(s)
- Rongchun Yang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Siyuan Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lixuan Wang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yingyao Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xianyue Ren
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xijuan Chen
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Jassi C, kuo WW, Kuo CH, Chang CM, Chen MC, Shih TC, Li CC, Huang CY. Mediation of radiation-induced bystander effect and epigenetic modification: The role of exosomes in cancer radioresistance. Heliyon 2024; 10:e34460. [PMID: 39114003 PMCID: PMC11304029 DOI: 10.1016/j.heliyon.2024.e34460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles produced by almost all mammalian cells. They play an important role in cell-to-cell communication by transferring biologically active molecules from the cell of origin to the recipient cells. Ionizing radiation influences exosome production and molecular cargo loading. In cancer management, ionizing radiation is a form of treatment that exerts its cancer cytotoxicity by induction of DNA damage and other alterations to the targeted tissue cells. However, normal bystander non-targeted cells may exhibit the effects of ionizing radiation, a phenomenon called radiation-induced bystander effect (RIBE). The mutual communication between the two groups of cells (targeted and non-targeted) via radiation-influenced exosomes enables the exchange of radiosensitive molecules. This facilitates indirect radiation exposure, leading, among other effects, to epigenetic remodeling and subsequent adaptation to radiation. This review discusses the role exosomes play in epigenetically induced radiotherapy resistance through the mediation of RIBE.
Collapse
Affiliation(s)
- Chikondi Jassi
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Wei-Wen kuo
- Department of Biological Sciences and Technology, China Medical University, Taichung, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
- Department of Kinesiology and Health Science, College of William and Mary, Williamsburg, VA, USA
| | - Chun-Ming Chang
- Department of General Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Ching Shih
- Department of Biomedical Imaging & Radiological Science College of Medicine, China Medical University, Taichung 404, Taiwan
| | - Chi-Cheng Li
- School of Medicine Tzu Chi University, 701, Section 3, Chung-Yang Road, Hualien 97004, Taiwan
- Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondria Related Diseases Research Center, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
- Graduate Institute of Biomedicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
6
|
Du Y, Zhang Y, Luo W, Gan F, Yang M, Gong P, Yao Y. The influence of radiation-induced bystander effect in osteoblasts mediated by plasma-derived extracellular vesicles (EVs). Biochem Biophys Res Commun 2024; 695:149425. [PMID: 38211533 DOI: 10.1016/j.bbrc.2023.149425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
OBJECTIVES Head and neck tumor patients may develop post-radiotherapy diseases after radiotherapy treatment. And radiotherapy can elicit radiation-induced bystander effect, wherein extracellular vesicles (EVs) play a crucial role. For normal parts of the body that have not been directly irradiated, the effect of EVs on them needs to be further explored. This study aims to investigate the functions of plasma-derived EVs in regulating normal osteoblasts during radiation-induced bystander effects. METHODS AND MATERIALS Rat plasma-derived EVs were isolated and identified firstly, followed by an evaluation of their intracellular biological effects on normal osteoblasts in vitro. Transcriptome sequencing analysis and confirmations were performed to identify potential mechanisms. RESULTS Irradiated plasma-derived EVs were found to enhance osteoblast proliferation, migration, and cell cycle progression, concurrently suppressing the expression of osteogenesis-related genes and proteins. Furthermore, these EVs attenuated the expression of osteogenesis and oxidative stress resistance related genes, while upregulating the PI3K-AKT pathway and intracellular reactive oxygen species in osteoblasts. CONCLUSIONS Irradiated plasma-derived EVs could alter the biological effects in osteoblasts, which is closely associated with the levels of GPX1 and the PI3K-AKT signaling pathway. This suggests that plasma-derived EVs serve as a crucial factor contributing to radiation-induced bystander effect in osteoblasts.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China.
| | - Yixin Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.
| | - Wenqiong Luo
- Department of Stomatology, The First People's Hospital of Liangshan Yi Autonomous Prefecture, Sichuan province, China.
| | - Feihong Gan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, China.
| | - Mao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China.
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China.
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
7
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
8
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
9
|
Extracellular Vesicles in Aging: An Emerging Hallmark? Cells 2023; 12:cells12040527. [PMID: 36831194 PMCID: PMC9954704 DOI: 10.3390/cells12040527] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-enclosed particles secreted by cells and circulating in body fluids. Initially considered as a tool to dispose of unnecessary material, they are now considered an additional method to transmit cell signals. Aging is characterized by a progressive impairment of the physiological functions of tissues and organs. The causes of aging are complex and interconnected, but there is consensus that genomic instability, telomere erosion, epigenetic alteration, and defective proteostasis are primary hallmarks of the aging process. Recent studies have provided evidence that many of these primary stresses are associated with an increased release of EVs in cell models, able to spread senescence signals in the recipient cell. Additional investigations on the role of EVs during aging also demonstrated the great potential of EVs for the modulation of age-related phenotypes and for pro-rejuvenation therapies, potentially beneficial for many diseases associated with aging. Here we reviewed the current literature on EV secretion in senescent cell models and in old vs. young individual body fluids, as well as recent studies addressing the potential of EVs from different sources as an anti-aging tool. Although this is a recent field, the robust consensus on the altered EV release in aging suggests that altered EV secretion could be considered an emerging hallmark of aging.
Collapse
|
10
|
Romero-García N, Huete-Acevedo J, Mas-Bargues C, Sanz-Ros J, Dromant M, Borrás C. The Double-Edged Role of Extracellular Vesicles in the Hallmarks of Aging. Biomolecules 2023; 13:165. [PMID: 36671550 PMCID: PMC9855573 DOI: 10.3390/biom13010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
The exponential growth in the elderly population and their associated socioeconomic burden have recently brought aging research into the spotlight. To integrate current knowledge and guide potential interventions, nine biochemical pathways are summarized under the term hallmarks of aging. These hallmarks are deeply inter-related and act together to drive the aging process. Altered intercellular communication is particularly relevant since it explains how damage at the cellular level translates into age-related loss of function at the organismal level. As the main effectors of intercellular communication, extracellular vesicles (EVs) might play a key role in the aggravation or mitigation of the hallmarks of aging. This review aims to summarize this role and to provide context for the multiple emerging EV-based gerotherapeutic strategies that are currently under study.
Collapse
Affiliation(s)
- Nekane Romero-García
- Department of Anesthesiology and Surgical Trauma Intensive Care, Hospital Clinic Universitari Valencia, University of Valencia, 46010 Valencia, Spain
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| |
Collapse
|
11
|
Seara FAC, Maciel L, Kasai-Brunswick TH, Nascimento JHM, Campos-de-Carvalho AC. Extracellular Vesicles and Cardiac Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:33-56. [PMID: 37603271 DOI: 10.1007/978-981-99-1443-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Global population aging is a major challenge to health and socioeconomic policies. The prevalence of diseases progressively increases with aging, with cardiovascular disease being the major cause of mortality among elderly people. The allostatic overload imposed by the accumulation of cardiac senescent cells has been suggested to play a pivotal role in the aging-related deterioration of cardiovascular function. Senescent cells exhibit intrinsic disorders and release a senescence-associated secretory phenotype (SASP). Most of these SASP compounds and damaged molecules are released from senescent cells by extracellular vesicles (EVs). Once secreted, these EVs can be readily incorporated by recipient neighboring cells and elicit cellular damage or otherwise can promote extracellular matrix remodeling. This has been associated with the development of cardiac dysfunction, fibrosis, and vascular calcification, among others. The molecular signature of these EVs is highly variable and might provide important information for the development of aging-related biomarkers. Conversely, EVs released by the stem and progenitor cells can exert a rejuvenating effect, raising the possibility of future anti-aging therapies.
Collapse
Affiliation(s)
- Fernando A C Seara
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Institute of Health and Biological Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Brazil
| | - Leonardo Maciel
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Federal University of Rio de Janeiro, Campus Professor Geraldo, Duque de Caxias, Brazil
| | - Tais Hanae Kasai-Brunswick
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose H M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Health Sciences Centre, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Antonio C Campos-de-Carvalho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Sanz-Ros J, Mas-Bargues C, Romero-García N, Huete-Acevedo J, Dromant M, Borrás C. Therapeutic Potential of Extracellular Vesicles in Aging and Age-Related Diseases. Int J Mol Sci 2022; 23:ijms232314632. [PMID: 36498960 PMCID: PMC9735639 DOI: 10.3390/ijms232314632] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Aging is associated with an alteration of intercellular communication. These changes in the extracellular environment contribute to the aging phenotype and have been linked to different aging-related diseases. Extracellular vesicles (EVs) are factors that mediate the transmission of signaling molecules between cells. In the aging field, these EVs have been shown to regulate important aging processes, such as oxidative stress or senescence, both in vivo and in vitro. EVs from healthy cells, particularly those coming from stem cells (SCs), have been described as potential effectors of the regenerative potential of SCs. Many studies with different animal models have shown promising results in the field of regenerative medicine. EVs are now viewed as a potential cell-free therapy for tissue damage and several diseases. Here we propose EVs as regulators of the aging process, with an important role in tissue regeneration and a raising therapy for age-related diseases.
Collapse
Affiliation(s)
- Jorge Sanz-Ros
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Cardiology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Nekane Romero-García
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Javier Huete-Acevedo
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Mar Dromant
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
13
|
Radiation-Induced Bystander Effect Mediated by Exosomes Involves the Replication Stress in Recipient Cells. Int J Mol Sci 2022; 23:ijms23084169. [PMID: 35456987 PMCID: PMC9029583 DOI: 10.3390/ijms23084169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Exosomes released by irradiated cells mediate the radiation-induced bystander effect, which is manifested by DNA breaks detected in recipient cells; yet, the specific mechanism responsible for the generation of chromosome lesions remains unclear. In this study, naive FaDu head and neck cancer cells were stimulated with exosomes released by irradiated (a single 2 Gy dose) or mock-irradiated cells. Maximum accumulation of gamma H2A.X foci, a marker of DNA breaks, was detected after one hour of stimulation with exosomes from irradiated donors, the level of which was comparable to the one observed in directly irradiated cells (a weaker wave of the gamma H2A.X foci accumulation was also noted after 23 h of stimulation). Exosomes from irradiated cells, but not from control ones, activated two stress-induced protein kinases: ATM and ATR. Noteworthy is that while direct irradiation activated only ATM, both ATM and ATR were activated by two factors known to induce the replication stress: hydroxyurea and camptothecin (with subsequent phosphorylation of gamma H2A.X). One hour of stimulation with exosomes from irradiated cells suppressed DNA synthesis in recipient cells and resulted in the subsequent nuclear accumulation of RNA:DNA hybrids, which is an indicator of impaired replication. Interestingly, the abovementioned effects were observed before a substantial internalization of exosomes, which may suggest a receptor-mediated mechanism. It was observed that after one hour of stimulation with exosomes from irradiated donors, phosphorylation of several nuclear proteins, including replication factors and regulators of heterochromatin remodeling as well as components of multiple intracellular signaling pathways increased. Hence, we concluded that the bystander effect mediated by exosomes released from irradiated cells involves the replication stress in recipient cells.
Collapse
|
14
|
Pazzaglia S, Tanno B, De Stefano I, Giardullo P, Leonardi S, Merla C, Babini G, Tuncay Cagatay S, Mayah A, Kadhim M, Lyng FM, von Toerne C, Khan ZN, Subedi P, Tapio S, Saran A, Mancuso M. Micro-RNA and Proteomic Profiles of Plasma-Derived Exosomes from Irradiated Mice Reveal Molecular Changes Preventing Apoptosis in Neonatal Cerebellum. Int J Mol Sci 2022; 23:ijms23042169. [PMID: 35216284 PMCID: PMC8878539 DOI: 10.3390/ijms23042169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022] Open
Abstract
Cell communication via exosomes is capable of influencing cell fate in stress situations such as exposure to ionizing radiation. In vitro and in vivo studies have shown that exosomes might play a role in out-of-target radiation effects by carrying molecular signaling mediators of radiation damage, as well as opposite protective functions resulting in resistance to radiotherapy. However, a global understanding of exosomes and their radiation-induced regulation, especially within the context of an intact mammalian organism, has been lacking. In this in vivo study, we demonstrate that, compared to sham-irradiated (SI) mice, a distinct pattern of proteins and miRNAs is found packaged into circulating plasma exosomes after whole-body and partial-body irradiation (WBI and PBI) with 2 Gy X-rays. A high number of deregulated proteins (59% of WBI and 67% of PBI) was found in the exosomes of irradiated mice. In total, 57 and 13 miRNAs were deregulated in WBI and PBI groups, respectively, suggesting that the miRNA cargo is influenced by the tissue volume exposed to radiation. In addition, five miRNAs (miR-99b-3p, miR-200a-3p, miR-200a, miR-182-5p, miR-182) were commonly overexpressed in the exosomes from the WBI and PBI groups. In this study, particular emphasis was also given to the determination of the in vivo effect of exosome transfer by intracranial injection in the highly radiosensitive neonatal cerebellum at postnatal day 3. In accordance with a major overall anti-apoptotic function of the commonly deregulated miRNAs, here, we report that exosomes from the plasma of irradiated mice, especially in the case of WBI, prevent radiation-induced apoptosis, thus holding promise for exosome-based future therapeutic applications against radiation injury.
Collapse
Affiliation(s)
- Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
- Correspondence: (S.P.); (M.M.)
| | - Barbara Tanno
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Ilaria De Stefano
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Paola Giardullo
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Simona Leonardi
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Caterina Merla
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Gabriele Babini
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Seda Tuncay Cagatay
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (S.T.C.); (A.M.); (M.K.)
| | - Ammar Mayah
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (S.T.C.); (A.M.); (M.K.)
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (S.T.C.); (A.M.); (M.K.)
| | - Fiona M. Lyng
- FOCAS Research Institute, Technological University Dublin (TU Dublin), D07 EWV4 Dublin, Ireland;
| | - Christine von Toerne
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, 85764, Neuherberg, Germany; (C.v.T.); (Z.N.K.); (P.S.); (S.T.)
| | - Zohaib N. Khan
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, 85764, Neuherberg, Germany; (C.v.T.); (Z.N.K.); (P.S.); (S.T.)
| | - Prabal Subedi
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, 85764, Neuherberg, Germany; (C.v.T.); (Z.N.K.); (P.S.); (S.T.)
| | - Soile Tapio
- Helmholtz Zentrum München, German Research Center for Environmental Health GmbH (HMGU), Institute of Radiation Biology, 85764, Neuherberg, Germany; (C.v.T.); (Z.N.K.); (P.S.); (S.T.)
| | - Anna Saran
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), 00123 Rome, Italy; (B.T.); (I.D.S.); (P.G.); (S.L.); (C.M.); (A.S.)
- Correspondence: (S.P.); (M.M.)
| |
Collapse
|
15
|
Kadhim M, Tuncay Cagatay S, Elbakrawy EM. Non-targeted effects of radiation: a personal perspective on the role of exosomes in an evolving paradigm. Int J Radiat Biol 2021; 98:410-420. [PMID: 34662248 DOI: 10.1080/09553002.2021.1980630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiation-induced non-targeted effects (NTE) have implications in a variety of areas relevant to radiation biology. Here we evaluate the various cargo associated with exosomal signalling and how they work synergistically to initiate and propagate the non-targeted effects including Genomic Instability and Bystander Effects. CONCLUSIONS Extra cellular vesicles, in particular exosomes, have been shown to carry bystander signals. Exosome cargo may contain nucleic acids, both DNA and RNA, as well as proteins, lipids and metabolites. These cargo molecules have all been considered as potential mediators of NTE. A review of current literature shows mounting evidence of a role for ionizing radiation in modulating both the numbers of exosomes released from affected cells as well as the content of their cargo, and that these exosomes can instigate functional changes in recipient cells. However, there are significant gaps in our understanding, particularly regarding modified exosome cargo after radiation exposure and the functional changes induced in recipient cells.
Collapse
Affiliation(s)
- Munira Kadhim
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Seda Tuncay Cagatay
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| |
Collapse
|
16
|
Yin Y, Chen H, Wang Y, Zhang L, Wang X. Roles of extracellular vesicles in the aging microenvironment and age-related diseases. J Extracell Vesicles 2021; 10:e12154. [PMID: 34609061 PMCID: PMC8491204 DOI: 10.1002/jev2.12154] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a persistently hypoproliferative state with diverse stressors in a specific aging microenvironment. Senescent cells have a double-edged sword effect: they can be physiologically beneficial for tissue repair, organ growth, and body homeostasis, and they can be pathologically harmful in age-related diseases. Among the hallmarks of senescence, the SASP, especially SASP-related extracellular vesicle (EV) signalling, plays the leading role in aging transmission via paracrine and endocrine mechanisms. EVs are successful in intercellular and interorgan communication in the aging microenvironment and age-related diseases. They have detrimental effects on downstream targets at the levels of immunity, inflammation, gene expression, and metabolism. Furthermore, EVs obtained from different donors are also promising materials and tools for antiaging treatments and are used for regeneration and rejuvenation in cell-free systems. Here, we describe the characteristics of cellular senescence and the aging microenvironment, concentrating on the production and function of EVs in age-related diseases, and provide new ideas for antiaging therapy with EVs.
Collapse
Affiliation(s)
- Yujia Yin
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huihui Chen
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yizhi Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological SciencesChinese Academy of Sciences, University of Chinese Academy of SciencesShanghaiChina
| | - Xipeng Wang
- Department of Obstetrics and GynecologyXinhua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
17
|
Lananna BV, Imai S. Friends and foes: Extracellular vesicles in aging and rejuvenation. FASEB Bioadv 2021; 3:787-801. [PMID: 34632314 PMCID: PMC8493967 DOI: 10.1096/fba.2021-00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022] Open
Abstract
Extracellular vesicles (EVs) are released by many different cell types throughout the body and play a role in a diverse range of biological processes. EVs circulating in blood as well as in other body fluids undergo dramatic alterations over an organism's lifespan that are only beginning to be elucidated. The exact nature of these changes is an area of active and intense investigation, but lacks clear consensus due to the substantial heterogeneity in EV subpopulations and insufficiencies in current technologies. Nonetheless, emerging evidence suggests that EVs regulate systemic aging as well as the pathophysiology of age-related diseases. Here, we review the current literature investigating EVs and aging with an emphasis on consequences for the maintenance of human healthspan. Intriguingly, the biological utility of EVs both in vitro and in vivo and across contexts depends on the states of the source cells or tissues. As such, EVs secreted by cells in an aged or pathological state may impose detrimental consequences on recipient cells, while EVs secreted by youthful or healthy cells may promote functional improvement. Thus, it is critical to understand both functions of EVs and tip the balance toward their beneficial effects as an antiaging intervention.
Collapse
Affiliation(s)
- Brian V. Lananna
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
| | - Shin‐ichiro Imai
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
- Department of MedicineWashington University School of MedicineSt. LouisMOUSA
- Department of GerontologyLaboratory of Molecular Life ScienceInstitute of Biomedical Research and InnovationKobeJapan
| |
Collapse
|
18
|
Burgos-Ravanal R, Campos A, Díaz-Vesga MC, González MF, León D, Lobos-González L, Leyton L, Kogan MJ, Quest AFG. Extracellular Vesicles as Mediators of Cancer Disease and as Nanosystems in Theranostic Applications. Cancers (Basel) 2021; 13:3324. [PMID: 34283059 PMCID: PMC8268753 DOI: 10.3390/cancers13133324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer remains a leading cause of death worldwide despite decades of intense efforts to understand the molecular underpinnings of the disease. To date, much of the focus in research has been on the cancer cells themselves and how they acquire specific traits during disease development and progression. However, these cells are known to secrete large numbers of extracellular vesicles (EVs), which are now becoming recognized as key players in cancer. EVs contain a large number of different molecules, including but not limited to proteins, mRNAs, and miRNAs, and they are actively secreted by many different cell types. In the last two decades, a considerable body of evidence has become available indicating that EVs play a very active role in cell communication. Cancer cells are heterogeneous, and recent evidence reveals that cancer cell-derived EV cargos can change the behavior of target cells. For instance, more aggressive cancer cells can transfer their "traits" to less aggressive cancer cells and convert them into more malignant tumor cells or, alternatively, eliminate those cells in a process referred to as "cell competition". This review discusses how EVs participate in the multistep acquisition of specific traits developed by tumor cells, which are referred to as "the hallmarks of cancer" defined by Hanahan and Weinberg. Moreover, as will be discussed, EVs play an important role in drug resistance, and these more recent advances may explain, at least in part, why pharmacological therapies are often ineffective. Finally, we discuss literature proposing the use of EVs for therapeutic and prognostic purposes in cancer.
Collapse
Affiliation(s)
- Renato Burgos-Ravanal
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
| | - América Campos
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, The University of Queensland, Brisbane 4029, Australia
| | - Magda C. Díaz-Vesga
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
- Grupo de Investigación en Ciencias Básicas y Clínicas de la Salud, Pontificia Universidad Javeriana de Cali, Cali 760008, Colombia
| | - María Fernanda González
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
| | - Daniela León
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Lorena Lobos-González
- Centro de Medicina Regenerativa, Facultad de Medicina, Universidad del Desarrollo-Clínica Alemana, Santiago 7590943, Chile;
| | - Lisette Leyton
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
| | - Marcelo J. Kogan
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Andrew F. G. Quest
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Programa de Biología Celular y Molecular, Facultad de Medicina, Universidad de Chile, Santiago 8380453, Chile; (R.B.-R.); (A.C.); (M.C.D.-V.); (M.F.G.); (L.L.)
- Centro Avanzado para Estudios en Enfermedades Crónicas (ACCDIS), Santiago 8380453, Chile;
| |
Collapse
|
19
|
He C, Li L, Wang L, Meng W, Hao Y, Zhu G. Exosome-mediated cellular crosstalk within the tumor microenvironment upon irradiation. Cancer Biol Med 2021; 18:21-33. [PMID: 33628582 PMCID: PMC7877182 DOI: 10.20892/j.issn.2095-3941.2020.0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most effective treatment methods for various solid tumors. Bidirectional signal transduction between cancer cells and stromal cells within the irradiated microenvironment is important in cancer development and treatment responsiveness. Exosomes, initially considered as “garbage bins” for unwanted from cells, are now understood to perform a variety of functions in interactions within the tumor microenvironment. Exosome-mediated regulation processes are rebuilt under the irradiation stimuli, because the exosome production, uptake, and contents are markedly modified by irradiation. In turn, irradiation-modified exosomes may modulate the cell response to irradiation through feedback regulation. Here, we review current knowledge and discuss the roles of exosome-mediated interactions between cells under radiotherapy conditions.
Collapse
Affiliation(s)
- Chuanshi He
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Ling Li
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Linlin Wang
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Wanrong Meng
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Yaying Hao
- Department of Stomatology, Sichuan Cancer Hospital, Sichuan Key Laboratory of Radiation Oncology, School of Medicine, University of Electronic Science and Technology of China
| | - Guiquan Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Li Z, Jella KK, Jaafar L, Moreno CS, Dynan WS. Characterization of exosome release and extracellular vesicle-associated miRNAs for human bronchial epithelial cells irradiated with high charge and energy ions. LIFE SCIENCES IN SPACE RESEARCH 2021; 28:11-17. [PMID: 33612174 DOI: 10.1016/j.lssr.2020.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Exosomes are extracellular vesicles that mediate transport of nucleic acids, proteins, and other molecules. Prior work has implicated exosomes in the transmission of radiation nontargeted effects. Here we investigate the ability of energetic heavy ions, representative of species found in galactic cosmic rays, to stimulate exosome release from human bronchial epithelial cells in vitro. Immortalized human bronchial epithelial cells (HBEC3-KT F25F) were irradiated with 1.0 Gy of high linear energy transfer (LET) 48Ti, 28Si, or 16O ions, or with 10 Gy of low-LET reference γ-rays, and extracellular vesicles were collected from conditioned media. Preparations were characterized by single particle tracking analysis, transmission electron microscopy, and immunoblotting for the exosomal marker, TSG101. Based on TSG101 levels, irradiation with high-LET ions, but not γ-rays, stimulated exosome release by about 4-fold, relative to mock-irradiated controls. The exosome-enriched vesicle preparations contained pro-inflammatory damage-associated molecular patterns, including HSP70 and calreticulin. Additionally, miRNA profiling was performed for vesicular RNAs using NanoString technology. The miRNA profile was skewed toward a small number of species that have previously been shown to be involved in cancer initiation and progression, including miR-1246, miR-1290, miR-23a, and miR-205. Additionally, a set of 24 miRNAs was defined as modestly over-represented in preparations from HZE ion-irradiated versus other cells. Gene set enrichment analysis based on the over-represented miRNAs showed highly significant association with nonsmall cell lung and other cancers.
Collapse
Affiliation(s)
- Zhentian Li
- Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Kishore K Jella
- Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Lahcen Jaafar
- Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - Carlos S Moreno
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Emory University, Atlanta, GA, United States; Department of Biomedical Informatics, Emory University School of Medicine, Emory University, Atlanta, GA, United States
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine, Emory University, Atlanta, GA, United States; Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, GA, United States.
| |
Collapse
|
21
|
Elbakrawy EM, Mayah A, Hill MA, Kadhim M. Induction of Genomic Instability in a Primary Human Fibroblast Cell Line Following Low-Dose Alpha-Particle Exposure and the Potential Role of Exosomes. BIOLOGY 2020; 10:biology10010011. [PMID: 33379152 PMCID: PMC7824692 DOI: 10.3390/biology10010011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To study the induction of genomic instability (GI) in the progeny of cell populations irradiated with low doses of alpha-particles and the potential role of exosome-encapsulated bystander signalling. METHODS The induction of GI in HF19 normal fibroblast cells was assessed by determining the formation of micronuclei (MN) in binucleate cells along with using the alkaline comet assay to assess DNA damage. RESULTS Low dose alpha-particle exposure (0.0001-1 Gy) was observed to produce a significant induction of micronuclei and DNA damage shortly after irradiation (assays performed at 5 and 1 h post exposure, respectively). This damage was not only still evident and statistically significant in all irradiated groups after 10 population doublings, but similar trends were observed after 20 population doublings. Exosomes from irradiated cells were also observed to enhance the level of DNA damage in non-irradiated bystander cells at early times. CONCLUSION very low doses of alpha-particles are capable of inducing GI in the progeny of irradiated cells even at doses where <1% of the cells are traversed, where the level of response was similar to that observed at doses where 100% of the cells were traversed. This may have important implications with respect to the evaluation of cancer risk associated with very low-dose alpha-particle exposure and deviation from a linear dose response.
Collapse
Affiliation(s)
- Eman Mohammed Elbakrawy
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
- Department of Radiation Physics, National Center for Radiation Research and Technology, Atomic Energy Authority, 3 Ahmed El-Zomor Al Manteqah Ath Thamenah, Nasr City, Cairo 11787, Egypt
| | - Ammar Mayah
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
| | - Mark A. Hill
- Gray Laboratories, MRC Oxford Institute for Radiation Oncology, University of Oxford, ORCRB Roosevelt Drive, Oxford OX3 7DQ, UK;
| | - Munira Kadhim
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (E.M.E.); (A.M.)
- Correspondence: ; Tel.: +44-0-1865-483954
| |
Collapse
|
22
|
Du Y, Du S, Liu L, Gan F, Jiang X, Wangrao K, Lyu P, Gong P, Yao Y. Radiation-Induced Bystander Effect can be Transmitted Through Exosomes Using miRNAs as Effector Molecules. Radiat Res 2020; 194:89-100. [PMID: 32343639 DOI: 10.1667/rade-20-00019.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/27/2020] [Indexed: 02/05/2023]
Abstract
The radiation-induced bystander effect (RIBE) is a destructive reaction in nonirradiated cells and is one primary factor in determining the efficacy and success of radiation therapy in the field of cancer treatment. Previously reported studies have shown that the RIBE can be mediated by exosomes that carry miRNA components within. Exosomes, which are one type of cell-derived vesicle, exist in different biological conditions and serve as an important additional pathway for signal exchange between cells. In addition, exosome-derived miRNAs are confirmed to play an important role in RIBE, activating the bystander effect and genomic instability after radiotherapy. After investigating the field of RIBE, it is important to understand the mechanisms and consequences of biological effects as well as the role of exosomes and exosomal miRNAs therein, from different sources and under different circumstances, respectively. More discoveries could help to establish early interventions against RIBE while improving the efficacy of radiotherapy. Meanwhile, measures that would alleviate or even inhibit RIBE to some extent may exist in the near future.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shufang Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liu Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feihong Gan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoge Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kaijuan Wangrao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Jella KK, Nasti TH, Li Z, Lawson DH, Switchenko JM, Ahmed R, Dynan WS, Khan MK. Exosome-Containing Preparations From Postirradiated Mouse Melanoma Cells Delay Melanoma Growth In Vivo by a Natural Killer Cell-Dependent Mechanism. Int J Radiat Oncol Biol Phys 2020; 108:104-114. [PMID: 32561502 DOI: 10.1016/j.ijrobp.2020.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/21/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the ability of radiation to stimulate exosome release from melanoma cells and to characterize the resulting exosome-containing vesicle preparations for their ability to promote a host antitumor immune response. MATERIALS AND METHODS Cultured B16F10 murine melanoma cells or tumors were irradiated, and secreted extracellular vesicles were isolated and characterized. The exosome-containing vesicle preparations were injected into fresh tumors in syngeneic mice, and tumor growth and infiltrating T cells and natural killer (NK) cells were characterized. RESULTS Irradiation stimulated exosome release from B16F10 murine melanoma cells. Exosome preparations from irradiated cell culture supernatants were biologically active, as demonstrated by uptake into recipient cells and by the ability to induce dendritic cell maturation and activation in vitro. Intratumoral injection significantly delayed tumor growth in vivo, whereas injection of similar preparations from non irradiated cells had no effect. The antitumor effect was correlated to an increase in interferon gamma-producing tumor-infiltrating NK cells. Pretreatment of the host mice with anti-NK cell antibodies abolished the effect, whereas pretreatment with anti-CD8+ T-cell antibodies did not. CONCLUSION Exosomes from irradiated cells, or synthetic mimics, might provide an effective strategy for potentiation of NK cell-mediated host antitumor immunity.
Collapse
Affiliation(s)
- Kishore Kumar Jella
- Department of Radiation Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia
| | - Tahseen H Nasti
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia
| | - Zhentian Li
- Department of Radiation Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia
| | - David H Lawson
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Rafi Ahmed
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia
| | - William S Dynan
- Department of Radiation Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia; Department of Biochemistry, School of Medicine, Emory University, Atlanta, Georgia
| | - Mohammad K Khan
- Department of Radiation Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, Georgia.
| |
Collapse
|
24
|
Zhang Y, Liu J, Zhou L, Hao S, Ding Z, Xiao L, Zhou M. Exosomal Small RNA Sequencing Uncovers Dose-Specific MiRNA Markers for Ionizing Radiation Exposure. Dose Response 2020; 18:1559325820926735. [PMID: 32528236 PMCID: PMC7263154 DOI: 10.1177/1559325820926735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/02/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022] Open
Abstract
Introduction: Acute exposure to ionizing radiation (IR) is hazardous or even lethal. Accurate estimation of the doses of IR exposure is critical to wisely determining the following treatments. Exosomes are nanoscale vesicles harboring biomolecules and mediate the communications among cells and tissues to influence biological processes. Screening out the microRNAs (miRNAs) contained in exosomes as biomarkers can be useful for estimating the IR exposure doses and exploring the correlation between these miRNAs and the occurrence of disease. Methods: We treated mice with 2.0, 6.5, and 8.0 Gy doses of IR and collected the mice sera at 0, 24, 48, and 72 hours after exposure. Then, the serum exosomes were isolated by ultracentrifuge and the small RNA portion was extracted for sequencing and the following bioinformatics analysis. Qualitative polymerase chain reaction was performed to validate the potential dose-specific markers. Results: Fifty-six miRNAs (31 upregulated, 25 downregulated) were differentially expressed after exposure of the above 3 IR doses and may act as common IR exposure miRNA markers. Bioinformatic analysis also identified several dosage-specific responsive miRNAs. Importantly, IR-induced miR-151-3p and miR-128-3p were significantly and stably increased at 24 hours in different mouse strains with distinct genetic background after exposed to 8.0 Gy of IR. Conclusion: Our study shows that miR-151-3p and miR-128-3p can be used as dose-specific biomarkers of 8.0 Gy IR exposure, which can be used to determine the exposure dose by detecting the amount of the 2 miRNAs in serum exosomes.
Collapse
Affiliation(s)
- Ying Zhang
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China.,Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jiabin Liu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liang Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shuai Hao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhenhua Ding
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lin Xiao
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, Guangdong, China
| | - Meijuan Zhou
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Telomere instability initiates and then boosts carcinogenesis by the butterfly effect. Curr Opin Genet Dev 2020; 60:92-98. [PMID: 32199233 DOI: 10.1016/j.gde.2020.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Telomeres are composed of DNA repeat sequences at the ends of chromosomes that recruit a multitude of proteins to form a complex loop structure at each extremity. The integrity of this structure is critical and correct conformation of the loop is essential for the protection of chromosome ends from DDR signaling. The properties of telomere composition and synthesis result in telomere shortening at each cell division, programming cellular lifespan by driving aged cells towards death. Indeed, many external factors, such as cellular stress, trigger cell-cycle dysfunction and, in some cases, enable the survival of cells with dysfunctionally short telomeres. Destabilized loops at chromosome ends can then lead to dramatic consequences, via a butterfly effect such as multiple chromosomal fusions and rearrangements causing large chromosomal deletions, XXL-LOH (loss of heterozygoty due to very large chromosome deletions, up to whole chromosome arm), the expression of recessive mutations, and potential cell transformation.
Collapse
|
26
|
Does Direct and Indirect Exposure to Ionising Radiation Influence the Metastatic Potential of Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12010236. [PMID: 31963587 PMCID: PMC7016586 DOI: 10.3390/cancers12010236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/13/2022] Open
Abstract
Ionising radiation (IR) is commonly used for cancer therapy; however, its potential influence on the metastatic ability of surviving cancer cells exposed directly or indirectly to IR remains controversial. Metastasis is a multistep process by which the cancer cells dissociate from the initial site, invade, travel through the blood stream or lymphatic system, and colonise distant sites. This complex process has been reported to require cancer cells to undergo epithelial-mesenchymal transition (EMT) by which the cancer cells convert from an adhesive, epithelial to motile, mesenchymal form and is also associated with changes in glycosylation of cell surface proteins, which may be functionally involved in metastasis. In this paper, we give an overview of metastatic mechanisms and of the fundamentals of cancer-associated glycosylation changes. While not attempting a comprehensive review of this wide and fast moving field, we highlight some of the accumulating evidence from in vitro and in vivo models for increased metastatic potential in cancer cells that survive IR, focusing on angiogenesis, cancer cell motility, invasion, and EMT and glycosylation. We also explore the indirect effects in cells exposed to exosomes released from irradiated cells. The results of such studies need to be interpreted with caution and there remains limited evidence that radiotherapy enhances the metastatic capacity of cancers in a clinical setting and undoubtedly has a very positive clinical benefit. However, there is potential that this therapeutic benefit may ultimately be enhanced through a better understanding of the direct and indirect effects of IR on cancer cell behaviour.
Collapse
|
27
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
28
|
Wang Y, Wang Q, Wei X, Shao J, Zhao J, Zhang Z, Chen Z, Bai Y, Wang N, Wang Y, Li M, Zhai X. Global scientific trends on exosome research during 2007-2016: a bibliometric analysis. Oncotarget 2018; 8:48460-48470. [PMID: 28477015 PMCID: PMC5564662 DOI: 10.18632/oncotarget.17223] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/22/2017] [Indexed: 12/12/2022] Open
Abstract
Background Exosomes are small vesicles of endosomal origin, and they can be used for the diagnosis and the treatment. However, limited data were for the evaluation of the trend of exosome researches. This study aims to investigate the trend of exosome researches and compare the contribution of research from different regions, organizations and authors. Methods Exosome related publications from 2007 to 2016 were retrieved from the Web of Science database. Excel, GraphPad Prism 5 and VOSviewer software were used to analyze the research trend. Results A total of 1852 papers were identified and were cited 62967 times. The United States accounted for 38.8% of the articles, 42.0% of the citations, and the highest H-index (76). China ranked the second in the number of articles, but the sixth in citation frequency (4337) and the fourth in H-index (36). The journals, PLoS ONE and J Biol Chem had the highest number of publications. The author, Gabrielsson S., has published the most papers in this field (22). The keyword “ribonucleic acid” was mentioned the most at 746 times, and the words, “stem cell”, “drug resistance” and “monocyte cell factor” were the latest hotspots appeared around 2015. Conclusion Literature growth related to exosome is expanding rapidly. The quality of the articles from China still requires improvement. Recent studies focus on the relationship with tumor, and “stem cell”, “drug resistance” and “michigan cancer foundation-7” may be the newest topics that should be closely followed in exosome research.
Collapse
Affiliation(s)
- Yiran Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Graduate Management Unit, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qijin Wang
- Department of Endocrinology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xianzhao Wei
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jie Shao
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jian Zhao
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zicheng Zhang
- Graduate Management Unit, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yushu Bai
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ning Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yajie Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Ming Li
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao Zhai
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
29
|
Affiliation(s)
- Scott Bright
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Munira Kadhim
- Department of Biological and Biomedical Sciences, Oxford Brookes University, Oxford, UK
| |
Collapse
|
30
|
Abstract
Cellular senescence is a cellular program that prevents the proliferation of cells at risk of neoplastic transformation. On the other hand, age-related accumulation of senescent cells promotes aging at least partially due to the senescence-associated secretory phenotype, whereby cells secrete high levels of inflammatory cytokines, chemokines, and matrix metalloproteinases. Emerging evidence, however, indicates that extracellular vesicles (EVs) are important mediators of the effects of senescent cells on their microenvironment. Senescent cells secrete more EphA2 and DNA via EVs, which can promote cancer cell proliferation and inflammation, respectively. Extracellular vesicles secreted from DNA-damaged cells can also affect telomere regulation. Furthermore, it has now become clear that EVs actually play important roles in many aspects of aging. This review is intended to summarize these recent progresses, with emphasis on relationships between cellular senescence and EVs.
Collapse
|
31
|
Effect of the irradiation on Neuroblastoma-derived microvesicles: A physical and biological investigation. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Paunesku T, Haley B, Brooks A, Woloschak GE. Biological basis of radiation protection needs rejuvenation. Int J Radiat Biol 2017; 93:1056-1063. [PMID: 28287035 PMCID: PMC7340141 DOI: 10.1080/09553002.2017.1294773] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/04/2017] [Accepted: 02/09/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE Human beings encounter radiation in many different situations - from proximity to radioactive waste sites to participation in medical procedures using X-rays etc. Limits for radiation exposures are legally regulated; however, current radiation protection policy does not explicitly acknowledge that biological, cellular and molecular effects of low doses and low dose rates of radiation differ from effects induced by medium and high dose radiation exposures. Recent technical developments in biology and medicine, from single cell techniques to big data computational research, have enabled new approaches for study of biology of low doses of radiation. Results of the work done so far support the idea that low doses of radiation have effects that differ from those associated with high dose exposures; this work, however, is far from sufficient for the development of a new theoretical framework needed for the understanding of low dose radiation exposures. CONCLUSIONS Mechanistic understanding of radiation effects at low doses is necessary in order to develop better radiation protection policy.
Collapse
Affiliation(s)
- Tatjana Paunesku
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Benjamin Haley
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Antone Brooks
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| | - Gayle E Woloschak
- a Department of Radiation Oncology , Northwestern University , Chicago , IL , USA
| |
Collapse
|
33
|
Wang Z, Deng Z, Tutton S, Lieberman PM. The Telomeric Response to Viral Infection. Viruses 2017; 9:v9080218. [PMID: 28792463 PMCID: PMC5580475 DOI: 10.3390/v9080218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/06/2017] [Accepted: 08/06/2017] [Indexed: 12/16/2022] Open
Abstract
The ends of linear genomes, whether viral or cellular, can elicit potent DNA damage and innate immune signals. DNA viruses entering the nucleus share many features with telomeres in their ability to either suppress or co-opt these pathways. Here, we review some of the common mechanisms that viruses and telomeres use to manage the DNA damage and innate immune response pathways. We highlight recent studies on the role of the telomere repeat-containing RNA (TERRA) in response to viral infection. We discuss how TERRA can be activated through a p53-response element embedded in a retrotransposon-like repeat found in human subtelomeres. We consider how TERRA can function as a danger signal when secreted in extracellular vesicles to induce inflammatory cytokines in neighboring cells. These findings suggest that TERRA may be part of the innate immune response to viral infection, and support the hypothesis that telomeres and viruses utilize common mechanisms to maintain genome integrity and regulate innate immunity.
Collapse
Affiliation(s)
- Zhuo Wang
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Zhong Deng
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Steve Tutton
- The Wistar Institute, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
34
|
Diegeler S, Hellweg CE. Intercellular Communication of Tumor Cells and Immune Cells after Exposure to Different Ionizing Radiation Qualities. Front Immunol 2017. [PMID: 28638385 PMCID: PMC5461334 DOI: 10.3389/fimmu.2017.00664] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Ionizing radiation can affect the immune system in many ways. Depending on the situation, the whole body or parts of the body can be acutely or chronically exposed to different radiation qualities. In tumor radiotherapy, a fractionated exposure of the tumor (and surrounding tissues) is applied to kill the tumor cells. Currently, mostly photons, and also electrons, neutrons, protons, and heavier particles such as carbon ions, are used in radiotherapy. Tumor elimination can be supported by an effective immune response. In recent years, much progress has been achieved in the understanding of basic interactions between the irradiated tumor and the immune system. Here, direct and indirect effects of radiation on immune cells have to be considered. Lymphocytes for example are known to be highly radiosensitive. One important factor in indirect interactions is the radiation-induced bystander effect which can be initiated in unexposed cells by expression of cytokines of the irradiated cells and by direct exchange of molecules via gap junctions. In this review, we summarize the current knowledge about the indirect effects observed after exposure to different radiation qualities. The different immune cell populations important for the tumor immune response are natural killer cells, dendritic cells, and CD8+ cytotoxic T-cells. In vitro and in vivo studies have revealed the modulation of their functions due to ionizing radiation exposure of tumor cells. After radiation exposure, cytokines are produced by exposed tumor and immune cells and a modulated expression profile has also been observed in bystander immune cells. Release of damage-associated molecular patterns by irradiated tumor cells is another factor in immune activation. In conclusion, both immune-activating and -suppressing effects can occur. Enhancing or inhibiting these effects, respectively, could contribute to modified tumor cell killing after radiotherapy.
Collapse
Affiliation(s)
- Sebastian Diegeler
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | - Christine E Hellweg
- Division of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| |
Collapse
|