1
|
Little MP, Boerma M, Bernier MO, Azizova TV, Zablotska LB, Einstein AJ, Hamada N. Effects of confounding and effect-modifying lifestyle, environmental and medical factors on risk of radiation-associated cardiovascular disease. BMC Public Health 2024; 24:1601. [PMID: 38879521 PMCID: PMC11179258 DOI: 10.1186/s12889-024-18701-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/23/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide. It has been known for some considerable time that radiation is associated with excess risk of CVD. A recent systematic review of radiation and CVD highlighted substantial inter-study heterogeneity in effect, possibly a result of confounding or modifications of radiation effect by non-radiation factors, in particular by the major lifestyle/environmental/medical risk factors and latent period. METHODS We assessed effects of confounding by lifestyle/environmental/medical risk factors on radiation-associated CVD and investigated evidence for modifying effects of these variables on CVD radiation dose-response, using data assembled for a recent systematic review. RESULTS There are 43 epidemiologic studies which are informative on effects of adjustment for confounding or risk modifying factors on radiation-associated CVD. Of these 22 were studies of groups exposed to substantial doses of medical radiation for therapy or diagnosis. The remaining 21 studies were of groups exposed at much lower levels of dose and/or dose rate. Only four studies suggest substantial effects of adjustment for lifestyle/environmental/medical risk factors on radiation risk of CVD; however, there were also substantial uncertainties in the estimates in all of these studies. There are fewer suggestions of effects that modify the radiation dose response; only two studies, both at lower levels of dose, report the most serious level of modifying effect. CONCLUSIONS There are still large uncertainties about confounding factors or lifestyle/environmental/medical variables that may influence radiation-associated CVD, although indications are that there are not many studies in which there are substantial confounding effects of these risk factors.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Room 7E546, 9609 Medical Center Drive MSC 9778, Bethesda, MD, 20892-9778, USA.
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK.
| | - Marjan Boerma
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Marie-Odile Bernier
- Institut de Radioprotection et de Sureté Nucléaire, Fontenay Aux Roses, France
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Chelyabinsk Region, Ozyorskoe Shosse 19, Ozyorsk, 456780, Russia
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, 550 16th St 2nd floor, San Francisco, CA, 94143, USA
| | - Andrew J Einstein
- Seymour, Paul, and Gloria Milstein Division of Cardiology, Department of Medicine, and Department of Radiology, Columbia University Irving Medical Center/New York-Presbyterian Hospital, New York, NY, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| |
Collapse
|
2
|
Wong YM, Koh CWY, Lew KS, Chua CGA, Nei W, Tan HQ, Lee JCL, Mazonakis M, Damilakis J. A review on fetal dose in Radiotherapy: A historical to contemporary perspective. Phys Med 2023; 105:102513. [PMID: 36565555 DOI: 10.1016/j.ejmp.2022.102513] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This paper aims to review on fetal dose in radiotherapy and extends and updates on a previous work1 to include proton therapy. Out-of-field doses, which are the doses received by regions outside of the treatment field, are unavoidable regardless of the treatment modalities used during radiotherapy. In the case of pregnant patients, fetal dose is a major concern as it has long been recognized that fetuses exposed to radiation have a higher probability of suffering from adverse effects such as anatomical malformations and even fetal death, especially when the 0.1Gy threshold is exceeded. In spite of the low occurrence of cancer during pregnancy, the radiotherapy team should be equipped with the necessary knowledge to deal with fetal dose. This is crucial so as to ensure that the fetus is adequately protected while not compromising the patient treatment outcomes. In this review paper, various aspects of fetal dose will be discussed ranging from biological, clinical to the physics aspects. Other than fetal dose resulting from conventional photon therapy, this paper will also extend the discussion to modern treatment modalities and techniques, namely proton therapy and image-guided radiotherapy, all of which have seen a significant increase in use in current radiotherapy. This review is expected to provide readers with a comprehensive understanding of fetal dose in radiotherapy, and to be fully aware of the steps to be taken in providing radiotherapy for pregnant patients.
Collapse
Affiliation(s)
- Yun Ming Wong
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | | | - Kah Seng Lew
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | | | - Wenlong Nei
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore.
| | - James Cheow Lei Lee
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - Michael Mazonakis
- Department of Medical Physics, School of Medicine, University of Crete, Greece
| | - John Damilakis
- Department of Medical Physics, School of Medicine, University of Crete, Greece
| |
Collapse
|
3
|
Pool LR, Aguayo L, Brzezinski M, Perak AM, Davis MM, Greenland P, Hou L, Marino BS, Van Horn L, Wakschlag L, Labarthe D, Lloyd-Jones D, Allen NB. Childhood Risk Factors and Adulthood Cardiovascular Disease: A Systematic Review. J Pediatr 2021; 232:118-126.e23. [PMID: 33516680 DOI: 10.1016/j.jpeds.2021.01.053] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To conduct a comprehensive review of the literature on childhood risk factors and their associations with adulthood subclinical and clinical cardiovascular disease (CVD). STUDY DESIGN A systematic search was performed using the MEDLINE, EMBASE, PsycINFO, CINAHL, and Web of Science databases to identify English-language articles published through June 2018. Articles were included if they were longitudinal studies in community-based populations, the primary exposure occurred during childhood, and the primary outcome was either a measure of subclinical CVD or a clinical CVD event occurring in adulthood. Two independent reviewers screened determined whether eligibility criteria were met. RESULTS There were 210 articles that met the predefined criteria. The greatest number of publications examined associations of clinical risk factors, including childhood adiposity, blood pressure, and cholesterol, with the development of adult CVD. Few studies examined childhood lifestyle factors including diet quality, physical activity, and tobacco exposure. Domains of risk beyond "traditional" cardiovascular risk factors, such as childhood psychosocial adversity, seemed to have strong published associations with the development of CVD. CONCLUSIONS Although the evidence was fairly consistent in direction and magnitude for exposures such as childhood adiposity, hypertension, and hyperlipidemia, significant gaps remain in the understanding of how childhood health and behaviors translate to the risk of adulthood CVD, particularly in lesser studied exposures like glycemic indicators, physical activity, diet quality, very early life course exposure, and population subgroups.
Collapse
Affiliation(s)
- Lindsay R Pool
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Liliana Aguayo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Michal Brzezinski
- Department of Public Health and Social Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Amanda M Perak
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Institute for Innovations in Developmental Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Matthew M Davis
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Institute for Innovations in Developmental Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Academic General Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Institute for Innovations in Developmental Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Bradley S Marino
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Division of Cardiology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Institute for Innovations in Developmental Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Linda Van Horn
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Lauren Wakschlag
- Division of Academic General Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Medical Social Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Darwin Labarthe
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Academic General Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Donald Lloyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Academic General Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL; Division of Academic General Pediatrics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| |
Collapse
|
4
|
Little MP, Azizova TV, Hamada N. Low- and moderate-dose non-cancer effects of ionizing radiation in directly exposed individuals, especially circulatory and ocular diseases: a review of the epidemiology. Int J Radiat Biol 2021; 97:782-803. [PMID: 33471563 PMCID: PMC10656152 DOI: 10.1080/09553002.2021.1876955] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 01/29/2023]
Abstract
PURPOSE There are well-known correlations between high and moderate doses (>0.5 Gy) of ionizing radiation exposure and circulatory system damage, also between radiation and posterior subcapsular cataract. At lower dose correlations with circulatory disease are emerging in the Japanese atomic bomb survivors and in some occupationally exposed groups, and are still to some extent controversial. Heterogeneity in excess relative risks per unit dose in epidemiological studies at low (<0.1 Gy) and at low-moderate (>0.1 Gy, <0.5 Gy) doses may result from confounding and other types of bias, and effect modification by established risk factors. There is also accumulating evidence of excess cataract risks at lower dose and low dose rate in various cohorts. Other ocular endpoints, specifically glaucoma and macular degeneration have been little studied. In this paper, we review recent epidemiological findings, and also discuss some of the underlying radiobiology of these conditions. We briefly review some other types of mainly neurological nonmalignant disease in relation to radiation exposure. CONCLUSIONS We document statistically significant excess risk of the major types of circulatory disease, specifically ischemic heart disease and stroke, in moderate- or low-dose exposed groups, with some not altogether consistent evidence suggesting dose-response non-linearity, particularly for stroke. However, the patterns of risk reported are not straightforward. We also document evidence of excess risks at lower doses/dose-rates of posterior subcapsular and cortical cataract in the Chernobyl liquidators, US Radiologic Technologists and Russian Mayak nuclear workers, with fundamentally linear dose-response. Nuclear cataracts are less radiogenic. For other ocular endpoints, specifically glaucoma and macular degeneration there is very little evidence of effects at low doses; radiation-associated glaucoma has been documented only for doses >5 Gy, and so has the characteristics of a tissue reaction. There is some evidence of neurological detriment following low-moderate dose (∼0.1-0.2 Gy) radiation exposure in utero or in early childhood.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, USA
| | - Tamara V Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Ozyorsk Chelyabinsk Region, Russia
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| |
Collapse
|
5
|
Sugiyama H, Misumi M, Sakata R, Brenner AV, Utada M, Ozasa K. Mortality among individuals exposed to atomic bomb radiation in utero: 1950-2012. Eur J Epidemiol 2021; 36:415-428. [PMID: 33492551 PMCID: PMC8076150 DOI: 10.1007/s10654-020-00713-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022]
Abstract
We examined the mortality risks among 2463 individuals who were exposed in utero to atomic bomb radiation in Hiroshima or Nagasaki in August 1945 and were followed from October 1950 through 2012. Individual estimates of mother's weighted absorbed uterine dose (DS02R1) were used. Poisson regression method was used to estimate the radiation-associated excess relative risk per Gy (ERR/Gy) and 95% confidence intervals (CI) for cause-specific mortality. Head size, birth weight, and parents' survival status were evaluated as potential mediators of radiation effect. There were 339 deaths (216 males and 123 females) including deaths from solid cancer (n = 137), lymphohematopoietic cancer (n = 8), noncancer disease (n = 134), external cause (n = 56), and unknown cause (n = 4). Among males, the unadjusted ERR/Gy (95% CI) was increased for noncancer disease mortality (1.22, 0.10-3.14), but not for solid cancer mortality (- 0.18, < - 0.77-0.95); the unadjusted ERR/Gy for external cause mortality was not statistically significant (0.28, < - 0.60-2.36). Among females, the unadjusted ERRs/Gy were increased for solid cancer (2.24, 0.44-5.58), noncancer (2.86, 0.56-7.64), and external cause mortality (2.57, 0.20-9.19). The ERRs/Gy adjusted for potential mediators did not change appreciably for solid cancer mortality, but decreased notably for noncancer mortality (0.39, < - 0.43-1.91 for males; 1.48, - 0.046-4.55 for females) and external cause mortality (0.10, < - 0.57-1.96 for males; 1.38, < - 0.46-5.95 for females). In conclusion, antenatal radiation exposure is a consistent risk factor for increased solid cancer mortality among females, but not among males. The effect of exposure to atomic bomb radiation on noncancer disease and external cause mortality among individuals exposed in utero was mediated through small head size, low birth weight, and parental loss.
Collapse
Affiliation(s)
- Hiromi Sugiyama
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan.
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Ritsu Sakata
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Alina V Brenner
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Mai Utada
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| | - Kotaro Ozasa
- Department of Epidemiology, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima City, Hiroshima, Japan
| |
Collapse
|
6
|
Tapio S, Little MP, Kaiser JC, Impens N, Hamada N, Georgakilas AG, Simar D, Salomaa S. Ionizing radiation-induced circulatory and metabolic diseases. ENVIRONMENT INTERNATIONAL 2021; 146:106235. [PMID: 33157375 PMCID: PMC10686049 DOI: 10.1016/j.envint.2020.106235] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/09/2020] [Accepted: 10/08/2020] [Indexed: 05/23/2023]
Abstract
Risks to health are the prime consideration in all human situations of ionizing radiation exposure and therefore of relevance to radiation protection in all occupational, medical, and public exposure situations. Over the past few decades, advances in therapeutic strategies have led to significant improvements in cancer survival rates. However, a wide range of long-term complications have been reported in cancer survivors, in particular circulatory diseases and their major risk factors, metabolic diseases. However, at lower levels of exposure, the evidence is less clear. Under real-life exposure scenarios, including radiotherapy, radiation effects in the whole organism will be determined mainly by the response of normal tissues receiving relatively low doses, and will be mediated and moderated by systemic effects. Therefore, there is an urgent need for further research on the impact of low-dose radiation. In this article, we review radiation-associated risks of circulatory and metabolic diseases in clinical, occupational or environmental exposure situations, addressing epidemiological, biological, risk modelling, and systems biology aspects, highlight the gaps in knowledge and discuss future directions to address these gaps.
Collapse
Affiliation(s)
- Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany.
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute (NCI), National Institutes of Health (NIH), MD, USA
| | - Jan Christian Kaiser
- Institute of Radiation Medicine, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Nathalie Impens
- Institute of Environment, Health and Safety, Biosphere Impact Studies, SCK•CEN, Mol, Belgium
| | - Nobuyuki Hamada
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Alexandros G Georgakilas
- DNA Damage Laboratory, Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Athens, Greece
| | - David Simar
- Mechanisms of Disease and Translational Research, School of Medical Sciences, UNSW Sydney, Sydney, Australia
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
McEvoy-May JH, Jones DE, Stoa L, Dixon DL, Tai TC, Hooker AM, Boreham DR, Wilson JY. Unchanged cardiovascular and respiratory outcomes in healthy C57Bl/6 mice after in utero exposure to ionizing radiation. Int J Radiat Biol 2020; 97:131-138. [PMID: 33258723 DOI: 10.1080/09553002.2021.1855372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Advancements in medical technologies that utilize ionizing radiation have led to improved diagnosis and patient outcomes, however, the effect of ionizing radiation on the patient is still debated. In the case of pregnancy, the potential effects are not only to the mother but also to the fetus. The aim of this study was to determine if exposure from ionizing radiation during pregnancy alters the development of the cardiovascular and respiratory system of the offspring. MATERIALS AND METHODS Pregnant C57Bl/6 mice were whole-body irradiated at gestational day 15 with a 137Cs gamma radiation emitting source at 0 mGy (sham), 50 mGy, 300 mGy, or 1000 mGy. Post weaning weight and blood pressure measurements were taken weekly for both male and female pups until euthanasia at 16-17 weeks postnatal age. Immediately following, the trachea was cannulated, and the lungs and heart excised. The lung was then examined to assess respiratory physiological outcomes. RESULTS AND CONCLUSIONS In utero exposures to 1000 mGy caused significant growth reduction compared to sham irradiated, which remained persistent for both male and female pups. Growth restriction was not observed for lower exposures. There was no significant change in any cardiovascular or respiratory outcomes measured. Overall, intrauterine exposures to ionizing radiation does not appear to significantly alter the development of the cardiovascular and respiratory system in C57Bl/6 pups up to 17 weeks postnatal age.
Collapse
Affiliation(s)
- James H McEvoy-May
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Centre for Radiation Research, Education and Innovation, University of Adelaide, Adelaide, South Australia, Australia
| | - Devon E Jones
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Lisa Stoa
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Dani-Louise Dixon
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Centre for Radiation Research, Education and Innovation, University of Adelaide, Adelaide, South Australia, Australia.,Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - T C Tai
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Antony M Hooker
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia.,Centre for Radiation Research, Education and Innovation, University of Adelaide, Adelaide, South Australia, Australia
| | - Douglas R Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Ontario, Canada
| | - Joanna Y Wilson
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
8
|
Wang B, Yasuda H. Relative Biological Effectiveness of High LET Particles on the Reproductive System and Fetal Development. Life (Basel) 2020; 10:E298. [PMID: 33233778 PMCID: PMC7699951 DOI: 10.3390/life10110298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/14/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
During a space mission, astronauts are inevitably exposed to space radiation, mainly composed of the particles having high values of linear energy transfer (LET), such as protons, helium nuclei, and other heavier ions. Those high-LET particles could induce severer health damages than low-LET particles such as photons and electrons. While it is known that the biological effectiveness of a specified type of radiation depends on the distribution of dose in time, type of the cell, and the biological endpoint in respect, there are still large uncertainties regarding the effects of high-LET particles on the reproductive system, gamete, embryo, and fetal development because of the limitation of relevant data from epidemiological and experimental studies. To safely achieve the planned deep space missions to the moon and Mars that would involve young astronauts having reproductive functions, it is crucial to know exactly the relevant radiological effects, such as infertility of the parent and various diseases of the child, and then to conduct proper countermeasures. Thus, in this review, the authors present currently available information regarding the relative biological effectiveness (RBE) of high-LET particles on the deterministic effects related to the reproductive system and embryonic/fetal development for further discussions about the safety of being pregnant after or during a long-term interplanetary mission.
Collapse
Affiliation(s)
- Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Hiroshi Yasuda
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
9
|
Ozasa K, Cullings HM, Ohishi W, Hida A, Grant EJ. Epidemiological studies of atomic bomb radiation at the Radiation Effects Research Foundation. Int J Radiat Biol 2019; 95:879-891. [PMID: 30676179 DOI: 10.1080/09553002.2019.1569778] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Epidemiological studies of people who were exposed to atomic bomb radiation and their children who were conceived after parental exposure to radiation (F1) have investigated late health effects of atomic bomb radiation and its transgenerational effects. Those studies were initiated by the Atomic Bomb Casualty Commission (ABCC) in the 1950s. ABCC was reorganized to the Radiation Effects Research Foundation (RERF) in 1975, which continued the work of the ABCC. Follow-up of vital status and cause of death is performed for all RERF cohorts, including the atomic bomb survivors (the Life Span Study: LSS), in utero survivors, and the children of the survivors (F1). Cancer incidence is investigated for accessible subpopulations of the cohorts. Health examinations for subcohorts of the LSS and in utero survivors are conducted as the Adult Health Study (AHS); a program of health examinations for a subcohort of the F1 study is called the F1 Offspring Clinical Study (FOCS). Participants of all clinical programs are asked to donate their blood and urine for storage and future biomedical investigations. Epidemiological studies have observed increased radiation risks for malignant diseases among survivors including those exposed in utero, and possible risks for some noncancer diseases. No increased risks due to parental exposure to radiation have been observed for malignancies or other diseases in F1, but continuing investigations are required.
Collapse
Affiliation(s)
- Kotaro Ozasa
- a Department of Epidemiology , Radiation Effects Research Foundation , Hiroshima , Japan
| | - Harry M Cullings
- b Department of Statistics , Radiation Effects Research Foundation , Hiroshima , Japan
| | - Waka Ohishi
- c Department of Clinical Studies , Radiation Effects Research Foundation , Hiroshima , Japan
| | - Ayumi Hida
- d Department of Clinical Studies , Radiation Effects Research Foundation , Nagasaki , Japan
| | - Eric J Grant
- e Associate Chief of Research, Radiation Effects Research Foundation , Hiroshima , Japan
| |
Collapse
|
10
|
Tran V, Zablotska LB, Brenner AV, Little MP. Radiation-associated circulatory disease mortality in a pooled analysis of 77,275 patients from the Massachusetts and Canadian tuberculosis fluoroscopy cohorts. Sci Rep 2017; 7:44147. [PMID: 28287147 PMCID: PMC5347030 DOI: 10.1038/srep44147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/03/2017] [Indexed: 01/06/2023] Open
Abstract
High-dose ionising radiation is associated with circulatory disease. Risks associated with lower-dose (<0.5 Gy) exposures remain unclear, with little information on risk modification by age at exposure, years since exposure or dose-rate. Tuberculosis patients in Canada and Massachusetts received multiple diagnostic x-ray fluoroscopic exposures, over a wide range of ages, many at doses <0.5 Gy. We evaluated risks of circulatory-disease mortality associated with <0.5 Gy radiation exposure in a pooled cohort of 63,707 patients in Canada and 13,568 patients in Massachusetts. Under 0.5 Gy there are increasing trends for all circulatory disease (n = 10,209; excess relative risk/Gy = 0.246; 95% CI 0.036, 0.469; p = 0.021) and for ischaemic heart disease (n = 6410; excess relative risk/Gy = 0.267; 95% CI 0.003, 0.552; p = 0.048). All circulatory-disease and ischaemic-heart-disease risk reduces with increasing time since exposure (p < 0.005). Over the entire dose range, there are negative mortality dose trends for all circulatory disease (p = 0.014) and ischaemic heart disease (p = 0.003), possibly due to competing causes of death over this dose interval.These results confirm and extend earlier findings and strengthen the evidence for circulatory-disease mortality radiation risk at doses <0.5 Gy. The limited information on well-known lifestyle/medical risk factors for circulatory disease implies that confounding of the dose trend cannot be entirely excluded.
Collapse
Affiliation(s)
- Van Tran
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lydia B Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Alina V Brenner
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| |
Collapse
|
11
|
Malakhova LV, Lomaeva MG, Zakharova ML, Kirillova EN, Sokolova SN, Antipova VN, Bezlepkin VG. Mitochondrial DNA deletions in the peripheral blood of workers at the Mayak PA who were exposed to long-term combined effects of external γ- and internal α-radiation. Biophysics (Nagoya-shi) 2016. [DOI: 10.1134/s0006350916060142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Little MP. Radiation and circulatory disease. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2016; 770:299-318. [PMID: 27919337 PMCID: PMC5315567 DOI: 10.1016/j.mrrev.2016.07.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/23/2016] [Accepted: 07/25/2016] [Indexed: 11/15/2022]
Abstract
Exposure to therapeutic doses of ionizing radiation is associated with damage to the heart and coronary arteries. However, only recently have studies with high-quality individual dosimetry data allowed this risk to be quantified while also adjusting for concomitant chemotherapy, and medical and lifestyle risk factors. At lower levels of exposure the evidence is less clear. In this article I review radiation-associated risks of circulatory disease in groups treated with radiotherapy for malignant and non-malignant disease, and in occupationally- or environmentally-exposed groups receiving rather lower levels of radiation dose, also for medical diagnostic purposes. Results of a meta-analysis suggest that excess relative risks per unit dose for various types of heart disease do not exhibit statistically significant (p>0.2) heterogeneity between studies. Although there are no marked discrepancies between risks derived from the high-dose therapeutic and medical diagnostic studies and from the moderate/low dose occupational and environmental studies, at least for ischemic heart disease and stroke there are indications of larger risks per unit dose for lower dose rate and fractionated exposures. Risks for stroke and other types of circulatory disease are significantly more variable (p<0.0001), possibly resulting from confounding and effect-modification by well known (but unobserved) risk factors. Adjustment for any of mean dose, dose fractionation or age at exposure results in the residual heterogeneity for cerebrovascular disease becoming non-significant. The review provides strong evidence in support of a causal association between both low and high dose radiation exposure and most types of circulatory disease.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA.
| |
Collapse
|
13
|
In-Utero Low-Dose Irradiation Leads to Persistent Alterations in the Mouse Heart Proteome. PLoS One 2016; 11:e0156952. [PMID: 27276052 PMCID: PMC4898684 DOI: 10.1371/journal.pone.0156952] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/23/2016] [Indexed: 02/07/2023] Open
Abstract
Prenatal exposure to stress such as increased level of reactive oxygen species or antiviral therapy are known factors leading to adult heart defects. The risks following a radiation exposure during fetal period are unknown, as are the mechanisms of any potential cardiac damage. The aim of this study was to gather evidence for possible damage by investigating long-term changes in the mouse heart proteome after prenatal exposure to low and moderate radiation doses. Pregnant C57Bl/6J mice received on embryonic day 11 (E11) a single total body dose of ionizing radiation that ranged from 0.02 Gy to 1.0 Gy. The offspring were sacrificed at the age of 6 months or 2 years. Quantitative proteomic analysis of heart tissue was performed using Isotope Coded Protein Label technology and tandem mass spectrometry. The proteomics data were analyzed by bioinformatics and key changes were validated by immunoblotting. Persistent changes were observed in the expression of proteins representing mitochondrial respiratory complexes, redox and heat shock response, and the cytoskeleton, even at the low dose of 0.1 Gy. The level of total and active form of the kinase MAP4K4 that is essential for the embryonic development of mouse heart was persistently decreased at the radiation dose of 1.0 Gy. This study provides the first insight into the molecular mechanisms of cardiac impairment induced by ionizing radiation exposure during the prenatal period.
Collapse
|
14
|
Little MP, Lipshultz SE. Low dose radiation and circulatory diseases: a brief narrative review. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2015; 1:4. [PMID: 33530149 PMCID: PMC7837141 DOI: 10.1186/s40959-015-0007-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/30/2015] [Indexed: 11/10/2022]
Abstract
Exposure to high doses of ionizing radiation is associated with damage to the heart and coronary arteries. However, only recently have studies with high-quality individual dosimetry data allowed this risk to be estimated while adjusting for concomitant chemotherapy. An association between lower dose exposures and late-occurring circulatory disease has only recently been suspected in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are variable, possibly resulting from confounding and effect-modification by well known (but unobserved) risk factors. Here, we summarize the evidence for a causal association between moderate- and low-level radiation exposure (whether at high or low dose rates) and circulatory disease.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD, 20892-9778, USA.
- National Cancer Institute, Room 7E546, 9609 Medical Center Drive, MSC 9778, Rockville, MD, 20892-9778, USA.
| | - Steven E Lipshultz
- Department of Pediatrics, Wayne State University School of Medicine and Children's Hospital of Michigan, Detroit, MI, 48201-2196, USA
| |
Collapse
|
15
|
Cullings HM. Impact on the Japanese atomic bomb survivors of radiation received from the bombs. HEALTH PHYSICS 2014; 106:281-293. [PMID: 24378504 DOI: 10.1097/hp.0000000000000009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Radiation Effects Research Foundation (RERF) studies various cohorts of Japanese atomic bomb survivors, the largest being the Life Span Study (LSS), which includes 93,741 persons who were in Hiroshima or Nagasaki at the times of the bombings; there are also cohorts of persons who were exposed in utero and survivors' children. This presentation attempts to summarize the total impact of the radiation from the bombs on the survivors from both an individual perspective (both age-specific and integrated lifetime risk, along with a measure of life expectancy that describes how the risk affects the individual given age at exposure) and a group perspective (estimated numbers of excess occurrences in the cohort), including both early and late effects. As survivors' doses ranged well into the acutely lethal range at closer distances, some of them experienced acute signs and symptoms of radiation exposure in addition to being at risk of late effects. Although cancer has always been a primary concern among late effects, estimated numbers of excess cancers and hematopoietic malignancies in the LSS are a small fraction of the total due to the highly skewed dose distribution, with most survivors receiving small doses. For example, in the latest report on cancer incidence, 853 of 17,448 incident solid cancers were estimated to be attributable to radiation from the bombs. RERF research indicates that risk of radiation-associated cancer varies among sites and that some benign tumors such as uterine myoma are also associated with radiation. Noncancer late effects appear to be in excess in proportion to radiation dose but with an excess relative risk about one-third that of solid cancer and a correspondingly small overall fraction of cases attributable to radiation. Specific risks were found for some subcategories, particularly circulatory disease, including stroke and precedent conditions such as hypertension. Radiation-related cataract in the atomic bomb survivors is well known, with evidence in recent years of risk at lower dose levels than previously appreciated. In addition to somatic effects, survivors experienced psychosocial effects such as uncertainty, social stigma, or rejection, and other social pressures. Developmental deficits associated with in utero exposure, notably cognitive impairment, have also been described. Interaction of radiation with other risk factors has been demonstrated in relation to both cancer and noncancer diseases. Current research interests include whether radiation increases risk of diabetes or conditions of the eye apart from cataract, and there continues to be keen interest as to whether there are heritable effects in survivors' children, despite negative findings to date. Introduction of Impact on the Japanese Atomic- Bomb Survivors (Video 1:52, http://links.lww.com/HP/A29).
Collapse
Affiliation(s)
- Harry M Cullings
- *Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| |
Collapse
|
16
|
Little MP. A review of non-cancer effects, especially circulatory and ocular diseases. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:435-449. [PMID: 23903347 PMCID: PMC4074546 DOI: 10.1007/s00411-013-0484-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 07/14/2013] [Indexed: 05/30/2023]
Abstract
There is a well-established association between high doses (>5 Gy) of ionizing radiation exposure and damage to the heart and coronary arteries, although only recently have studies with high-quality individual dosimetry been conducted that would enable quantification of this risk adjusting for concomitant chemotherapy. The association between lower dose exposures and late occurring circulatory disease has only recently begun to emerge in the Japanese atomic bomb survivors and in various occupationally exposed cohorts and is still controversial. Excess relative risks per unit dose in moderate- and low-dose epidemiological studies are somewhat variable, possibly a result of confounding and effect modification by well-known (but unobserved) risk factors. Radiation doses of 1 Gy or more are associated with increased risk of posterior subcapsular cataract. Accumulating evidence from the Japanese atomic bomb survivors, Chernobyl liquidators, US astronauts, and various other exposed groups suggests that cortical cataracts may also be associated with ionizing radiation, although there is little evidence that nuclear cataracts are radiogenic. The dose-response appears to be linear, although modest thresholds (of no more than about 0.6 Gy) cannot be ruled out. A variety of other non-malignant effects have been observed after moderate/low-dose exposure in various groups, in particular respiratory and digestive disease and central nervous system (and in particular neuro-cognitive) damage. However, because these are generally only observed in isolated groups, or because the evidence is excessively heterogeneous, these associations must be treated with caution.
Collapse
Affiliation(s)
- Mark P Little
- Radiation Epidemiology Branch, National Cancer Institute, 9609 Medical Center Drive MSC 9778, Bethesda, MD, 20892-9778, USA,
| |
Collapse
|
17
|
Kirillova EN, Zakharova ML, Muksinova KN, Drugova ED, Pavlova OS, Sokolova SN. Quantitative assessment of regulatory proteins in blood as markers of radiation effects in the late period after occupational exposure. HEALTH PHYSICS 2012; 103:28-36. [PMID: 22647909 DOI: 10.1097/hp.0b013e31824f30e5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The objective of this research was quantitative assessment of serum and membrane regulatory proteins in blood from nuclear workers as markers of radiation-induced alterations in immune homeostasis in the late period after protracted exposure of nuclear workers with different doses. The effector and regulatory lymphocytes were measured using a flow cytofluorometer in workers from the main facilities of the Mayak PA (aged ∼60 y up to 80 y) in the late period after combined exposure to external gamma-rays and internal alpha-radiation from incorporated 239Pu. The control group included non-occupationally exposed members of the Ozyorsk population matched by gender and age to the group of Mayak workers. Thirty serum proteins involved in regulation of immune homeostasis, such as growth factors, multifunctional interleukins, pro- and anti-inflammatory cytokines, and their receptors, were measured using ELISA in blood serum specimens from the Radiobiology Human Tissue Repository. The dosimetry estimates were obtained using Doses-2005. The correlation analysis revealed a statistically significant direct relationship of T-killers and plutonium body burden and a decreasing level of T-helpers with accumulated external dose in exposed individuals. There were differences in expression of membrane markers in young regulatory cells (double null T-lymphocytes, NKT-lymphocytes, regulatory T-cells, and an increase of activated forms of T-lymphocytes), which indicated an active role of regulatory cells in maintaining immune homeostasis in terms of protracted exposure. The assessment of regulatory proteins in blood indicated that growth factors (EGF, TGF-β1, PDGF), multifunctional interleukins (IL-17A, IL-18), and pro-inflammatory cytokines (IL-1β and INF-γ) could be potential markers of radiation-induced alterations in protein status. An imbalance of pro- and antiinflammatory proteins in blood and variations of protein profiles at the lower exposure levels (gamma-ray dose <1 Gy, plutonium body burden <0.74 kBq) in the late period after protracted exposure were less pronounced than at the higher exposure levels, which was probably explained by compensatory-adaptive responses in the late period among senile individuals with polypathology.
Collapse
Affiliation(s)
- Evgenia N Kirillova
- Southern Urals Biophysics Institute, Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, 456780, Russian Federation.
| | | | | | | | | | | |
Collapse
|
18
|
Cullings HM. Recommended improvements to the DS02 dosimetry system's calculation of organ doses and their potential advantages for the Radiation Effects Research Foundation. RADIATION PROTECTION DOSIMETRY 2012; 149:2-14. [PMID: 22262817 DOI: 10.1093/rpd/ncr477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Radiation Effects Research Foundation (RERF) uses a dosimetry system to calculate radiation doses received by the Japanese atomic bomb survivors based on their reported location and shielding at the time of exposure. The current system, DS02, completed in 2003, calculates detailed doses to 15 particular organs of the body from neutrons and gamma rays, using new source terms and transport calculations as well as some other improvements in the calculation of terrain and structural shielding, but continues to use methods from an older system, DS86, to account for body self-shielding. Although recent developments in models of the human body from medical imaging, along with contemporary computer speed and software, allow for improvement of the calculated organ doses, before undertaking changes to the organ dose calculations, it is important to evaluate the improvements that can be made and their potential contribution to RERF's research. The analysis provided here suggests that the most important improvements can be made by providing calculations for more organs or tissues and by providing a larger series of age- and sex-specific models of the human body from birth to adulthood, as well as fetal models.
Collapse
Affiliation(s)
- Harry M Cullings
- Statistics Department, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan.
| |
Collapse
|
19
|
Dauer LT, Thornton RH, Miller DL, Damilakis J, Dixon RG, Marx MV, Schueler BA, Vañó E, Venkatesan A, Bartal G, Tsetis D, Cardella JF. Radiation management for interventions using fluoroscopic or computed tomographic guidance during pregnancy: a joint guideline of the Society of Interventional Radiology and the Cardiovascular and Interventional Radiological Society of Europe with Endorsement by the Canadian Interventional Radiology Association. J Vasc Interv Radiol 2011; 23:19-32. [PMID: 22112899 DOI: 10.1016/j.jvir.2011.09.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 09/08/2011] [Accepted: 09/08/2011] [Indexed: 12/16/2022] Open
Affiliation(s)
- Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Epperly MW, Smith T, Zhang X, Goff JP, Franicola D, Greenberger B, Komanduri P, Wang H, Greenberger JS. Modulation of in utero total body irradiation induced newborn mouse growth retardation by maternal manganese superoxide dismutase-plasmid liposome (MnSOD-PL) gene therapy. Gene Ther 2011; 18:579-83. [PMID: 21248791 PMCID: PMC3111807 DOI: 10.1038/gt.2010.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To determine the effects of manganese superoxide dismutase (MnSOD) plasmid liposome (PL) maternal radioprotection on fetal mice, timed pregnant female mice (E14 gestation) were irradiated to 3.0 Gy total body irradiation (TBI) dose, and the number, weight and growth and development over 6 months after birth of newborn mice was quantitated compared with irradiated controls. Maternal MnSOD-PL treatment at E13 improved pup survival at birth (5.4±0.9 per litter) compared with non-irradiated 3.0 Gy controls 4.9±1.1. There was no statistically significant difference in newborn abnormalities, male to female ratio in newborn litters, or other evidence of teratogenesis in surviving newborn mice from MnSOD-PL treated compared with irradiated controls. However, E14 3 Gy irradiated pups from gene therapy-treated mothers showed a significant increase in both growth and overall survival over 6 months after birth (P=0.0022). To determine if transgene product crossed the placenta pregnant E13 mice were injected intravenously with hemagglutinin-epitope-tagged MnSOD (100 μg plasmid in 100 μl liposomes), then after 24 h, fetal mice, placentas and maternal tissues were removed and tested by both immunohistochemistry and reverse transcriptase-PCR for transgene and product. There was no evidence of transgene or product in placenta or any fetal tissue while maternal liver was positive by both assays. The data provide evidence for fetal radioprotection by maternal MnSOD-PL gene therapy before irradiation, which is mediated by an indirect bystander effect and is associated with a significant improvement in both survival at birth and growth and development of newborn mice.
Collapse
Affiliation(s)
- M W Epperly
- Department of Radiation Oncology, UPCI Cancer Institute, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Irradiations à faibles doses et risque de pathologie cardiovasculaire : revue des études épidémiologiques. Rev Epidemiol Sante Publique 2009; 57:347-59. [DOI: 10.1016/j.respe.2009.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/17/2009] [Accepted: 04/15/2009] [Indexed: 12/20/2022] Open
|