1
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
2
|
Iavicoli I, Fontana L, Santocono C, Guarino D, Laudiero M, Calabrese EJ. The challenges of defining hormesis in epidemiological studies: The case of radiation hormesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166030. [PMID: 37544458 DOI: 10.1016/j.scitotenv.2023.166030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In the current radiation protection system, preventive measures and occupational exposure limits for controlling occupational exposure to ionizing radiation are based on the linear no-threshold extrapolation model. However, currently an increasing body of evidence indicates that this paradigm predicts very poorly biological responses in the low-dose exposure region. In addition, several in vitro and in vivo studies demonstrated the presence of hormetic dose response curves correlated to ionizing radiation low exposure. In this regard, it is noteworthy that also the findings of different epidemiological studies, conducted in different categories of occupationally exposed workers (e.g., healthcare, nuclear industrial and aircrew workers), observed lower rates of mortality and/or morbidity from cancer and/or other diseases in exposed workers than in unexposed ones or in the general population, then suggesting the possible occurrence of hormesis. Nevertheless, these results should be considered with caution since the identification of hormetic response in epidemiological studies is rather challenging because of a number of major limitations. In this regard, some of the most remarkable shortcomings found in epidemiological studies performed in workers exposed to ionizing radiation are represented by lack or inadequate definition of exposure doses, use of surrogates of exposure, narrow dose ranges, lack of proper control groups and poor evaluation of confounding factors. Therefore, considering the valuable role and contribution that epidemiological studies might provide to the complex risk assessment and management process, there is a clear and urgent need to overcome the aforementioned limits in order to achieve an adequate, useful and more real-life risk assessment that should also include the key concept of hormesis. Thus, in the present conceptual article we also discuss and provide possible approaches to improve the capacity of epidemiological studies to identify/define the hormetic response and consequently improve the complex process of risk assessment of ionizing radiation at low exposure doses.
Collapse
Affiliation(s)
- Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | - Luca Fontana
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Carolina Santocono
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Davide Guarino
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Laudiero
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Sychugov GV, Azizova TV, Zhuntova GV, Grigoryeva ES, Loffredo CA, Hamada N, Kazachkov EL. Immunohistochemical Analysis of Lung Adenocarcinoma in Russian Mayak Nuclear Workers. Cancer Invest 2023; 41:686-698. [PMID: 37291892 DOI: 10.1080/07357907.2023.2218489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
Specimens of lung adenocarcinoma (AdCa) from Russian nuclear workers (n = 54) exposed to alpha particles and gamma rays and from individuals non-exposed to radiation (n = 21) were examined using immunohistochemistry. Estimated significant associations with alpha dose were negative for Ki-67 and collagen IV in AdCa. Associations with gamma-ray dose were negative for tissue inhibitor of matrix metalloproteinase 2 and caspase 3 and positive for matrix metalloproteinase 2 and leukemia inhibiting factor in AdCa. The findings provide some evidence supporting alterations in apoptosis, cell proliferation and extracellular matrix in lung tissues affected by chronic radiation exposure that can contribute to radiogenic cancerogenesis.
Collapse
Affiliation(s)
- Gleb V Sychugov
- South Ural State Medical University, Ministry of Health, Chelyabinsk, Russia
| | - Tamara V Azizova
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Galina V Zhuntova
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Evgeniya S Grigoryeva
- Southern Urals Biophysics Institute, Russian Federal Medical Biological Agency, Ozyorsk, Russia
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Evgeniy L Kazachkov
- South Ural State Medical University, Ministry of Health, Chelyabinsk, Russia
| |
Collapse
|
4
|
Harrison JD, Oatway WB, Brown IK, Hopewell JW. Health risks from radioactive particles on Cumbrian beaches near the Sellafield nuclear site. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:031504. [PMID: 37339608 DOI: 10.1088/1361-6498/acdfd6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
A monitoring programme, in place since 2006, continues to recover radioactive particles (<2 mm diameter) and larger objects from the beaches of West Cumbria. The potential risks to members of the public using the beaches are mainly related to prolonged skin contact with or the inadvertent ingestion of small particles. Most particles are classified as either 'beta-rich' or 'alpha-rich' and are detected as a result of their caesium-137 or americium-241 content. Beta-rich particles generally also contain strontium-90, with90Sr:137Cs ratios of up to about 1:1, but typically <0.1:1. Alpha-rich particles contain plutonium isotopes, with Pu:241Amαratios usually around 0.5-0.6:1. 'Beta-rich' particles have the greatest potential to cause localised skin damage if held in stationary contact with the skin for prolonged periods. However, it is concluded that only particles of >106Bq of137Cs, with high90Sr:137Cs ratios, would pose a significant risk of causing acute skin ulceration. No particles of this level of activity have been found. Inadvertent ingestion of a particle will result in the absorption to blood of a small proportion of the radionuclide content of the particle. The subsequent retention of radionuclides in body organs and tissues presents a potential risk of the development of cancer. For 'beta-rich' particles with typical activities (mean 2 × 104Bq137Cs, Sr:Cs ratio of 0.1:1), the estimated committed effective doses are about 30µSv for adults and about 40µSv for 1 year old infants, with lower values for 'alpha-rich' particles of typical activities. The corresponding estimates of lifetime cancer incidence following ingestion for both particle types are of the order of 10-6for adults and up to 10-5for infants. These estimates are subject to substantial uncertainties but provide an indication of the low risks to members of the public.
Collapse
Affiliation(s)
- John D Harrison
- Oxford Brookes University, Faculty of Health and Life Sciences, Oxford OX3 0BP, United Kingdom
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Directorate, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | - Wayne B Oatway
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Directorate, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | - Iain K Brown
- UK Health Security Agency, Radiation, Chemical and Environmental Hazards Directorate, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | - John W Hopewell
- Green Temple College, University of Oxford, Oxford OX2 6HG, United Kingdom
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
5
|
Boice JD, Cohen SS, Mumma MT, Howard SC, Yoder RC, Dauer LT. Mortality among medical radiation workers in the United States, 1965-2016. Int J Radiat Biol 2023; 99:183-207. [PMID: 34731066 DOI: 10.1080/09553002.2021.1967508] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Estimates of radiation risks following prolonged exposures at low doses and low-dose rates are uncertain. Medical radiation workers are a major component of the Million Person Study (MPS) of low-dose health effects. Annual personal dose equivalents, HP(10), for individual workers are available to facilitate dose-response analyses for lung cancer, leukemia, ischemic heart disease (IHD) and other causes of death. MATERIALS AND METHODS The Landauer, Inc. dosimetry database identified 109,019 medical and associated radiation workers first monitored 1965-1994. Vital status and cause of death were determined through 2016. Mean absorbed doses to red bone marrow (RBM), lung, heart, and other organs were estimated by adjusting the recorded HP(10) for each worker by scaling factors, accounting for exposure geometry, the energy of the incident photon radiation, sex of the worker and whether an apron was worn. There were 4 exposure scenarios: general radiology characterized by low-energy x-ray exposure with no lead apron use, interventional radiologists/cardiologists who wore aprons, nuclear medicine personnel and radiation oncologists exposed to high-energy photon radiation, and other workers. Standardized mortality ratio (SMR) analyses were performed. Cox proportional hazards models were used to estimate organ-specific radiation risks. RESULTS Overall, 11,433 deaths occurred (SMR 0.60; 95%CI 0.59,0.61), 126 from leukemia other than chronic lymphocytic leukemia (CLL), 850 from lung cancer, and 1654 from IHD. The mean duration of monitoring was 23.7 y. The excess relative rate (ERR) per 100 mGy was estimated as 0.10 (95% CI -0.34, 0.54) for leukemia other than CLL, 0.15 (0.02, 0.27) for lung cancer, and -0.10 (-0.27, 0.06) for IHD. The ERR for lung cancer was 0.16 (0.01, 0.32) among the 55,218 male workers and 0.09 (-0.19, 0.36) among the 53,801 female workers; a difference that was not statistically significant (p-value = 0.23). CONCLUSIONS Medical radiation workers were at increased risk for lung cancer that was higher among men than women, although this difference was not statistically significant. In contrast, the study of Japanese atomic bomb survivors exposed briefly to radiation in 1945 found females to be nearly 3 times the radiation risk of lung cancer compared with males on a relative scale. For medical workers, there were no statistically significant radiation associations with leukemia excluding CLL, IHD or other specific causes of death. Combining these data with other cohorts within the MPS, such as nuclear power plant workers and nuclear submariners, will enable more precise estimates of radiation risks at relatively low cumulative doses.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara C Howard
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
7
|
Hunter N, Haylock RGE, Gillies M, Zhang W. Extended analysis of solid cancer incidence among the Nuclear Industry Workers in the UK: 1955-2011. Radiat Res 2022; 198:1-17. [PMID: 35452522 DOI: 10.1667/rade-20-00269.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/01/2022] [Indexed: 11/03/2022]
Abstract
Radiation worker studies provide direct estimates of cancer risk after protracted low-dose exposures to external X-ray and gamma-ray irradiations. The National Registry for Radiation Workers (NRRW) started in 1976 and has become the largest epidemiological program of research on nuclear workers in the UK. Here, we report on the relationship between solid cancer incidence and external radiation at the low-dose levels in 172,452 NRRW cohort members of whom (90%) were men. This study is based on 5.25 million person-years of follow-up from 1955 through the end of 2011. In the range of accumulated low doses two-thirds of workers have doses of less than 10 mSv. This study is an updated analysis of solid cancer incidence data with an additional 10 years of follow-up over the previous analysis of the NRRW cohort (NRRW-3). A total of 18,310 cases of solid cancers based on a 10-year lag were registered and of these 43% of the solid cancer cases occurred during the latest 10 years. Poisson regression was used to investigate the relationship between solid cancers risk and protracted chronic low-dose radiation exposure. This study demonstrated for solid cancers a rapid decrease of risk at high external doses that appeared to be driven by the workers who were monitored for potential exposure to internal emitters and who had also received relatively high external doses. Among cohort members only exposed to external radiation, a strong association was found between external dose and solid cancers (ERR/Sv = 0.52, 95% CI: 0.11; 0.96, based on 13,199 cases). A similar pattern is also seen for lung cancer. Excluding lung cancer from the grouping of all solid cancers resulted in evidence of a linear association with external radiation dose (ERR/Sv = 0.24, 95% CI: 0.01; 0.49, based on 15,035 cases), so suggesting some degree of confounding by smoking. Statistically significantly increasing trends with dose were seen for cancers of the colorectal, bladder and pleura cancer. Some of these results should be treated with caution because of the limited corroborating evidence from other published studies. Information on internal doses as well as non-radiation factors such smoking would be helpful to make more definitive inferences.
Collapse
Affiliation(s)
- Nezahat Hunter
- Epidemiology, Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, Didcot, Oxon, United Kingdom
| | - Richard G E Haylock
- Epidemiology, Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, Didcot, Oxon, United Kingdom
| | - Michael Gillies
- Epidemiology, Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, Didcot, Oxon, United Kingdom
| | - Wei Zhang
- Epidemiology, Centre for Radiation, Chemical and Environmental Hazards (CRCE), Public Health England, Chilton, Didcot, Oxon, United Kingdom
| |
Collapse
|
8
|
Updated Standardized Mortality Ratio Evaluation of Disease Risks of Shipyard Workers Exposed to Low Dose Ionizing Radiation. J Occup Environ Med 2022; 64:e224-e230. [DOI: 10.1097/jom.0000000000002491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Fang F, Yu X, Wang X, Zhu X, Liu L, Rong L, Niu D, Li J. Transcriptomic profiling reveals gene expression in human peripheral blood after exposure to low-dose ionizing radiation. JOURNAL OF RADIATION RESEARCH 2022; 63:8-18. [PMID: 34788452 PMCID: PMC8776696 DOI: 10.1093/jrr/rrab091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/03/2021] [Indexed: 05/15/2023]
Abstract
Although the health effects of exposure to low-dose ionizing radiation have been the focus of many studies, the affected biological functions and underlying regulatory mechanisms are not well-understood. In particular, the influence of radiation exposure at doses of less than 200 mGy on the regulation of genes and pathways remains unclear. To investigate the molecular alterations induced by varying doses of low-dose radiation (LDR), transcriptomic analysis was conducted based on ribonucleic acid (RNA) sequencing following exposure to 50 and 150 mGy doses. Human peripheral blood was collected, and the samples were divided into three groups, including two treatments and one control (no radiation). A total of 876 (318 upregulated and 558 downregulated) and 486 (202 upregulated and 284 downregulated) differentially expressed genes (DEGs) were identified after exposure to 50 mGy and 150 mGy, respectively. Most upregulated genes in both the 50 mGy and 150 mGy groups were associated with 'antigen processing and presentation,' which appeared to be the major targets affected by LDR exposure. Several interacting genes, including HLA-DQA1, HLA-DQA2, HLA-DQB2, HLA-DRB1, and HLA-DRB5 were mapped to 'antigen processing and presentation,' 'immune system-related diseases' and the 'cytokine-mediated signaling pathway,' suggesting that these genes might drive the downstream transmission of these signal transduction pathways. Our results suggest that exposure to LDR may elicit changes in key genes and associated pathways, probably helping further explore the biological processes and molecular mechanism responsible for low-dose occupational or environmental exposures in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Li
- Corresponding author. Department of Scientific Research, Beijing Institute of Occupational Disease Prevention and Treatment (The Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry), 50 Xiangshan Yikesong Road, Haidian District, Beijing 100093, China.
| |
Collapse
|
10
|
Wakeford R. Radiation in the workplace - an opportunity for substantial epidemiological evidence. Int J Radiat Biol 2022; 98:533-536. [PMID: 35044294 DOI: 10.1080/09553002.2022.2031218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
11
|
Rühm W, Laurier D, Wakeford R. Cancer risk following low doses of ionising radiation - Current epidemiological evidence and implications for radiological protection. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 873:503436. [PMID: 35094811 DOI: 10.1016/j.mrgentox.2021.503436] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 01/05/2023]
Abstract
Recent studies suggest that every year worldwide about a million patients might be exposed to doses of the order of 100 mGy of low-LET radiation, due to recurrent application of radioimaging procedures. This paper presents a synthesis of recent epidemiological evidence on radiation-related cancer risks from low-LET radiation doses of this magnitude. Evidence from pooled analyses and meta-analyses also involving epidemiological studies that, individually, do not find statistically significant radiation-related cancer risks is reviewed, and evidence from additional and more recent epidemiological studies of radiation exposures indicating excess cancer risks is also summarized. Cohorts discussed in the present paper include Japanese atomic bomb survivors, nuclear workers, patients exposed for medical purposes, and populations exposed environmentally to natural background radiation or radioactive contamination. Taken together, the overall evidence summarized here is based on studies including several million individuals, many of them followed-up for more than half a century. In summary, substantial evidence was found from epidemiological studies of exposed groups of humans that ionizing radiation causes cancer at acute and protracted doses above 100 mGy, and growing evidence for doses below 100 mGy. The significant radiation-related solid cancer risks observed at doses of several 100 mGy of protracted exposures (observed, for example, among nuclear workers) demonstrate that doses accumulated over many years at low dose rates do cause stochastic health effects. On this basis, it can be concluded that doses of the order of 100 mGy from recurrent application of medical imaging procedures involving ionizing radiation are of concern, from the viewpoint of radiological protection.
Collapse
Affiliation(s)
- W Rühm
- Helmholtz Center Munich German Research Center for Environmental Health, Neuherberg, Germany.
| | - D Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - R Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| |
Collapse
|
12
|
Poudel D, Avtandilashvili M, Klumpp JA, Bertelli L, Tolmachev SY. Modelling of long-term retention of high-fired plutonium oxide in the human respiratory tract: importance of scar-tissue compartments. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:940-961. [PMID: 33186925 DOI: 10.1088/1361-6498/abca49] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
The U.S. Transuranium and Uranium Registries whole-body tissue donor Case 0407 had an acute intake of 'high-fired' plutonium oxide resulting from a glove-box fire in a fabrication plant at a nuclear defence facility. The respiratory tract of this individual was dissected into five regions (larynx, bronchi, bronchioles, alveolar-interstitial, and thoracic lymph nodes) and analysed for plutonium content. The activities in certain compartments of the respiratory tract were found to be higher than expected from the default models described in publications of the International Commission on Radiological Protection. Because of the extremely slow rate of dissolution of the material inhaled, the presence of bound fraction is incapable of explaining the higher-than-expected retention. A plausible hypothesis-encapsulation of plutonium in scar tissues-is supported by the review of literature. Therefore, scar-tissue compartments corresponding to the larynx, bronchi, bronchioles and alveolar-interstitial regions were added to the existing human respiratory tract model structure. The transfer rates between these compartments were determined using Markov Chain Monte Carlo analysis of data on urinary excretion, lung counts and post-mortem measurements of the liver, skeleton and regional retention in the respiratory tract. Modelling of the data showed that approximately 30% of plutonium activity in the lung was sequestered in scar tissues. The dose consequence of such sequestration is qualitatively compared against that of chemical binding.
Collapse
Affiliation(s)
- Deepesh Poudel
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Maia Avtandilashvili
- U.S. Transuranium and Uranium Registries, Washington State University, Richland, WA, United States of America
| | - John A Klumpp
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Luiz Bertelli
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Sergei Y Tolmachev
- U.S. Transuranium and Uranium Registries, Washington State University, Richland, WA, United States of America
| |
Collapse
|
13
|
Poudel D, Avtandilashvili M, Klumpp JA, Bertelli L, Tolmachev SY. MODELING THE LONG-TERM RETENTION OF PLUTONIUM IN THE HUMAN RESPIRATORY TRACT USING SCAR-TISSUE COMPARTMENTS. RADIATION PROTECTION DOSIMETRY 2021; 196:167-183. [PMID: 34595535 DOI: 10.1093/rpd/ncab142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The respiratory tract tissues of four former nuclear workers with plutonium intakes were radiochemically analyzed post mortem by the United States Transuranium and Uranium Registries. Plutonium activities in the upper respiratory tract of these individuals were found to be higher than those predicted using the most recent biokinetic models described in publications of the International Commission on Radiological Protection. Modification of the model parameters, including the bound fraction, was not able to explain the data in one of the four individuals who had inhaled insoluble form of plutonium. Literature review points to the presence of-and a significant retention of-plutonium in the scar tissues of the lungs. Accordingly, an alternate model with scar-tissue compartments corresponding to larynx, bronchi, bronchioles, alveolar-interstitium and thoracic lymph nodes was proposed. The rates of transfer to the scar tissue compartments were determined using Markov Chain Monte Carlo analysis of data on urinary excretion, lung counts and post-mortem measurements of liver, skeleton and individual respiratory tract compartments, as available. The posterior models predicted that 20-100%-depending on the solubility of the material inhaled-of the activities retained in the respiratory tract were sequestered in the scar tissues.
Collapse
Affiliation(s)
- Deepesh Poudel
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Maia Avtandilashvili
- United States Transuranium and Uranium Registries, Washington State University, Richland, WA, USA
| | - John A Klumpp
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Luiz Bertelli
- Radiation Protection Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Sergei Y Tolmachev
- United States Transuranium and Uranium Registries, Washington State University, Richland, WA, USA
| |
Collapse
|
14
|
Wakeford R. Overview of epidemiological studies of nuclear workers: opportunities, expectations, and limitations . JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1075-1092. [PMID: 34161930 DOI: 10.1088/1361-6498/ac0df4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Epidemiological studies of those exposed occupationally to ionising radiation offer an important opportunity to directly check the assumptions underlying the international system of radiological protection against low-level radiation exposures. Recent nuclear worker studies, notably the International Nuclear Workers Study (INWORKS) and studies of the Mayak workforce in Russia, provide powerful investigations of a wide range of cumulative photon doses received at a low dose-rate over protracted periods, and broadly confirm radiation-related excess risks of leukaemia and solid cancers at around the levels predicted by standard risk models derived mainly from the experience of the Japanese atomic-bomb survivors acutely exposed principally to gamma radiation. However, the slope of the dose-response for solid cancers expressed in terms of the excess relative risk per unit dose, ERR/Gy, differs between INWORKS and Mayak, such that when compared with the slope derived from the atomic-bomb survivors, INWORKS does not provide obvious support for the use in radiological protection of a dose and dose-rate effectiveness factor greater than one whereas the Mayak workforce apparently does. This difference could be a chance effect, but it could also point to potential problems with these worker studies. Of particular concern is the adequacy of recorded doses received in the early years of operations at older nuclear installations, such as the potential for 'missed' photon doses. A further issue is how baseline cancer rates may influence radiation-related excess risks. There is scope for a considerable increase in the statistical power of worker studies, with longer follow-up capturing more deaths and incident cases of cancer, and further workforces being included in collaborative studies, but the difficulties posed by dosimetry questions should not be ignored and need to be the subject of detailed scrutiny.
Collapse
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
15
|
Šefl M, Zhou JY, Avtandilashvili M, McComish SL, Tolmachev SY. Plutonium in Manhattan Project workers: Using autopsy data to evaluate organ content and dose estimates based on urine bioassay with implications for radiation epidemiology. PLoS One 2021; 16:e0259057. [PMID: 34699566 PMCID: PMC8547658 DOI: 10.1371/journal.pone.0259057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Radiation dose estimates in epidemiology typically rely on intake predictions based on urine bioassay measurements. The purpose of this article is to compare the conventional dosimetric estimates for radiation epidemiology with the estimates based on additional post-mortem tissue radiochemical analysis results. METHODS The comparison was performed on a unique group of 11 former Manhattan Project nuclear workers, who worked with plutonium in the 1940s, and voluntarily donated their bodies to the United States Transuranium and Uranium Registries. RESULTS Post-mortem organ activities were predicted using different sets of urine data and compared to measured activities. Use of urinalysis data collected during the exposure periods overestimated the systemic (liver+skeleton) deposition of 239Pu by 155±134%, while the average bias from using post-exposure urinalyses was -4±50%. Committed effective doses estimated using early urine data differed from the best estimate by, on average, 196±193%; inclusion of follow-up urine measurements in analyses decreased the mean bias to 0.6±36.3%. Cumulative absorbed doses for the liver, red marrow, bone surface, and brain were calculated for the actual commitment period. CONCLUSION On average, post-exposure urine bioassay results were in good agreement with post-mortem tissue analyses and were more reliable than results of urine bioassays collected during the exposure.
Collapse
Affiliation(s)
- Martin Šefl
- United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Richland, Washington, United States of America
| | - Joey Y. Zhou
- Office of Domestic and International Health Studies, United States Department of Energy, Washington, DC, United States of America
| | - Maia Avtandilashvili
- United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Richland, Washington, United States of America
| | - Stacey L. McComish
- United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Richland, Washington, United States of America
| | - Sergei Y. Tolmachev
- United States Transuranium and Uranium Registries, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Richland, Washington, United States of America
| |
Collapse
|
16
|
Boice JD, Cohen SS, Mumma MT, Hagemeyer DA, Chen H, Golden AP, Yoder RC, Dauer LT. Mortality from Leukemia, Cancer and Heart Disease among U.S. Nuclear Power Plant Workers, 1957-2011. Int J Radiat Biol 2021; 98:657-678. [PMID: 34669562 DOI: 10.1080/09553002.2021.1967507] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The aim of the Million Person Study (MPS) of Low Dose Health Effects is to examine the level of radiation risk for chronic exposures received gradually over time and not acutely as was the case for the Japanese atomic bomb survivors. Nuclear power plant (NPP) workers comprise nearly 15 percent of the MPS. Leukemia, selected cancers, Parkinson's disease, ischemic heart disease (IHD) and other causes of death are evaluated. METHODS AND MATERIAL The U.S. Nuclear Regulatory Commission's Radiation Exposure Information and Reporting System (REIRS) and the Landauer, Inc. dosimetry databases identified 135,193 NPP workers first monitored 1957-1984. Annual personal dose equivalents [Hp(10)] were available for each worker. Radiation records from all places of employment were sought. Vital status was determined through 2011. Mean absorbed doses to red bone marrow (RBM), esophagus, lung, colon, brain and heart were estimated by adjusting the recorded Hp(10) for each worker by scaling factors, accounting for exposure geometry and energy of the incident gamma radiation. Standardized mortality ratios (SMR) were calculated. Radiation risks were estimated using Cox proportional hazards models. RESULTS Nearly 50% of workers were employed for more than 20 years. The mean duration of follow-up was 30.2 y. Overall, 29,076 total deaths occurred, 296 from leukemia other than chronic lymphocytic leukemia (CLL), 3,382 from lung cancer, 140 from Parkinson's disease and 5,410 from IHD. The mean dose to RBM was 37.9 mGy (maximum 1.0 Gy; percent >100 mGy was 9.2%), 43.2 mGy to lung, 43.7 mGy to colon, 33.2 mGy to brain, and 43.9 mGy to heart. The SMRs (95% CI) were 1.06 (0.94;1.19) for leukemia other than CLL, 1.10 (1.07;1.14) for lung cancer, 0.90 (0.76;1.06) for Parkinson's disease, and 0.80 (0.78; 0.82) for IHD. The excess relative risk (ERR) per 100 mGy for leukemia other than CLL was 0.15 (90% CI 0.001; 0.31). For all solid cancers the ERR per 100 mGy (95% CI) was 0.01 (-0.03; 0.05), for lung cancer -0.04 (-0.11; 0.02), for Parkinson's disease 0.24 (-0.02; 0.50), and for IHD -0.01 (-0.06; 0.04). CONCLUSION Prolonged exposure to radiation increased the risk of leukemia other than CLL among NPP workers. There was little evidence for a radiation-association for all solid cancers, lung cancer or ischemic heart disease. Increased precision will be forthcoming as the different cohorts within the MPS are combined, such as industrial radiographers and medical radiation workers who were assembled and evaluated in like manner.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Heidi Chen
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Lawrence T Dauer
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
17
|
Boice JD, Cohen SS, Mumma MT, Golden AP, Howard SC, Girardi DJ, Ellis ED, Bellamy MB, Dauer LT, Samuels C, Eckerman KF, Leggett RW. Mortality among workers at the Los Alamos National Laboratory, 1943-2017. Int J Radiat Biol 2021; 98:722-749. [PMID: 34047625 DOI: 10.1080/09553002.2021.1917784] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND During World War II (WWII), the Manhattan Engineering District established a secret laboratory in the mountains of northern New Mexico. The mission was to design, construct and test the first atomic weapon, nicknamed 'The Gadget' that was detonated at the TRINITY site in Alamogordo, NM. After WWII, nuclear weapons research continued, and the laboratory became the Los Alamos National Laboratory (LANL). MATERIALS AND METHODS The mortality experience of 26,328 workers first employed between 1943 and 1980 at LANL was determined through 2017. Included were 6157 contract workers employed by the ZIA Company. Organ dose estimates for each worker considered all sources of exposure, notably photons, neutrons, tritium, 238Pu and 239Pu. Vital status determination included searches within the National Death Index, Social Security Administration and New Mexico State Mortality Files. Standardized Mortality Ratios (SMR) and Cox regression models were used in the analyses. RESULTS Most workers (55%) were hired before 1960, 38% had a college degree, 25% were female, 81% white, 13% Hispanic and 60% had died. Vital status was complete, with only 0.1% lost to follow-up. The mean dose to the lung for the 17,053 workers monitored for radiation was 28.6 weighted-mGy (maximum 16.8 weighted-Gy) assuming a Dose Weighting Factor of 20 for alpha particle dose to lung. The Excess Relative Risk (ERR) at 100 weighted-mGy was 0.01 (95%CI -0.02, 0.03; n = 839) for lung cancer. The ERR at 100 mGy was -0.43 (95%CI -1.11, 0.24; n = 160) for leukemia other than chronic lymphocytic leukemia (CLL), -0.06 (95%CI -0.16, 0.04; n = 3043) for ischemic heart disease (IHD), and 0.29 (95%CI 0.02, 0.55; n = 106) for esophageal cancer. Among the 6499 workers with measurable intakes of plutonium, an increase in bone cancer (SMR 2.44; 95%CI 0.98, 5.03; n = 7) was related to dose. The SMR for berylliosis was significantly high, based on 4 deaths. SMRs for Hispanic workers were significantly high for cancers of the stomach and liver, cirrhosis of the liver, nonmalignant kidney disease and diabetes, but the excesses were not related to radiation dose. CONCLUSIONS There was little evidence that radiation increased the risk of lung cancer or leukemia. Esophageal cancer was associated with radiation, and plutonium intakes were linked to an increase of bone cancer. IHD was not associated with radiation dose. More precise evaluations will await the pooled analysis of workers with similar exposures such as at Rocky Flats, Savannah River and Hanford.
Collapse
Affiliation(s)
- John D Boice
- National Council on Radiation Protection and Measurements, Bethesda, MD, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | | | - Michael T Mumma
- International Epidemiology Institute, Rockville, MD, USA.,International Epidemiology Field Station, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley P Golden
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - Sara C Howard
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | - David J Girardi
- ORISE Health Studies Program, Oak Ridge Associated Universities, Oak Ridge, TN, USA
| | | | - Michael B Bellamy
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lawrence T Dauer
- Department of Medical Physics and Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | |
Collapse
|
18
|
Stram DO, Sokolnikov M, Napier BA, Vostrotin VV, Efimov A, Preston DL. Lung Cancer in the Mayak Workers Cohort: Risk Estimation and Uncertainty Analysis. Radiat Res 2021; 195:334-346. [PMID: 33471905 DOI: 10.1667/rade-20-00094.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 12/18/2020] [Indexed: 11/03/2022]
Abstract
The workers at the Mayak nuclear facility near Ozyorsk, Russia are a primary source of information about exposure to radiation at low-dose rates, since they were subject to protracted exposures to external gamma rays and to internal exposures from plutonium inhalation. Here we re-examine lung cancer mortality rates and assess the effects of external gamma and internal plutonium exposures using recently developed Monte Carlo dosimetry systems. Using individual lagged mean annual lung doses computed from the dose realizations, we fit excess relative risk (ERR) models to the lung cancer mortality data for the Mayak Workers Cohort using risk-modeling software. We then used the corrected-information matrix (CIM) approach to widen the confidence intervals of ERR by taking into account the uncertainty in doses represented by multiple realizations from the Monte Carlo dosimetry systems. Findings of this work revealed that there were 930 lung cancer deaths during follow-up. Plutonium lung doses (but not gamma doses) were generally higher in the new dosimetry systems than those used in the previous analysis. This led to a reduction in the risk per unit dose compared to prior estimates. The estimated ERR/Gy for external gamma-ray exposure was 0.19 (95% CI: 0.07 to 0.31) for both sexes combined, while the ERR/Gy for internal exposures based on mean plutonium doses were 3.5 (95% CI: 2.3 to 4.6) and 8.9 (95% CI: 3.4 to 14) for males and females at attained age 60. Accounting for uncertainty in dose had little effect on the confidence intervals for the ERR associated with gamma-ray exposure, but had a marked impact on confidence intervals, particularly the upper bounds, for the effect of plutonium exposure [adjusted 95% CIs: 1.5 to 8.9 for males and 2.7 to 28 for females]. In conclusion, lung cancer rates increased significantly with both external gamma-ray and internal plutonium exposures. Accounting for the effects of dose uncertainty markedly increased the width of the confidence intervals for the plutonium dose response but had little impact on the external gamma dose effect estimate. Adjusting risk estimate confidence intervals using CIM provides a solution to the important problem of dose uncertainty. This work demonstrates, for the first time, that it is possible and practical to use our recently developed CIM method to make such adjustments in a large cohort study.
Collapse
Affiliation(s)
- Daniel O Stram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | - Alexander Efimov
- Southern Urals Biophysics Institute, Ozyorsk, Russian Federation
| | | |
Collapse
|
19
|
Ionizing radiation induces epithelial-mesenchymal transition in human bronchial epithelial cells. Biosci Rep 2021; 40:225856. [PMID: 32697311 PMCID: PMC7414515 DOI: 10.1042/bsr20200453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
Objective: The present study aimed to analyze the mechanism by which long-term occupational exposure of workers to low-dose ionizing irradiation induces epithelial–mesenchymal transition (EMT) of the human bronchial epithelial cells using transcriptome profiling. Methods: RNA-seq transcriptomics was used to determine gene expression in blood samples from radiation-exposed workers followed by bioinformatics analysis. Normal bronchial epithelial cells (16HBE) were irradiated for different durations and subjected to immunofluorescence, Western blotting, scratch healing, and adhesion assays to detect the progression of EMT and its underlying molecular mechanisms. Results: Transcriptomics revealed that exposure to ionizing radiation led to changes in the expression of genes related to EMT, immune response, and migration. At increased cumulative doses, ionizing radiation-induced significant EMT, as evidenced by a gradual decrease in the expression of E-cadherin, increased vimentin, elevated migration ability, and decreased adhesion capability of 16HBE cells. The expression of fibronectin 1 (FN1) showed a gradual increase with the progression of EMT, and may be involved in EMT. Conclusion: Ionizing radiation induces EMT. FN1 may be involved in the progression of EMT and could serve as a potential biomarker for this process.
Collapse
|
20
|
Zhuntova G, Loffredo C, Grigoryeva E, Sychugov G, Kazachkov E, Kirillova E, Azizova T. The Russian Radiobiological Human Tissue Repository: characteristics of biological specimens donated by nuclear workers with lung cancer. Int J Radiat Biol 2020; 96:577-583. [PMID: 31976795 DOI: 10.1080/09553002.2020.1721596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose: Characteristics of biological specimens donated by nuclear workers with lung cancer.Materials and methods: Biological specimens were identified at the Radiobiological Human Tissue Repository (RHTR). It was established at the Southern Urals Biophysics Institute in Russia and has been developed and supported within the bilateral US-Russian Agreement on International Cooperation for Minimization of the Effects of Prolonged Radiation Exposure. Biological specimens were collected from workers of the Russian nuclear production facility Mayak PA who were exposed to gamma radiation and/or alpha particles. To determine a histologic type of lung cancer, immunohistochemistry was used.Results and conclusions: Today biological specimens donated by 343 registrants with lung cancer are available at the RHTR. Among them, 255 donors (74%) are Mayak PA workers hired at the main facilities (reactors, plutonium production, and radiochemical plants) in 1948-1982. These workers donated about 6024 specimens of lung tissues (tumor and tumor-free) stored mostly as formalin-fixed paraffin-embedded tissue blocks (31%) and histology slides (64%); in addition, they donated 1800 specimens of blood/blood components, buccal epithelium cells, and sputum. Among histologic types identified for these lung cancer cases, adenocarcinoma and small cell carcinoma were prevalent. Information about individual doses from external and internal radiation exposure, data on quantitative smoking characteristics and diseases are available for all workers with lung cancer. Complete information on radiation exposure, health status and non-radiation factors annotated to RHTR registrants and the high quality of the available biological specimens are a unique resource for studying biological mechanisms of radiation-induced lung cancer.
Collapse
Affiliation(s)
- Galina Zhuntova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Christopher Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Evgeniya Grigoryeva
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Gleb Sychugov
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Evgeny Kazachkov
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Evgeniya Kirillova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| | - Tamara Azizova
- Clinical Department, Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region, Russia
| |
Collapse
|
21
|
Romanov SA, Efimov АV, Aladova ЕЕ, Suslova КG, Kuznetsova IS, Sokolova АВ, Khokhryakov VV, Sypko SA, Ishunina MV, Khokhryakov VF. Plutonium production and particles incorporation into the human body. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 211:106073. [PMID: 31605814 DOI: 10.1016/j.jenvrad.2019.106073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
Plutonium is one of the most toxic radioactive substances known. The isotope 239Pu gained attention when it had become known as a potential explosive material for atomic bombs. This paper describes the main problems encountered during the early years of operation of the first plutonium production plant in the former Soviet Union, the Mayak Production Association (Mayak PA). Mayak PA caused severe radioactive contamination of the environment and exposure personnel and population living in the vicinity areas to high radiation doses. The authors focus on key findings of large-scale studies on the internal dosimetry of workers for use in assessment of radiological risks from exposure to plutonium. This work presents an overview of the important issues for inhalation dose assessments such as generation of plutonium particles, plutonium intake, dissolution of plutonium particles, distribution of plutonium in humans, related exposures and health effects. Understanding the relationship between health effects, radiation dose and route of exposure helps quantify the health risks associated with occupational exposure in the nuclear industry and validate the radiation protection standards used in the Russian Federation and worldwide.
Collapse
Affiliation(s)
- S A Romanov
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| | - А V Efimov
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| | - Е Е Aladova
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia.
| | - К G Suslova
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| | - I S Kuznetsova
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| | - А В Sokolova
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| | - V V Khokhryakov
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| | - S A Sypko
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| | - M V Ishunina
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| | - V F Khokhryakov
- Federal State Unitary Enterprise Southern Urals Biophysics Institute, Federal Medical Biology Agency of Russia, Chelyabinsk Region, Ozyorsk Road, 19, Ozyorsk, 456780, Russia
| |
Collapse
|
22
|
Riddell A, Wakeford R, Liu H, O'Hagan J, MacGregor D, Agius R, Wilson C, Peace M, de Vocht F. Building a job-exposure matrix for early plutonium workers at the Sellafield nuclear site, United Kingdom. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2019; 39:620-634. [PMID: 31112514 DOI: 10.1088/1361-6498/ab1168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential for adverse health effects from internal exposure to Plutonium has been recognised since its discovery in the 1940s. However, in the absence of specific information, potential risks from Plutonium exposure have always largely been controlled through knowledge of radiation exposure risks in general, much of which comes from external radiation exposures. To try to obtain more direct estimates of potential internal exposure risks, epidemiological studies of Plutonium workers need to be conducted. Such epidemiological analyses require individual Plutonium exposure estimates that are as accurate and unbiased as possible. The UK Sellafield workforce includes one of the world's largest cohorts of Plutonium workers, which constitutes, by some considerable margin, the group of workers most comprehensively monitored for internal exposure to this alpha-particle-emitter. However, for several hundred workers employed at the start of Plutonium work at the facility, during the period from 1952 through to 1963, the historical urinalysis results available cannot provide sufficiently accurate and unbiased exposure assessments needed for use in epidemiological studies. Consequently, these early workers have had to be excluded from epidemiological analyses and this has significantly reduced the power of these studies. A promising quantitative methodology to overcome the issue of missing or deficient exposure data, is to use exposure data from other sources to estimate the average exposure a 'typical worker' would have received, and to collate this information for specific occupations and years. This approach is called a Job-Exposure Matrix (JEM). Work on a pilot study to construct a population-specific quantitative JEM for the early Plutonium workers at Sellafield during 1952-1963, for whom reliable urinalysis results do not exist, has shown the potential for a JEM approach to produce more reliable and useful exposure estimates for epidemiological research.
Collapse
Affiliation(s)
- Anthony Riddell
- Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Public Health England, Didcot, OX11 0RQ, The United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Boice JD, Ellis ED, Golden AP, Zablotska LB, Mumma MT, Cohen SS. Sex-specific lung cancer risk among radiation workers in the million-person study and patients TB-Fluoroscopy. Int J Radiat Biol 2019; 98:769-780. [PMID: 30614747 DOI: 10.1080/09553002.2018.1547441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The study of Japanese atomic bomb survivors, exposed briefly to radiation, finds the risk of radiation-induced lung cancer to be nearly three times greater for women than for men. Because protection standards for astronauts are based on individual lifetime risk projections, this sex-specific difference limits the time women can spend in space. Populations exposed to chronic or fractionated radiation were evaluated to learn whether similar differences exist when exposures occur gradually over years. METHODS AND MATERIALS Five occupational cohorts within the Million Person Study of Low-Dose Health Effects (MPS) and a Canadian Fluoroscopy Cohort Study (CFCS) of tuberculosis patients who underwent frequent chest fluoroscopic examinations are evaluated. Included are male and female workers at the Mound nuclear facility, nuclear power plants (NPP), and industrial radiographers (IR). Workers at the Mallinckrodt Chemical Works and military participants at aboveground nuclear weapons tests provide information on the risk among males. Cox proportional hazards and Poisson regression models were used to estimate sex-specific radiation risks for lung cancer and to compare any differences. RESULTS Overall, 15,065 lung cancers occurred among the 443,684 subjects studied: 50,111 women and 395,573 men. The mean cumulative dose to the lung was 166.3 mGy (range 6 to 1,055 mGy) with the highest among the TB-fluoroscopy patients (mean 1,055 mGy). Mean lung dose for women in the worker cohorts was generally 4 times lower than for men. Of the 12 estimates of radiation-related risk, only one, for male IRs, showed a significant elevation (ERR 0.09; 95% CI 0.02-0.16, at 100 mGy). In contrast, the dose response for male NPP workers was negative (ERR -0.05; 95% CI -0.10, 0.01, at 100 mGy). Combined, these two cohorts provided little evidence for a radiation effect among males (ERR 0.01; 95% CI -0.04, 0.06, at 100 mGy). There was no significant dose-response among females within any cohort. There was no difference in the sex-specific estimates of lung cancer risk. CONCLUSIONS There was little evidence that chronic or fractionated exposures increased the risk of lung cancer. There were no differences in the risks of lung cancer between men and women. However, the sex-specific analyses are limited because of small numbers of women and relatively low doses. A more definitive study is ongoing of medical radiation workers which include 85,000 women and 85,000 men (overall mean dose 82 mGy, max 1,140 mGy). Additional understanding will come from the ongoing follow-up of the CFCS.
Collapse
Affiliation(s)
- John D Boice
- a National Council on Radiation Protection and Measurements , Bethesda , MA , USA.,b Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center , Vanderbilt University School of Medicine , Nashville , TN , USA
| | - Elizabeth D Ellis
- c Center for Epidemiologic Research, Oak Ridge Associated Universities , Oak Ridge , TN , USA
| | - Ashley P Golden
- c Center for Epidemiologic Research, Oak Ridge Associated Universities , Oak Ridge , TN , USA
| | - Lydia B Zablotska
- d School of Medicine , University of California, San Francisco , San Francisco , CA , USA
| | - Michael T Mumma
- e International Epidemiology Institute , Rockville , MA , USA
| | | |
Collapse
|
24
|
Vocht FD, Riddell A, Wakeford R, Liu H, MacGregor D, Wilson C, Peace M, O'Hagan J, Agius R. Construction, Validation and Sensitivity Analyses of a Job Exposure Matrix for Early Plutonium Workers at the Sellafield Nuclear Site, United Kingdom. Radiat Res 2018; 191:60-66. [DOI: 10.1667/rr15177.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Frank de Vocht
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS8 2PS, United Kingdom
| | - Anthony Riddell
- Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Public Health England, Didcot, OX11 0RQ, United Kingdom
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Hanhua Liu
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - David MacGregor
- Sellafield Approved Dosimetry Service, Sellafield Ltd, Cumbria, CA20 1PG, United Kingdom
| | - Christine Wilson
- Sellafield Approved Dosimetry Service, Sellafield Ltd, Cumbria, CA20 1PG, United Kingdom
| | - Mark Peace
- Sellafield Approved Dosimetry Service, Sellafield Ltd, Cumbria, CA20 1PG, United Kingdom
| | - Jacqueline O'Hagan
- Centre for Radiation, Chemical and Environmental Hazards (PHE-CRCE), Public Health England, Didcot, OX11 0RQ, United Kingdom
| | - Raymond Agius
- Centre for Occupational and Environmental Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
25
|
Bian H, Wang Y, Chen W, Zhang Y, Zhuang Z, Xia R, Dai H, Feng J, Pu W, Chen L, Cai W, Hu W, Liu Y. Multiple Organ Lesions in a Case of Contamination With Multiple Radionuclides After 38 Years. Dose Response 2018; 16:1559325818815019. [PMID: 30559637 PMCID: PMC6291884 DOI: 10.1177/1559325818815019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 10/25/2018] [Indexed: 11/15/2022] Open
Abstract
The patient was contaminated with multiple radionuclides 38 years ago due to an accident. To investigate the effects of radionuclide contamination on humans, he has been followed up by examinations for many years. Long-term effects gradually emerge in these years. Lung cancer was diagnosed by medical examinations. Besides, chronic gastritis with intestinal metaplasia was indicated by gastroscopic biopsies, while colorectal polyps found by colonoscopy. All 13 colorectal polyps were removed, and radical surgery for lung cancer was performed. Fortunately, pathological examinations indicated that it was early lung cancer. The ground glass nodule (GGN) in left lung identified during the follow-up will be resected when needed. It is speculated that multiple manifestations of the patient may be related to radiation, and different lesions in the organs may be related to systemic adaptive response. However, longer follow-up is needed due to a lack of effective and direct evidence. This work is expected to provide experiences for similar patients' treatment and follow-up.
Collapse
Affiliation(s)
- Huahui Bian
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Youyou Wang
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weibo Chen
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yusong Zhang
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhixiang Zhuang
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Xia
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Dai
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Junchao Feng
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wangyang Pu
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lei Chen
- Department of Oncology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wu Cai
- Department of Medical Imaging, the Second Affiliated Hospital of Soochow University, Suzhou,China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| | - Yulong Liu
- Department of Nuclear Accident Medical Emergency, The Second Affiliated Hospital of Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, China
| |
Collapse
|
26
|
Wakeford R. The growing importance of radiation worker studies. Br J Cancer 2018; 119:527-529. [PMID: 30108293 PMCID: PMC6162300 DOI: 10.1038/s41416-018-0134-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/23/2018] [Accepted: 05/09/2018] [Indexed: 01/16/2023] Open
Abstract
Large radiation worker studies have the potential to provide precise risk estimates for protracted exposure to low-level ionising radiation. Recent worker studies have reported statistically discernible dose-related increased risks of cancer; however, results must be interpreted with care, and occupational radiation doses need to be treated with particular attention.
Collapse
Affiliation(s)
- Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, UK.
| |
Collapse
|
27
|
Yamamoto S, Tomita H. Development of a high-resolution alpha-particle imaging system for detection of plutonium particles from the Fukushima Daiichi nuclear power plant. RADIAT MEAS 2018. [DOI: 10.1016/j.radmeas.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Vaiserman A, Koliada A, Zabuga O, Socol Y. Health Impacts of Low-Dose Ionizing Radiation: Current Scientific Debates and Regulatory Issues. Dose Response 2018; 16:1559325818796331. [PMID: 30263019 PMCID: PMC6149023 DOI: 10.1177/1559325818796331] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022] Open
Abstract
Health impacts of low-dose ionizing radiation are significant in important fields such as X-ray imaging, radiation therapy, nuclear power, and others. However, all existing and potential applications are currently challenged by public concerns and regulatory restrictions. We aimed to assess the validity of the linear no-threshold (LNT) model of radiation damage, which is the basis of current regulation, and to assess the justification for this regulation. We have conducted an extensive search in PubMed. Special attention has been given to papers cited in comprehensive reviews of the United States (2006) and French (2005) Academies of Sciences and in the United Nations Scientific Committee on Atomic Radiation 2016 report. Epidemiological data provide essentially no evidence for detrimental health effects below 100 mSv, and several studies suggest beneficial (hormetic) effects. Equally significant, many studies with in vitro and in animal models demonstrate that several mechanisms initiated by low-dose radiation have beneficial effects. Overall, although probably not yet proven to be untrue, LNT has certainly not been proven to be true. At this point, taking into account the high price tag (in both economic and human terms) borne by the LNT-inspired regulation, there is little doubt that the present regulatory burden should be reduced.
Collapse
|
29
|
Shichijo K, Takatsuji T, Fukumoto M, Nakashima M, Matsuyama MM, Sekine I. Autoradiographic analysis of internal plutonium radiation exposure in Nagasaki atomic bomb victims. Heliyon 2018; 4:e00666. [PMID: 30003160 PMCID: PMC6039857 DOI: 10.1016/j.heliyon.2018.e00666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background Radiation doses received by Hiroshima and Nagasaki atomic bomb survivors has been evaluated from data related only to external exposure because there was no reliable evidence for internal exposure in atomic bomb victims. However, we assumed that the contribution of internal exposure cannot be ruled out. Methods Autoradiography was carried out with the 70-year old paraffin-embedded specimens taken from Nagasaki atomic bomb victims who died within 5 months after the bombing. After exposure to photo emulsion for 6 months alpha-tracks were revealed in the specimens. We confirmed the alpha-tracks were emitted from deposited plutonium (Pu) in reference to the track length of the 8.787 MeV alpha-particle of thorium series from Polonium-212. Radioactivity concentration of Pu was obtained by counting alpha-tracks. The absorbed dose of each cell nucleus penetrated by an alpha-particle was estimated by calculating the absorbed energy from the particle. Results Using old paraffin embedded sections processed about 70 years ago, we demonstrated for the first time that conditions in the aftermath of the bombing led to internal exposure to alpha-particles emitted from Pu, the fissile material of the Nagasaki atomic bomb. Dose rate of internal exposure was higher in the victims exposed outdoors than those indoors. Radioactivity concentration was relatively uniform among organs examined in a victim. Conclusion Pu was deposited in the bodies of the Nagasaki A-bomb victims presumably via various routes. Organ dose from Pu of the Nagasaki A-bomb victims studied was during their surviving period, which is lower compared with external exposure. However, the impact to the individual cell nucleus by a single alpha-particle might not be negligible, It would be meaningful; to analyze the relationship of the impact of internal exposure at the cellular level and organ dose. The 70-year old pathological specimens utilized in our study are an invaluable source for understanding internal radiation exposure and are crucial in elucidating experimentally unreproducible phenomena.
Collapse
Affiliation(s)
- Kazuko Shichijo
- Division of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | | | - Manabu Fukumoto
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Nakashima
- Division of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Mutsumi M Matsuyama
- Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Ichiro Sekine
- Division of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan.,Tissue and Histopathology Section, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|