1
|
Bischoff P, Bou-Gharios J, Noël G, Burckel H. Role of autophagy in modulating tumor cell radiosensitivity: Exploring pharmacological interventions for glioblastoma multiforme treatment. Cancer Radiother 2024; 28:416-423. [PMID: 39327199 DOI: 10.1016/j.canrad.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/28/2024]
Abstract
Autophagy is an innate cellular process characterized by self-digestion, wherein cells degrade or recycle aged proteins, misfolded proteins, and damaged organelles via lysosomal pathways. Its crucial role in maintaining cellular homeostasis, ensuring development and survival is well established. In the context of cancer therapy, autophagy's importance is firmly recognized, given its critical impact on treatment efficacy. Following radiotherapy, several factors can modulate autophagy including parameters related to radiation type and delivery methods. The concomitant use of chemotherapy with radiotherapy further influences autophagy, potentially either enhancing radiosensitivity or promoting radioresistance. This review article discusses some pharmacological agents and drugs capable of modulating autophagy levels in conjunction with radiation in tumor cells, with a focus on those identified as potential radiosensitizers in glioblastoma multiforme treatment.
Collapse
Affiliation(s)
- Pierre Bischoff
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France
| | - Jolie Bou-Gharios
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France
| | - Georges Noël
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France; Department of Radiation Oncology, Institut de cancérologie Strasbourg Europe (ICANS), Unicancer, 17, rue Albert-Calmette, 67200 Strasbourg, France
| | - Hélène Burckel
- Radiobiology Laboratory, Institut de cancérologie Strasbourg Europe (ICANS), 3, rue de la Porte-de-l'Hôpital, 67000 Strasbourg, France; Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (Imis), UMR 7357, université de Strasbourg, 4, rue Kirschleger, 67000 Strasbourg, France.
| |
Collapse
|
2
|
Simbilyabo LZ, Yang L, Wen J, Liu Z. The unfolded protein response machinery in glioblastoma genesis, chemoresistance and as a druggable target. CNS Neurosci Ther 2024; 30:e14839. [PMID: 39021040 PMCID: PMC11255034 DOI: 10.1111/cns.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The role of the unfolded protein response (UPR) has been progressively unveiled over the last decade and several studies have investigated its implication in glioblastoma (GB) development. The UPR restores cellular homeostasis by triggering the folding and clearance of accumulated misfolded proteins in the ER consecutive to endoplasmic reticulum stress. In case it is overwhelmed, it induces apoptotic cell death. Thus, holding a critical role in cell fate decisions. METHODS This article, reviews how the UPR is implicated in cell homeostasis maintenance, then surveils the evidence supporting the UPR involvement in GB genesis, progression, angiogenesis, GB stem cell biology, tumor microenvironment modulation, extracellular matrix remodeling, cell fate decision, invasiveness, and grading. Next, it concurs the evidence showing how the UPR mediates GB chemoresistance-related mechanisms. RESULTS The UPR stress sensors IRE1, PERK, and ATF6 with their regulator GRP78 are upregulated in GB compared to lower grade gliomas and normal brain tissue. They are activated in response to oncogenes and are implicated at different stages of GB progression, from its genesis to chemoresistance and relapse. The UPR arms can be effectors of apoptosis as mediators or targets. CONCLUSION Recent research has established the role of the UPR in GB pathophysiology and chemoresistance. Targeting its different sensors have shown promising in overcoming GB chomo- and radioresistance and inducing apoptosis.
Collapse
Affiliation(s)
- Lucette Z. Simbilyabo
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Liting Yang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- Hypothalamic Pituitary Research Center, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
3
|
Chen M, Zhang R, Chen Y, Chen X, Li Y, Shen J, Yuan M, Chen Y, Wu J, Sun Q. Nobiletin inhibits de novo FA synthesis to alleviate gastric cancer progression by regulating endoplasmic reticulum stress. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154902. [PMID: 37270969 DOI: 10.1016/j.phymed.2023.154902] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Gastric cancer (GC) is a common malignant tumor with limited treatment options. The natural flavonoid nobiletin (NOB) is a beneficial antioxidant that possesses anticancer activity. However, the mechanisms by which NOB inhibits GC progression remain unclear. METHODS A CCK-8 assay was performed to determine cytotoxicity. Cell cycle and apoptosis analyses were performed by flow cytometry. RNA-seq was performed to detect differential gene expression after NOB treatment. RT‒qPCR, Western blot and immunofluorescence staining were used to examine the underlying mechanisms of NOB in GC. Xenograft tumor models were constructed to verify the effect of NOB and its specific biological mechanism in GC. RESULTS NOB inhibited cell proliferation, caused cell cycle arrest and induced apoptosis in GC cells. KEGG classification identified that the inhibitory effect of NOB on GC cells mainly involved the lipid metabolism pathway. We further showed that NOB reduced de novo fatty acid (FA) synthesis, as evidenced by the decreased levels of neutral lipids and the expression levels of ACLY, ACACA and FASN, and ACLY abrogated the effect of NOB on lipid deposits in GC cells. In addition, we also found that NOB triggered endoplasmic reticulum (ER) stress by activating the IRE-1α/GRP78/CHOP axis, but overexpression of ACLY reversed ER stress. Mechanistically, inhibiting ACLY expression with NOB significantly reduced neutral lipid accumulation, thereby inducing apoptosis by activating IRE-1α-mediated ER stress and inhibiting GC cell progression. Finally, in vivo results also demonstrated that NOB inhibited tumor growth by decreasing de novo FA synthesis. CONCLUSION NOB could inhibit the expression of ACLY to activate IRE-1α-induced ER stress, which ultimately led to GC cell apoptosis. Our results provide novel insight into the use of de novo FA synthesis for GC treatment and are the first to reveal that NOB inhibits GC progression by ACLY-dependent ER stress.
Collapse
Affiliation(s)
- Menglin Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Ruijuan Zhang
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaling Chen
- No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Xu Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaqi Li
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Junyu Shen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Mengyun Yuan
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yuxuan Chen
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China; No.1 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Jian Wu
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| | - Qingmin Sun
- Jiangsu Province Key Laboratory of Tumor Systems Biology and Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, 155 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
4
|
Liu H, He S, Li C, Wang J, Zou Q, Liao Y, Chen R. Tetrandrine alleviates inflammation and neuron apoptosis in experimental traumatic brain injury by regulating the IRE1α/JNK/CHOP signal pathway. Brain Behav 2022; 12:e2786. [PMID: 36377337 PMCID: PMC9759135 DOI: 10.1002/brb3.2786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/28/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022] Open
Abstract
AIM The aim of this study was to investigate the therapeutic roles of Tetrandrine (TET) on traumatic brain injury (TBI) and the underlying mechanism. METHOD Traumatic injury model of hippocampal neurons and TBI mouse model were established to evaluate the therapeutic effects. The expression of neuron-specific enolase (NSE), Caspase 3, and Caspase 12 was detected by immunofluorescence. The expression of TNF-α, NF-κB, TRAF1, ERS markers (GADD34 and p-PERK), IRE1α, CHOP, JNK, and p-JNK were evaluated by western blot. Flow cytometry was used to determine the apoptosis of neurons. Brain injury was assessed by Garcia score, cerebral water content, and Evan blue extravasation test. Hematoxylin and eosin staining was used to determine the morphological changes of hippocampal tissue. Apoptosis was assessed by TUNEL staining. RESULT In traumatic injury model of hippocampal neurons, TET downregulated NSE, TNF-α, NF-κB, TRAF1, GADD34, p-PERK, IRE1α, CHOP, and p-JNK expression. TET reduced Caspase 3 and Caspase 12 cleavage. Apoptosis rate was inhibited by the introduction of TET. TET improved the Garcia neural score, decreased the cerebral water content and Evans blue extravasation, and reduced NSE, TNF-α, NF-κB, TRAF1, IRE1α, CHOP, and p-JNK expression in mice with TBI, which was significantly reversed by Anisomycin, a JNK selective activator. CONCLUSION TET alleviated inflammation and neuron apoptosis in experimental TBI by regulating the IRE1α/JNK/CHOP signal pathway.
Collapse
Affiliation(s)
- Huan Liu
- Department of Cardiology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Shiqing He
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chong Li
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Jianpeng Wang
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qin Zou
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Yongshi Liao
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| |
Collapse
|
5
|
Seo B, Coates D, Lewis J, Seymour G, Rich A. Unfolded protein response is involved in the metabolic and apoptotic regulation of oral squamous cell carcinoma. Pathology 2022; 54:874-881. [DOI: 10.1016/j.pathol.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022]
|
6
|
Chen ZY, Xiao HW, Dong JL, Li Y, Wang B, Fan SJ, Cui M. Gut Microbiota-Derived PGF2α Fights against Radiation-Induced Lung Toxicity through the MAPK/NF-κB Pathway. Antioxidants (Basel) 2021; 11:antiox11010065. [PMID: 35052569 PMCID: PMC8773112 DOI: 10.3390/antiox11010065] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/28/2022] Open
Abstract
Radiation pneumonia is a common and intractable side effect associated with radiotherapy for chest cancer and involves oxidative stress damage and inflammation, prematurely halting the remedy and reducing the life quality of patients. However, the therapeutic options for the complication have yielded disappointing results in clinical application. Here, we report an effective avenue for fighting against radiation pneumonia. Faecal microbiota transplantation (FMT) reduced radiation pneumonia, scavenged oxidative stress and improved lung function in mouse models. Local chest irradiation shifted the gut bacterial taxonomic proportions, which were preserved by FMT. The level of gut microbiota-derived PGF2α decreased following irradiation but increased after FMT. Experimental mice with PGF2α replenishment, via an oral route, exhibited accumulated PGF2α in faecal pellets, peripheral blood and lung tissues, resulting in the attenuation of inflammatory status of the lung and amelioration of lung respiratory function following local chest irradiation. PGF2α activated the FP/MAPK/NF-κB axis to promote cell proliferation and inhibit apoptosis with radiation challenge; silencing MAPK attenuated the protective effect of PGF2α on radiation-challenged lung cells. Together, our findings pave the way for the clinical treatment of radiotherapy-associated complications and underpin PGF2α as a gut microbiota-produced metabolite.
Collapse
Affiliation(s)
- Zhi-Yuan Chen
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Hui-Wen Xiao
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China;
| | - Jia-Li Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Yuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Bin Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
| | - Sai-Jun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
- Correspondence: (S.-J.F.); (M.C.)
| | - Ming Cui
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300110, China; (Z.-Y.C.); (J.-L.D.); (Y.L.); (B.W.)
- Correspondence: (S.-J.F.); (M.C.)
| |
Collapse
|
7
|
Li F, Bing Z, Chen W, Ye F, Liu Y, Ding L, Jin X. Prognosis biomarker and potential therapeutic target CRIP2 associated with radiosensitivity in NSCLC cells. Biochem Biophys Res Commun 2021; 584:73-79. [PMID: 34773852 DOI: 10.1016/j.bbrc.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 12/22/2022]
Abstract
Radiotherapy plays a major role in non-small cell lung cancer (NSCLC) treatment. The curative efficacy of advanced NSCLC is unsatisfactory because of its radioresistance to conventional radiotherapy. The biomarkers which can be used to diagnose radiosensitivity or predict for prognosis are beneficial in promoting curative effects. In this study, NSCLC cell lines with acquired radioresistance to X-rays were obtained through fractionated irradiation. The differentially expressed proteins (DEPs) between the self-established radioresistant NSCLC cell line A549-R11 and control (A549-CK) were measured by proteomic analysis. Among the detected DEPs, CRIP2, ARHGDIB, and PADI3 were validated to be up-regulated in radioresistant cells, in mRNA and protein levels. Further analysis of bioinformatics deciphered that CRIP2, as a potential biomarker for diagnosis and a key biomarker for prediction of prognosis, may impact the X-ray radiosensitivity of NSCLC by regulating the occurrence of apoptosis and cell cycle arrest; as such, it may serve as a potent therapeutic target to facilitate NSCLC radiotherapy. CRIP2 and other DEPs may shed new light on the recognition of complex factors associated with radiation-responsiveness and finally be beneficial in the advancement of personalized therapies and precision medical treatment.
Collapse
Affiliation(s)
- Feifei Li
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Zhitong Bing
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China
| | - Yan Liu
- Translational Radiation Oncology & Medical Physics Research Unit, School of Medical Imaging, Binzhou Medical University, Yantai, 264003, China
| | - Lan Ding
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China; Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 730000, China.
| |
Collapse
|
8
|
Carlos-Reyes A, Muñiz-Lino MA, Romero-Garcia S, López-Camarillo C, Hernández-de la Cruz ON. Biological Adaptations of Tumor Cells to Radiation Therapy. Front Oncol 2021; 11:718636. [PMID: 34900673 PMCID: PMC8652287 DOI: 10.3389/fonc.2021.718636] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation therapy has been used worldwide for many decades as a therapeutic regimen for the treatment of different types of cancer. Just over 50% of cancer patients are treated with radiotherapy alone or with other types of antitumor therapy. Radiation can induce different types of cell damage: directly, it can induce DNA single- and double-strand breaks; indirectly, it can induce the formation of free radicals, which can interact with different components of cells, including the genome, promoting structural alterations. During treatment, radiosensitive tumor cells decrease their rate of cell proliferation through cell cycle arrest stimulated by DNA damage. Then, DNA repair mechanisms are turned on to alleviate the damage, but cell death mechanisms are activated if damage persists and cannot be repaired. Interestingly, some cells can evade apoptosis because genome damage triggers the cellular overactivation of some DNA repair pathways. Additionally, some surviving cells exposed to radiation may have alterations in the expression of tumor suppressor genes and oncogenes, enhancing different hallmarks of cancer, such as migration, invasion, and metastasis. The activation of these genetic pathways and other epigenetic and structural cellular changes in the irradiated cells and extracellular factors, such as the tumor microenvironment, is crucial in developing tumor radioresistance. The tumor microenvironment is largely responsible for the poor efficacy of antitumor therapy, tumor relapse, and poor prognosis observed in some patients. In this review, we describe strategies that tumor cells use to respond to radiation stress, adapt, and proliferate after radiotherapy, promoting the appearance of tumor radioresistance. Also, we discuss the clinical impact of radioresistance in patient outcomes. Knowledge of such cellular strategies could help the development of new clinical interventions, increasing the radiosensitization of tumor cells, improving the effectiveness of these therapies, and increasing the survival of patients.
Collapse
Affiliation(s)
- Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Marcos A. Muñiz-Lino
- Laboratorio de Patología y Medicina Bucal, Universidad Autónoma Metropolitana Unidad Xochimilco, Mexico City, Mexico
| | - Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico, Mexico City
| | | |
Collapse
|
9
|
Long Noncoding RNAs Regulate the Radioresistance of Breast Cancer. Anal Cell Pathol (Amst) 2021; 2021:9005073. [PMID: 34595090 PMCID: PMC8478560 DOI: 10.1155/2021/9005073] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BRCA) has severely threatened women's health worldwide. Radiotherapy is a treatment for BRCA, which applies high doses of ionizing radiation to induce cancer cell death and reduce disease recurrence. Radioresistance is one of the most important elements that affect the therapeutic efficacy of radiotherapy. Long noncoding RNAs (lncRNAs) are suggested to dominate crucial roles in regulating the biological behavior of BRCA. Currently, some studies indicate that overexpression or inhibition of lncRNAs can greatly alter the radioresistance of BRCA. In this review, we summarized the knowledge on the classification and function of lncRNAs and the molecular mechanism of BRCA radioresistance, listed lncRNAs related to the BRCA radioresistance, highlighted their underlying mechanisms, and discussed the potential application of these lncRNAs in regulating BRCA radioresistance.
Collapse
|
10
|
Xie W, Xu R, Fan C, Yang C, Chen H, Cao Y. 900 MHz Radiofrequency Field Induces Mitochondrial Unfolded Protein Response in Mouse Bone Marrow Stem Cells. Front Public Health 2021; 9:724239. [PMID: 34513791 PMCID: PMC8428517 DOI: 10.3389/fpubh.2021.724239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/04/2021] [Indexed: 01/29/2023] Open
Abstract
Objective: To examine whether exposure of mouse bone marrow stromal cells (BMSC) to 900 MHz radiofrequency fields used in mobile communication devices can induce mitochondrial unfolded protein response (UPRmt). Methods: BMSCs were exposed to continuous wave 900 MHz radiofrequency fields (RF) at 120 μW/cm2 power intensity for 4 h/d for 5 consecutive days. Cells in sham group (SH) were cultured in RF exposure system, but without RF radiation. The positive control cells were irradiated with 6 Gy X-ray at a dose rate of 1.103 Gy/min (XR). To inhibit the upstream molecular JNK2 of UPRmt, cells in siRNA + RF, and siRNA + XR group were also pretreated with 100 nM siRNA-JNK2 for 48 h before RF/XR exposure. Thirty minutes, 4 h, and 24 h post-RF/XR exposure, cells were collected, the level of ROS was measured with flow cytometry, the expression levels of UPRmt-related proteins were detected using western blot analysis. Results: Compared with Sham group, the level of ROS in RF and XR group was significantly increased 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of ROS level reversed 24 h post-RF/XR exposure. Compared with Sham group, the expression levels of HSP10/HSP60/ClpP proteins in cells of RF and XR group increased significantly 30 min and 4 h post-RF/XR exposure (P < 0.05), however, the RF/XR-induced increase of HSP10/HSP60/ClpP protein levels reversed 24 h post-RF exposure. After interfering with siRNA-JNK2, the RF/XR exposures could not induce the increase of HSP10/HSP60/ClpP protein levels any more. Conclusions: The exposure of 900 MHz RF at 120 μW/cm2 power flux density could increase ROS level and activate a transient UPRmt in BMSC cells. Mitochondrial homeostasis in term of protein folding ability is restored 24 h post-RF exposure. Exposure to RF in our experimental condition did not cause permanent and severe mitochondrial dysfunctions. However, the detailed underlying molecular mechanism of RF-induced UPRmt remains to be further studied.
Collapse
Affiliation(s)
- Wen Xie
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Rui Xu
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Caiyun Fan
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Chunyu Yang
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Haiyan Chen
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| | - Yi Cao
- Department of Toxicology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou, China
| |
Collapse
|
11
|
Xu X, Huang H, Tu Y, Sun J, Xiong Y, Ma C, Qin S, Hu W, Zhou J. Celecoxib Alleviates Radiation-Induced Brain Injury in Rats by Maintaining the Integrity of Blood-Brain Barrier. Dose Response 2021; 19:15593258211024393. [PMID: 34177398 PMCID: PMC8207280 DOI: 10.1177/15593258211024393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022] Open
Abstract
The underlying mechanisms of radiation-induced brain injury are poorly understood, although COX-2 inhibitors have been shown to reduce brain injury after irradiation. In the present study, the effect of celecoxib (a selective COX-2 inhibitor) pretreatment on radiation-induced injury to rat brain was studied by means of histopathological staining, evaluation of integrity of blood-brain barrier and detection of the expressions of inflammation-associated genes. The protective effect of celecoxib on human brain microvascular endothelial cells (HBMECs) against irradiation was examined and the potential mechanisms were explored. Colony formation assay and apoptosis assay were undertaken to evaluate the effect of celecoxib on the radiosensitivity of the HBMECs. ELISA was used to measure 6-keto-prostaglandin F1α (6-keto-PGF1α) and thromboxane B2 (TXB2) secretion. Western blot was employed to examine apoptosis-related proteins expressions. It was found that celecoxib protected rat from radiation-induced brain injury by maintaining the integrity of the blood-brain barrier and reducing inflammation in rat brain tissues. In addition, celecoxib showed a significant protective effect on HBMECs against irradiation, which involves inhibited apoptosis and decreased TXB2/6-keto-PGF1α ratio in brain vascular endothelial cells. In conclusion, celecoxib could alleviate radiation-induced brain injury in rats, which may be partially due to the protective effect on brain vascular endothelial cells from radiation-induced apoptosis.
Collapse
Affiliation(s)
- Xiaoting Xu
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yu Tu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Jiaxing Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaozu Xiong
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chenying Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Songbing Qin
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Juying Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. Resveratrol as an Adjuvant for Normal Tissues Protection and Tumor Sensitization. Curr Cancer Drug Targets 2021; 20:130-145. [PMID: 31738153 DOI: 10.2174/1568009619666191019143539] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
13
|
Chen RZ, Yang F, Zhang M, Sun ZG, Zhang N. Cellular and Molecular Mechanisms of Pristimerin in Cancer Therapy: Recent Advances. Front Oncol 2021; 11:671548. [PMID: 34026649 PMCID: PMC8138054 DOI: 10.3389/fonc.2021.671548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Seeking an efficient and safe approach to eliminate tumors is a common goal of medical fields. Over these years, traditional Chinese medicine has attracted growing attention in cancer treatment due to its long history. Pristimerin is a naturally occurring quinone methide triterpenoid used in traditional Chinese medicine to treat various cancers. Recent studies have identified alterations in cellular events and molecular signaling targets of cancer cells under pristimerin treatment. Pristimerin induces cell cycle arrest, apoptosis, and autophagy to exhibit anti-proliferation effects against tumors. Pristimerin also inhibits the invasion, migration, and metastasis of tumor cells via affecting cell adhesion, cytoskeleton, epithelial-mesenchymal transition, cancer stem cells, and angiogenesis. Molecular factors and pathways are associated with the anti-cancer activities of pristimerin. Furthermore, pristimerin reverses multidrug resistance of cancer cells and exerts synergizing effects with other chemotherapeutic drugs. This review aims to discuss the anti-cancer potentials of pristimerin, emphasizing multi-targeted biological and molecular regulations in cancers. Further investigations and clinical trials are warranted to understand the advantages and disadvantages of pristimerin treatment much better.
Collapse
Affiliation(s)
- Run-Ze Chen
- Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Yang
- Department of Pathology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Min Zhang
- Department of Dermatology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Zhang
- Department of Oncology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
14
|
Pesch AM, Pierce LJ, Speers CW. Modulating the Radiation Response for Improved Outcomes in Breast Cancer. JCO Precis Oncol 2021; 5:PO.20.00297. [PMID: 34250414 DOI: 10.1200/po.20.00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Zhao Q, Bi Y, Guo J, Liu Y, Zhong J, Liu Y, Pan L, Guo Y, Tan Y, Yu X. Effect of pristimerin on apoptosis through activation of ROS/ endoplasmic reticulum (ER) stress-mediated noxa in colorectal cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153399. [PMID: 33202325 DOI: 10.1016/j.phymed.2020.153399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Pristimerin, a natural quinonemethid triterpenoid found in different spp. of Celastraceae and Hippocrateaceae families, has been reported to exhibit potent antitumor activities against colorectal cancer (CRC). However, the mechanisms underlying pristimerin-induced apoptosis in CRC is not clear. PURPOSE This study aimed to investigate the mechanisms of pristimerin-induced apoptosis against CRC in vitro and in vivo. METHODS Cell viability and cell apoptosis analyses were conducted to assess the effects of pristimerin on CRC. Western blotting was performed to detect the expression of proteins affected by pristimerin in vitro and in vivo. HCT116 colon cancer xenografts and APCmin/+ mouse models were used to evaluate the anti-CRC effect of pristimerin in vivo. RESULTS Our data showed that pristimerin induced apoptosis by regulating proapoptotic proteins of which Noxa showed higher expression. Pristimerin triggered reactive oxygen species (ROS)-mediated endoplasmic reticulum (ER) stress signaling activation. Pristimerin significantly elevated the expression of ER stress-related proteins, resulting in activation of the IRE1α and c-Jun N-terminal kinase (JNK) signal pathway through the formation of the IRE1α-TRAF2-ASK1 complex. Pristimerin exhibited apoptosis-inducing activities in HCT116 colon cancer xenografts and APCmin/+ mice. CONCLUSION Both in vitro and in vivo data demonstrated that pristimerin induced Noxa expression and apoptosis through activation of the ROS/ER stress/JNK axis in CRC. Thus, pristimerin may be a promising antitumor agent for CRC.
Collapse
Affiliation(s)
- Qun Zhao
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China; State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yun Bi
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jian Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yingxiang Liu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jing Zhong
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China; Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yongqiang Liu
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Longrui Pan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yang Guo
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Yan Tan
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Xianjun Yu
- Laboratory of Inflammation and Molecular Pharmacology, School of Basic Medical Sciences & Biomedical Research Institute, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China.
| |
Collapse
|
16
|
Wang C, Li TK, Zeng CH, Yang J, Wang Y, Lu J, Zhu GY, Guo JH. Inhibition of Endoplasmic Reticulum Stress-Mediated Autophagy Enhances the Anticancer Effect of Iodine-125 Seed Radiation on Esophageal Squamous Cell Carcinoma. Radiat Res 2020; 194:236-245. [PMID: 32942301 DOI: 10.1667/rade-20-00057.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
Autophagy has been reported to play a radioresistance role in high-dose-rate irradiation. However, its mechanisms and roles in continuous low-dose-rate (CLDR) irradiation have not been clearly understood. Iodine-125 (I-125) seed brachytherapy is a modality of CLDR irradiation and has been used in the treatment of various cancers. In this study, we investigated the mechanisms and roles of autophagy induced by I-125 seed radiation in human esophageal squamous cell carcinoma (ESCC) cell lines (Eca-109 and EC-109) and a xenograft mouse model. The results of this work showed that I-125 seed radiation induced a dose-dependent increase in autophagy in both cell lines. In Eca-109 cells, I-125 seed radiation-induced endoplasmic reticulum (ER) stress, manifesting as the increased levels of intracellular Ca2+ and Grp78/BiP, and activated PERK-eIF2α, IRE1, and ATF6 pathways of the unfolded protein response. Knockdown of PERK led to the decreased expression of autophagy marker, LC3B-II. Inhibition of autophagy by chloroquine or knockdown of ATG5 enhanced I-125 seed radiation-induced cell proliferation inhibition and apoptosis. Interestingly, chloroquine did not aggravate ER stress but promoted apoptosis via the mitochondrial pathway. The animal experiment showed that inhibition of autophagy by chloroquine improved the efficacy of I-125 seed radiation. In summary, our data demonstrate that I-125 seed CLDR radiation induces ER stress-mediated autophagy in ESCC. Autophagy plays a pro-survival role in I-125 seed CLDR irradiation, and chloroquine is a potential candidate for use in combination therapy with I-125 seed radiation treatment to improve efficacy against ESCC.
Collapse
Affiliation(s)
- Chao Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, 210009, China
| | - Tian-Kuan Li
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, 210009, China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, 210009, China
| | - Jian Yang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, 210009, China
| | - Yong Wang
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jian Lu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Guang-Yu Zhu
- Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| | - Jin-He Guo
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School, Southeast University, Nanjing, 210009, China.,Center of Interventional Radiology & Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, 210009, China
| |
Collapse
|
17
|
Wu P, Tian T, Zhao J, Song Q, Wu X, Guo Y, Yu Y, Tan S, Xia H. IRE1α-JNK pathway-mediated autophagy promotes cell survival in response to endoplasmic reticulum stress during the initial phase of hepatic steatosis. Life Sci 2020; 264:118668. [PMID: 33121987 DOI: 10.1016/j.lfs.2020.118668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/10/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022]
Abstract
AIMS It has been widely reported that autophagy and inositol-requiring enzyme-1α (IRE1α)-c-Jun N-terminal kinase (JNK) pathway was involved in cell survival under endoplasmic reticulum (ER) stress, but their specific roles in hepatic steatosis remain unclear. This study aimed to determine the interaction between autophagy and IRE1α-JNK pathway on cell survival in response to ER stress during the initial phase of hepatic steatosis. METHODS Hepatic steatosis was induced in HepG2 cells by supplementing oleic acid (OA). Lipid accumulation was evaluated by BODIPY493/503 staining. ER stress and IRE1α-JNK signaling were investigated by western blot. Autophagy was monitored by western blot, GFP-LC3 plasmid and immunofluorescence staining, while apoptosis was determined by western blotting, Annexin-V-FITC/PI staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. KEY FINDINGS Aggravated lipid accumulation was found under increased ER stress during the initial phase of hepatic steatosis. Meanwhile, an increase of autophagy and no alteration of apoptosis were observed under increased ER stress. Interestingly, autophagy was induced by ER stress, while autophagy suppression led to an increase of apoptosis in response to ER stress Moreover, further study showed that IRE1α-JNK pathway was activated after ER stress and consequently induced autophagy, which promoted cell survival in the initial phase of hepatic steatosis. SIGNIFICANCE We conclude that IRE1α-JNK pathway was activated during ER stress in the initial phase of hepatic steatosis and promoted cell survival by enhancing autophagy. Targeting IRE1α-JNK-autophagy signaling may provide new insight into preventive strategies for hepatic steatosis.
Collapse
Affiliation(s)
- Pengbo Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Tian Tian
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jinbo Zhao
- Department of Cardiology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, Hubei, PR China
| | - Qi Song
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Xiaoman Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yitian Guo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Hongmiao Xia
- Medical Examination Center, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China.
| |
Collapse
|
18
|
Sisakht M, Darabian M, Mahmoodzadeh A, Bazi A, Shafiee SM, Mokarram P, Khoshdel Z. The role of radiation induced oxidative stress as a regulator of radio-adaptive responses. Int J Radiat Biol 2020; 96:561-576. [PMID: 31976798 DOI: 10.1080/09553002.2020.1721597] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Purpose: Various sources of radiation including radiofrequency, electromagnetic radiation (EMR), low- dose X-radiation, low-level microwave radiation and ionizing radiation (IR) are indispensable parts of modern life. In the current review, we discussed the adaptive responses of biological systems to radiation with a focus on the impacts of radiation-induced oxidative stress (RIOS) and its molecular downstream signaling pathways.Materials and methods: A comprehensive search was conducted in Web of Sciences, PubMed, Scopus, Google Scholar, Embase, and Cochrane Library. Keywords included Mesh terms of "radiation," "electromagnetic radiation," "adaptive immunity," "oxidative stress," and "immune checkpoints." Manuscripts published up until December 2019 were included.Results: RIOS induces various molecular adaptors connected with adaptive responses in radiation exposed cells. One of these adaptors includes p53 which promotes various cellular signaling pathways. RIOS also activates the intrinsic apoptotic pathway by depolarization of the mitochondrial membrane potential and activating the caspase apoptotic cascade. RIOS is also involved in radiation-induced proliferative responses through interaction with mitogen-activated protein kinases (MAPks) including p38 MAPK, ERK, and c-Jun N-terminal kinase (JNK). Protein kinase B (Akt)/phosphoinositide 3-kinase (PI3K) signaling pathway has also been reported to be involved in RIOS-induced proliferative responses. Furthermore, RIOS promotes genetic instability by introducing DNA structural and epigenetic alterations, as well as attenuating DNA repair mechanisms. Inflammatory transcription factors including macrophage migration inhibitory factor (MIF), nuclear factor κB (NF-κB), and signal transducer and activator of transcription-3 (STAT-3) paly major role in RIOS-induced inflammation.Conclusion: In conclusion, RIOS considerably contributes to radiation induced adaptive responses. Other possible molecular adaptors modulating RIOS-induced responses are yet to be divulged in future studies.
Collapse
Affiliation(s)
- Mohsen Sisakht
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Darabian
- Department of Radiology, Faculty of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Mahmoodzadeh
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Bazi
- Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran
| | - Sayed Mohammad Shafiee
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pooneh Mokarram
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Medical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
19
|
Li R, Liu T, Shi J, Luan W, Wei X, Yu J, Mao H, Liu P. ROR2 induces cell apoptosis via activating IRE1α/JNK/CHOP pathway in high-grade serous ovarian carcinoma in vitro and in vivo. J Transl Med 2019; 17:428. [PMID: 31878941 PMCID: PMC6933631 DOI: 10.1186/s12967-019-02178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) is the most lethal cancer in female genital tumors. New disease markers and novel therapeutic strategies are urgent to identify considering the current status of treatment. Receptor tyrosine kinases family plays critical roles in embryo development and disease progression. However, ambivalent research conclusions of ROR2 make its role in tumor confused and the underlying mechanism is far from being understood. In this study, we sought to clarify the effects of ROR2 on high-grade serous ovarian carcinoma (HGSOC) cells and reveal the mechanism. Methods Immunohistochemistry assay and western-blot assay were used to detect proteins expression. ROR2 overexpression adenovirus and Lentivirus were used to create ROR2 overexpression model in vitro and in vivo, respectively. MTT assay, colony formation assay and transwell assay were used to measure the proliferation, invasion and migration ability of cancer cells. Flow cytometry assay was used to detect cell apoptosis rate. Whole transcriptome analysis was used to explore the differentially expressed genes between ROR2 overexpression group and negative control group. SiRNA targeted IRE1α was used to knockdown IRE1α. Kira6 was used to inhibit phosphorylation of IRE1α. Results Expression of ROR2 was significantly lower in HGSOC tissues compared to normal fallopian tube epithelium or ovarian surface epithelium tissues. In HGSOC cohort, patients with advanced stages or positive lymph nodes were prone to express lower ROR2. Overexpression of ROR2 could repress the proliferation of HGSOC cells and induce cell apoptosis. RNA sequencing analysis indicated that ROR2 overexpression could induce unfold protein response. The results were also confirmed by upregulation of BIP and phosphorylated IRE1α. Furthermore, pro-death factors like CHOP, phosphorylated JNK and phosphorylated c-Jun were also upregulated. IRE1α knockdown or Kira6 treatment could reverse the apoptosis induced by ROR2 overexpression. Finally, tumor xenograft experiment showed ROR2 overexpression could significantly repress the growth rate and volume of transplanted tumors. Conclusions Taken together, ROR2 downregulation was associated with HGSOC development and progression. ROR2 overexpression could repress cell proliferation and induce cell apoptosis in HGSOC cells. And the underlying mechanism might be the activation of IRE1α/JNK/CHOP pathway induced by ROR2.
Collapse
Affiliation(s)
- Rui Li
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Tianfeng Liu
- Department of Gynecology and Obstetrics, Linyi People's Hospital, 27 Jiefang Road, Linyi, 276003, Shandong, People's Republic of China
| | - Juanjuan Shi
- Department of Gynecology and Obstetrics, Affiliated Tengzhou Center People's Hospital of Jining Medical University, 181 Xing Tan Road, Tengzhou, 277599, Shandong, People's Republic of China
| | - Wenqing Luan
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Jiangtao Yu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China
| | - Hongluan Mao
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Peishu Liu
- Department of Gynecology and Obstetrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Targets for improving tumor response to radiotherapy. Int Immunopharmacol 2019; 76:105847. [DOI: 10.1016/j.intimp.2019.105847] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
|
21
|
Li F, Li Z, Jin X, Liu Y, Zhang P, Li P, Shen Z, Wu A, Chen W, Li Q. Ultra-small gadolinium oxide nanocrystal sensitization of non-small-cell lung cancer cells toward X-ray irradiation by promoting cytostatic autophagy. Int J Nanomedicine 2019; 14:2415-2431. [PMID: 31040665 PMCID: PMC6455003 DOI: 10.2147/ijn.s193676] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gadolinium-based nanoparticles (GdNPs) have been used as theranostic sensitizers in clinical radiotherapy studies; however, the biomechanisms underlying the radio-sensitizing effects of GdNPs have yet to be determined. In this study, ultra-small gadolinium oxide nanocrystals (GONs) were employed to investigate their radiosensitizing effects and biological mechanisms in non-small-cell lung cancer (NSCLC) cells under X-ray irradiation. METHOD AND MATERIALS GONs were synthesized using polyol method. Hydroxyl radical production, oxidative stress, and clonogenic survival after X-ray irradiation were used to evaluate the radiosensitizing effects of GONs. DNA double-strand breakage, cell cycle phase, and apoptosis and autophagy incidences were investigated in vitro to determine the radiosensitizing biomechanism of GONs under X-ray irradiation. RESULTS GONs induced hydroxyl radical production and oxidative stress in a dose- and concentration-dependent manner in NSCLC cells after X-ray irradiation. The sensitizer enhancement ratios of GONs ranged between 19.3% and 26.3% for the NSCLC cells under investigation with a 10% survival rate compared with that of the cells treated with irradiation alone. Addition of 3-methyladenine to the cell medium decreased the incidence rate of autophagy and increased cell survival, supporting the idea that the GONs promoted cytostatic autophagy in NSCLC cells under X-ray irradiation. CONCLUSION This study examined the biological mechanisms underlying the radiosensitizing effects of GONs on NSCLC cells and presented the first evidence for the radiosensitizing effects of GONs via activation of cytostatic autophagy pathway following X-ray irradiation.
Collapse
Affiliation(s)
- Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihou Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| | - Zheyu Shen
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Aiguo Wu
- Key Laboratory of Magnetic Materials and Devices, Chinese Academy of Sciences, Division of Functional Materials and Nano Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China, ;
| |
Collapse
|
22
|
Szołtysek K, Janus P, Zając G, Stokowy T, Walaszczyk A, Widłak W, Wojtaś B, Gielniewski B, Cockell S, Perkins ND, Kimmel M, Widlak P. RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation. BMC Genomics 2018; 19:813. [PMID: 30419821 PMCID: PMC6233266 DOI: 10.1186/s12864-018-5211-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 10/30/2018] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The cellular response to ionizing radiation involves activation of p53-dependent pathways and activation of the atypical NF-κB pathway. The crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Here we looked for novel genes potentially (co)regulated by p53 and NF-κB using integrative genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-κB subunit) genes was analyzed by RNA-Seq while radiation-enhanced binding of p53 and RelA in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR. RESULTS We identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes, namely IL4I1, SERPINE1, and CDKN1A, an antagonistic effect of the TP53 and RELA silencing was consistent with radiation-enhanced binding of both p53 and RelA. This suggested the possibility of a direct antagonistic (co)regulation by both factors: activation by NF-κB and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-κB of CDKN1A and SERPINE1. On the other hand, radiation-enhanced binding of both p53 and RelA was observed in a putative regulatory region of the RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors. CONCLUSIONS Four new candidates for genes directly co-regulated by NF-κB and p53 were revealed.
Collapse
Affiliation(s)
- Katarzyna Szołtysek
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Patryk Janus
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Gracjana Zając
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anna Walaszczyk
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Wiesława Widłak
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| | - Bartosz Wojtaś
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | | | - Simon Cockell
- Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Neil D. Perkins
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, UK
| | | | - Piotr Widlak
- Maria Skłodowska-Curie Institute – Oncology Center, Gliwice Branch, Gliwice, Poland
| |
Collapse
|
23
|
Zhang M, Han N, Jiang Y, Wang J, Li G, Lv X, Li G, Qiao Q. EGFR confers radioresistance in human oropharyngeal carcinoma by activating endoplasmic reticulum stress signaling PERK-eIF2α-GRP94 and IRE1α-XBP1-GRP78. Cancer Med 2018; 7:6234-6246. [PMID: 30414263 PMCID: PMC6308109 DOI: 10.1002/cam4.1862] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 08/16/2018] [Accepted: 09/18/2018] [Indexed: 12/12/2022] Open
Abstract
The activation of epidermal growth factor receptor (EGFR) is associated with radioresistance in malignant tumors. Specifically, radiation can destroy endoplasmic reticulum (ER) homeostasis to induce ER stress (ERS). However, the effect of EGFR‐mediated regulation of ERS signaling pathway on radiosensitivity has not yet been reported. The present study showed that silencing EGFR increased radiosensitivity of both radiosensitive and radioresistant oropharyngeal squamous cell carcinoma (OSCC) cells by inhibiting ER stress signaling (PERK‐eIF2α‐GRP94 and IRE1α‐XBP1‐GRP78). This effect was abolished by pretreatment with EGF, however. In addition, knockdown of EGFR in OSCC cells inhibited DNA double‐stand break repair and autophagy while increased radiation‐induced apoptosis. Conversely, activating ERS inhibited the aforementioned functions. Furthermore, EGF increased ER stress‐independent ERK and AKT signaling upon irradiation of OSCC cells. Immunohistochemical analysis of 80 tissue samples from OSCC patients showed that co‐expression of EGFR and PERK was associated with poor prognosis. It thus appears EGFR confers radioresistance in OSCC by activating ER stress signaling. These results suggested that the cooperative effects of radiotherapy and EGFR‐targeted inhibitor therapy can be further improved by inhibiting PERK‐eIF2α‐GRP94 and IRE1α‐GRP78 in non‐response oropharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Miao Zhang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Han
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuanjun Jiang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jie Wang
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Gaiyan Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xintong Lv
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qiao Qiao
- Department of Radiation Oncology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
24
|
Zhou ZR, Yang ZZ, Yu XL, Guo XM. Highlights on molecular targets for radiosensitization of breast cancer cells: Current research status and prospects. Cancer Med 2018; 7:3110-3117. [PMID: 29856131 PMCID: PMC6051209 DOI: 10.1002/cam4.1588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/16/2022] Open
Abstract
In the past, searching for effective radiotherapy sensitization molecular targets and improving the radiation sensitivity of malignant tumors was the hot topic for the oncologists, but with little achievements. We will summarize the research results about breast cancer irradiation sensitization molecular targets over the past two decades; we mainly focus on the following aspects: DNA damage repair and radiation sensitization, cell cycle regulation and radiation sensitization, cell autophagy regulation and radiation sensitization, and radiation sensitivity prediction and breast cancer radiotherapy scheme making. And based on this summary, we will put forward some of our viewpoints.
Collapse
Affiliation(s)
- Zhi-Rui Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao-Zhi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Li Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiao-Mao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 2018; 7:16. [PMID: 29459645 PMCID: PMC5833763 DOI: 10.1038/s41389-018-0028-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
Radioresistance hampers success in the treatment of patients with advanced colorectal cancer (CRC). Improving our understanding of the underlying mechanisms of radioresistance could increase patients' response to irradiation (IR). MicroRNAs are a class of small RNAs involved in tumor therapy response to radiation. Here we found that miR-214 was markedly decreased in CRC cell lines and blood of CRC patients after IR exposure. Meanwhile, autophagy was enhanced in irradiated CRC cells. Mechanically, ATG12 was predicted and identified as a direct target of miR-214 by dual luciferase assay, qPCR, and Western blot. In vitro and in vivo experiments showed that miR-214 promoted radiosensitivity by inhibiting IR-induced autophagy. Restoration of ATG12 attenuated miR-214-mediated inhibition of cell growth and survival in response to IR. Importantly, miR-214 was highly expressed in radiosensitive CRC specimens and negatively correlated with plasma level of CEA. Moreover, ATG12 and LC3 expressions were increased in radioresistant CRC specimens. Our study elucidates that miR-214 promotes radiosensitivity by inhibition of ATG12-mediated autophagy in CRC. Importantly, miR-214 is a determinant of CRC irradiation response and may serve as a potential therapeutic target in CRC treatment.
Collapse
|
26
|
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849. [PMID: 29556359 PMCID: PMC5858503 DOI: 10.7150/thno.22172] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Jin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| |
Collapse
|
27
|
Riha R, Gupta-Saraf P, Bhanja P, Badkul S, Saha S. Stressed Out - Therapeutic Implications of ER Stress Related Cancer Research. ACTA ACUST UNITED AC 2017; 2:156-167. [PMID: 29445586 DOI: 10.7150/oncm.22477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The unfolded protein response (UPR) is an established and well-studied cellular response to the stress and serves to relieve the stress and reinstate cellular homeostasis. It occurs in the endoplasmic reticulum (ER), responsible of properly folding and processing of secretory and transmembrane proteins. It is extremely sensitive to alteration in homeostasis caused by various internal or external stressors which leads to accumulation of misfolded or unfolded proteins in the ER lumen. The UPR works by restoring protein homeostasis in the ER, either through the boosting of protein-folding and degradation capability or by assuaging the demands for such effects, and can cause the activation of cell death if unable to do so. Cancer cells have adapted to gain advantage from the UPR and keeping the cell away from apoptosis and promoting survival, including survival of the cancer stem cells and evading the immune system. Several components of the UPR are overexpressed in a malignant cell and are responsible for resistance from various chemotherapy options and radiotherapy, which are also responsible for causing ER stress and activating the UPR. In this review, we discuss the various ways in which UPR can aid different cancers to survive and evade therapy and highlight recent research, which exploits the UPR to confer sensitivity to these cancer cells against various drugs and radiation.
Collapse
Affiliation(s)
- Randal Riha
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Pooja Gupta-Saraf
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Payel Bhanja
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Samyak Badkul
- Department of Radiation Oncology, University of Kansas Medical Center
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center.,Department of Cancer Biology, University of Kansas Medical Center
| |
Collapse
|
28
|
Li JR, Qu TT. Into the eyes of bone marrow-derived mesenchymal stem cells therapy for myocardial infarction and other diseases. Stem Cell Investig 2017; 4:69. [PMID: 28920062 DOI: 10.21037/sci.2017.08.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
Applications of bone marrow-derived mesenchymal stem cells (BM-MSCs) have been documented for diseases occur in the sports system, the central nervous system, the cardiovascular system etc. However, poor viability of donor stem cells after transplantation limits their therapeutic efficiency. Although the autophagy theory has been reported, the underlying mechanisms are still poorly understood. Isolation and culture methods of mesenchymal stem cells are currently concentrate on four ways. Overall, BM-MSCs have both important research significance and clinical application value in cell replacement therapy, gene therapy and reconstruction of tissues as well as organs especially for myocardial infarction (MI). In this article, we review the biological characteristics of BM-MSCs and its research progress especially in MI.
Collapse
Affiliation(s)
- Jian-Rui Li
- Department of Orthopedics, Dongfang Hospital Affiliated to Tongji University, Shanghai 200120, China
| | - Ting-Ting Qu
- Department of Orthopedics, Dongfang Hospital Affiliated to Tongji University, Shanghai 200120, China
| |
Collapse
|
29
|
Qiao Q, Sun C, Han C, Han N, Zhang M, Li G. Endoplasmic reticulum stress pathway PERK-eIF2α confers radioresistance in oropharyngeal carcinoma by activating NF-κB. Cancer Sci 2017; 108:1421-1431. [PMID: 28418119 PMCID: PMC5497722 DOI: 10.1111/cas.13260] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/05/2017] [Accepted: 04/08/2017] [Indexed: 12/31/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) plays an important role in the pathogenesis and development of malignant tumors, as well as in the regulation of radiochemoresistance and chemoresistance in many malignancies. ERS signaling pathway protein kinase RNA‐like endoplasmic reticulum kinase (PERK)‐eukaryotic initiation factor‐2 (eIF2α) may induce aberrant activation of nuclear factor‐κB (NF‐κB). Our previous study showed that NF‐κB conferred radioresistance in lymphoma cells. However, whether PERK‐eIF2α regulates radioresistance in oropharyngeal carcinoma through NF‐κB activation is unknown. Herein, we showed that PERK overexpression correlated with a poor prognosis for patients with oropharyngeal carcinoma (P < 0.01). Meanwhile, the percentage of the high expression level of PERK in oropharyngeal carcinoma patients resistant to radiation was higher than in patients sensitive to radiation (77.7 and 33.3%, respectively; P < 0.05). Silencing PERK and eIF2α increased the radiosensitivity in oropharyngeal carcinoma cells and increased radiation‐induced apoptosis and G2/M phase arrest. PERK‐eIF2α silencing also inhibited radiation‐induced NF‐κB phosphorylation and increased the DNA double strand break‐related proteins ATM phosphorylation. NF‐κB activator TNF‐α and the ATM inhibitor Ku55933 offset the regulatory effect of eIF2α on the expression of radiation‐induced cell apoptosis‐related proteins and the G2/M phase arrest‐related proteins. These data indicate that PERK regulates radioresistance in oropharyngeal carcinoma through NF‐kB activation‐mediated phosphorylation of eIF2α, enhancing X‐ray‐induced activation of DNA DSB repair, cell apoptosis inhibition and G2/M cell cycle arrest.
Collapse
Affiliation(s)
- Qiao Qiao
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chaonan Sun
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuyang Han
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ning Han
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Miao Zhang
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Li
- Department of Radiotherapy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Zheng X, Jin X, Li F, Liu X, Liu Y, Ye F, Li P, Zhao T, Li Q. Inhibiting autophagy with chloroquine enhances the anti-tumor effect of high-LET carbon ions via ER stress-related apoptosis. Med Oncol 2017; 34:25. [PMID: 28070729 DOI: 10.1007/s12032-017-0883-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/02/2017] [Indexed: 12/11/2022]
Abstract
Energetic carbon ions (CI) offer great advantages over conventional radiations such as X- or γ-rays in cancer radiotherapy. High linear energy transfer (LET) CI can induce both endoplasmic reticulum (ER) stress and autophagy in tumor cells under certain circumstances. The molecular connection between ER stress and autophagy in tumor exposed to high-LET radiation and how these two pathways influence the therapeutic effect against tumor remain poorly understood. In this work, we studied the impact of autophagy and apoptosis induced by ER stress following high-LET CI radiation on the radiosensitivity of S180 cells both in vitro and in vivo. In the in vitro experiment, X-rays were also used as a reference radiation. Our results documented that the combination of CI radiation with chloroquine (CQ), a special autophagy inhibitor, produced more pronounced proliferation suppression in S180 cells and xenograft tumors. Co-treatment with CI radiation and CQ could block autophagy through the IRE1/JNK/Beclin-1 axis and enhance apoptotic cell death via the activation of C/EBP homologous protein (CHOP) by the IRE1 pathway rather than PERK in vitro and in vivo. Thus, our study indicates that inhibiting autophagy might be a promising therapeutic strategy in CI radiotherapy via aggravating the ER stress-related apoptosis.
Collapse
Affiliation(s)
- Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China
| | - Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China.,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, China. .,Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, 730000, China. .,Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
31
|
Hu L, Wang H, Huang L, Zhao Y, Wang J. Crosstalk between autophagy and intracellular radiation response (Review). Int J Oncol 2016; 49:2217-2226. [PMID: 27748893 DOI: 10.3892/ijo.2016.3719] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 09/27/2016] [Indexed: 11/06/2022] Open
Abstract
Autophagy induced by radiation is critical to cell fate decision. Evidence now sheds light on the importance of autophagy induced by cancer radiotherapy. Traditional view considers radiation can directly or indirectly damage DNA which can activate DNA damage the repair signaling pathway, a large number of proteins participating in DNA damage repair signaling pathway such as p53, ATM, PARP1, FOXO3a, mTOR and SIRT1 involved in autophagy regulation. However, emerging recent evidence suggests radiation can also cause injury to extranuclear targets such as plasma membrane, mitochondria and endoplasmic reticulum (ER) and induce accumulation of ceramide, ROS, and Ca2+ concentration which activate many signaling pathways to modulate autophagy. Herein we review the role of autophagy in radiation therapy and the potent intracellular autophagic triggers induced by radiation. We aim to provide a more theoretical basis of radiation-induced autophagy, and provide novel targets for developing cytotoxic drugs to increase radiosensitivity.
Collapse
Affiliation(s)
- Lelin Hu
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Hao Wang
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Li Huang
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Haidian, Beijing 100191, P.R. China
| |
Collapse
|