1
|
Abeywardana MY, Whedon SD, Lee K, Nam E, Dovarganes R, DuBois-Coyne S, Haque IA, Wang ZA, Cole PA. Multifaceted regulation of sirtuin 2 (Sirt2) deacetylase activity. J Biol Chem 2024; 300:107722. [PMID: 39214297 PMCID: PMC11458557 DOI: 10.1016/j.jbc.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
Sirtuin 2 (Sirt2) is a member of the sirtuin family of NAD-dependent lysine deacylases and plays important roles in regulation of the cell cycle and gene expression. As a nucleocytoplasmic deacetylase, Sirt2 has been shown to target both histone and nonhistone acetylated protein substrates. The central catalytic domain of Sirt2 is flanked by flexible N and C termini, which vary in length and composition with alternative splicing. These termini are further subject to posttranslational modifications including phosphorylation. Here, we investigate the function of the N and C termini on deacetylation of nuclear substrates by Sirt2. Remarkably, we find that the C terminus autoinhibits deacetylation, while the N terminus enhances deacetylation of proteins and peptides, but not nucleosomes-a chromatin model substrate. Using protein semisynthesis, we characterize the effect of cell cycle-linked N-terminal phosphorylation at two major phosphorylation sites (Ser23/Ser25) and find that these further enhance protein/peptide deacetylation, with no effect on nucleosome deacetylation. Additionally, we find that VRK1, an established binding partner of both Sirt2 and nucleosomes, can stimulate deacetylation of nucleosomes by Sirt2, likely through an electrostatic mechanism. Taken together, these findings reveal multiple mechanisms regulating the activity of Sirt2, which allow for a broad range of activities across its multiple biological roles.
Collapse
Affiliation(s)
- Maheeshi Yapa Abeywardana
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunju Nam
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rafael Dovarganes
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah DuBois-Coyne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ishraq A Haque
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhipeng A Wang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA; Desai Sethi Urology Institute & Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
2
|
Fang S, He T, You M, Zhu H, Chen P. Glucocorticoids promote steroid-induced osteonecrosis of the femoral head by down-regulating serum alpha-2-macroglobulin to induce oxidative stress and facilitate SIRT2-mediated BMP2 deacetylation. Free Radic Biol Med 2024; 213:208-221. [PMID: 38142952 DOI: 10.1016/j.freeradbiomed.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/07/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
Our study investigated the possible molecular mechanism of glucocorticoid in steroid-induced osteonecrosis of the femoral head (SINFH) through regulating serum alpha-2-macroglobulin and SIRT2-mediated BMP2 deacetylation. Essential genes involved in glucocorticoid-induced SINFH were screened by transcriptome sequencing and analyzed by bioinformatics, followed by identifying downstream regulatory targets. Rat bone marrow mesenchymal stem cells were isolated and treated with methylprednisolone (MP) for in vitro cell experiments. Besides, a glucocorticoid-induced rat ONFH was established using the treatment of MP and LPS. ChIP-PCR detected the enrichment of SIRT2 in the promoter region of BMP2, and the deacetylation modification of SIRT2 on BMP2 was determined. Bioinformatics analysis revealed that glucocorticoids may induce ONFH through the SIRT2/BMP2 axis. In vitro cell experiments showed that glucocorticoids up-regulated SIRT2 expression in BMSCs by inducing oxidative stress, thereby promoting cell apoptosis. The up-regulation of SIRT2 expression may be due to the decreased ability of α2 macroglobulin to inhibit oxidative stress, and the addition of NOX protein inhibitor DPI could significantly inhibit SIRT2 expression. SIRT2 could promote histone deacetylation of the BMP2 promoter and inhibit its expression. In vitro cell experiments further indicated that knocking down SIRT2 could protect BMSC from oxidative stress and cell apoptosis induced by glucocorticoids by promoting BMP2 expression. In addition, animal experiments conducted also demonstrated that the knockdown of SIRT2 could improve glucocorticoid-induced ONFH through up-regulating BMP2 expression. Glucocorticoids could induce oxidative stress by down-regulating serum α2M to promote SIRT2-mediated BMP2 deacetylation, leading to ONFH.
Collapse
Affiliation(s)
- Shanhong Fang
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Fujian Orthopaedics Research Institute, Fuzhou, 350000, PR China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, 350000, PR China
| | - Tianmin He
- Department of Vascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Mengqiang You
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Huixin Zhu
- Nursing Department, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Nursing Department, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China
| | - Peng Chen
- Department of Sports Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, PR China; Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, PR China; Fujian Orthopaedics Research Institute, Fuzhou, 350000, PR China; Fujian Orthopedic Bone and Joint Disease and Sports Rehabilitation Clinical Medical Research Center, Fuzhou, 350000, PR China.
| |
Collapse
|
3
|
Xu S, Xi J, Wu T, Wang Z. The Role of Adipocyte Endoplasmic Reticulum Stress in Obese Adipose Tissue Dysfunction: A Review. Int J Gen Med 2023; 16:4405-4418. [PMID: 37789878 PMCID: PMC10543758 DOI: 10.2147/ijgm.s428482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/19/2023] [Indexed: 10/05/2023] Open
Abstract
Adipose tissue dysfunction plays an important role in metabolic diseases associated with chronic inflammation, insulin resistance and lipid ectopic deposition in obese patients. In recent years, it has been found that under the stimulation of adipocyte endoplasmic reticulum stress (ERS), the over-activated ER unfolded protein response (UPR) exacerbates the inflammatory response of adipose tissue by interfering with the normal metabolism of adipose tissue, promotes the secretion of adipokines, and affects the browning and thermogenic pathways of adipose tissue, ultimately leading to the manifestation of metabolic syndrome such as ectopic lipid deposition and disorders of glucolipid metabolism in obese patients. This paper mainly summarizes the relationship between adipocyte ERS and obese adipose tissue dysfunction and provides an overview of the mechanisms by which ERS induces metabolic disorders such as catabolism, thermogenesis and inflammation in obese adipose tissue through the regulation of molecules and pathways such as NF-κB, ADPN, STAMP2, LPIN1, TRIP-Br2, NF-Y and SIRT2 and briefly describes the current mechanisms targeting adipocyte endoplasmic reticulum stress to improve obesity and provide ideas for intervention and treatment of obese adipose tissue dysfunction.
Collapse
Affiliation(s)
- Shengjie Xu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Jiaqiu Xi
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Tao Wu
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Zhonglin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People’s Republic of China
| |
Collapse
|
4
|
Head PE, Kapoor-Vazirani P, Nagaraju GP, Zhang H, Rath S, Luong N, Haji-Seyed-Javadi R, Sesay F, Wang SY, Duong D, Daddacha W, Minten E, Song B, Danelia D, Liu X, Li S, Ortlund E, Seyfried N, Smalley D, Wang Y, Deng X, Dynan W, El-Rayes B, Davis A, Yu D. DNA-PK is activated by SIRT2 deacetylation to promote DNA double-strand break repair by non-homologous end joining. Nucleic Acids Res 2023; 51:7972-7987. [PMID: 37395399 PMCID: PMC10450170 DOI: 10.1093/nar/gkad549] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023] Open
Abstract
DNA-dependent protein kinase (DNA-PK) plays a critical role in non-homologous end joining (NHEJ), the predominant pathway that repairs DNA double-strand breaks (DSB) in response to ionizing radiation (IR) to govern genome integrity. The interaction of the catalytic subunit of DNA-PK (DNA-PKcs) with the Ku70/Ku80 heterodimer on DSBs leads to DNA-PK activation; however, it is not known if upstream signaling events govern this activation. Here, we reveal a regulatory step governing DNA-PK activation by SIRT2 deacetylation, which facilitates DNA-PKcs localization to DSBs and interaction with Ku, thereby promoting DSB repair by NHEJ. SIRT2 deacetylase activity governs cellular resistance to DSB-inducing agents and promotes NHEJ. SIRT2 furthermore interacts with and deacetylates DNA-PKcs in response to IR. SIRT2 deacetylase activity facilitates DNA-PKcs interaction with Ku and localization to DSBs and promotes DNA-PK activation and phosphorylation of downstream NHEJ substrates. Moreover, targeting SIRT2 with AGK2, a SIRT2-specific inhibitor, augments the efficacy of IR in cancer cells and tumors. Our findings define a regulatory step for DNA-PK activation by SIRT2-mediated deacetylation, elucidating a critical upstream signaling event initiating the repair of DSBs by NHEJ. Furthermore, our data suggest that SIRT2 inhibition may be a promising rationale-driven therapeutic strategy for increasing the effectiveness of radiation therapy.
Collapse
Affiliation(s)
- PamelaSara E Head
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Priya Kapoor-Vazirani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Ganji P Nagaraju
- School of Medicine, Division of Hematology and Medical Oncology, University of Alabama, Birmingham, AL 35233, USA
| | - Hui Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Ramona Haji-Seyed-Javadi
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Shi-Ya Wang
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX 75390, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA 30912, USA
| | - Elizabeth V Minten
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Boying Song
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Xu Liu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shuyi Li
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David M Smalley
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ya Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - Xingming Deng
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bassel El-Rayes
- School of Medicine, Division of Hematology and Medical Oncology, University of Alabama, Birmingham, AL 35233, USA
| | - Anthony J Davis
- Department of Radiation Oncology, UT Southwestern Medical School, Dallas, TX 75390, USA
| | - David S Yu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine,Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Du G, Yang R, Qiu J, Xia J. Multifaceted Influence of Histone Deacetylases on DNA Damage Repair: Implications for Hepatocellular Carcinoma. J Clin Transl Hepatol 2023; 11:231-243. [PMID: 36406320 PMCID: PMC9647118 DOI: 10.14218/jcth.2022.00079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and a leading cause of cancer-related mortality worldwide, but its pathogenesis remains largely unknown. Nevertheless, genomic instability has been recognized as one of the facilitating characteristics of cancer hallmarks that expedites the acquisition of genetic diversity. Genomic instability is associated with a greater tendency to accumulate DNA damage and tumor-specific DNA repair defects, which gives rise to gene mutations and chromosomal damage and causes oncogenic transformation and tumor progression. Histone deacetylases (HDACs) have been shown to impair a variety of cellular processes of genome stability, including the regulation of DNA damage and repair, reactive oxygen species generation and elimination, and progression to mitosis. In this review, we provide an overview of the role of HDAC in the different aspects of DNA repair and genome instability in HCC as well as the current progress on the development of HDAC-specific inhibitors as new cancer therapies.
Collapse
Affiliation(s)
- Gan Du
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Ruizhe Yang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- The First Clinical College, Chongqing Medical University, Chongqing, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| | - Jie Xia
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
- Correspondence to: Jie Xia, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, No. 1 Yi Xue Yuan Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel/Fax: +86-23-68486780, E-mail: ; Jianguo Qiu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1 You Yi Road, Yuzhong District, Chongqing 400016, China. ORCID: https://orcid.org/0000-0003-4574-9376. Tel: +86-23-68486780, Fax: +86-23-89011016, E-mail:
| |
Collapse
|
6
|
Shuboni-Mulligan DD, Young D, De La Cruz Minyety J, Briceno N, Celiku O, King AL, Munasinghe J, Wang H, Adegbesan KA, Gilbert MR, Smart DK, Armstrong TS. Histological analysis of sleep and circadian brain circuitry in cranial radiation-induced hypersomnolence (C-RIH) mouse model. Sci Rep 2022; 12:11131. [PMID: 35778467 PMCID: PMC9249744 DOI: 10.1038/s41598-022-15074-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
Disrupted sleep, including daytime hypersomnolence, is a core symptom reported by primary brain tumor patients and often manifests after radiotherapy. The biological mechanisms driving the onset of sleep disturbances after cranial radiation remains unclear but may result from treatment-induced injury to neural circuits controlling sleep behavior, both circadian and homeostatic. Here, we develop a mouse model of cranial radiation-induced hypersomnolence which recapitulates the human experience. Additionally, we used the model to explore the impact of radiation on the brain. We demonstrated that the DNA damage response following radiation varies across the brain, with homeostatic sleep and cognitive regions expressing higher levels of γH2AX, a marker of DNA damage, than the circadian suprachiasmatic nucleus (SCN). These findings were supported by in vitro studies comparing radiation effects in SCN and cortical astrocytes. Moreover, in our mouse model, MRI identified structural effects in cognitive and homeostatic sleep regions two-months post-treatment. While the findings are preliminary, they suggest that homeostatic sleep and cognitive circuits are vulnerable to radiation and these findings may be relevant to optimizing treatment plans for patients.
Collapse
Affiliation(s)
| | - Demarrius Young
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Nicole Briceno
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Orieta Celiku
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amanda L King
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, NIH, Bethesda, MD, USA
| | - Herui Wang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kendra A Adegbesan
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - DeeDee K Smart
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Tang FR, Liu L, Wang H, Ho KJN, Sethi G. Spatiotemporal dynamics of γH2AX in the mouse brain after acute irradiation at different postnatal days with special reference to the dentate gyrus of the hippocampus. Aging (Albany NY) 2021; 13:15815-15832. [PMID: 34162763 PMCID: PMC8266370 DOI: 10.18632/aging.203202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022]
Abstract
Gamma H2A histone family member X (γH2AX) is a molecular marker of aging and disease. However, radiosensitivity of the different brain cells, including neurons, glial cells, cells in cerebrovascular system, epithelial cells in pia mater, ependymal cells lining the ventricles of the brain in immature animals at different postnatal days remains unknown. Whether radiation-induced γH2AX foci in immature brain persist in adult animals still needs to be investigated. Hence, using a mouse model, we showed an extensive postnatal age-dependent induction of γH2AX foci in different brain regions at 1 day after whole body gamma irradiation with 5Gy at postnatal day 3 (P3), P10 and P21. P3 mouse brain epithelial cells in pia mater, glial cells in white matter and cells in cerebrovascular system were more radiosensitive at one day after radiation exposure than those from P10 and P21 mice. Persistent DNA damage foci (PDDF) were consistently demonstrated in the brain at 120 days and 15 months after irradiation at P3, P10 and P21, and these mice had shortened lifespan compared to the age-matched control. Our results suggest that early life irradiation-induced PDDF at later stages of animal life may be related to the brain aging and shortened life expectancy of irradiated animals.
Collapse
Affiliation(s)
- Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Lian Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei, China
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Kimberly Jen Ni Ho
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| |
Collapse
|
8
|
Han Z, Chang C, Zhu W, Zhang Y, Zheng J, Kang X, Jin G, Gong Z. Role of SIRT2 in regulating the dexamethasone-activated autophagy pathway in skeletal muscle atrophy. Biochem Cell Biol 2021; 99:562-569. [PMID: 33481678 DOI: 10.1139/bcb-2020-0445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The proteolytic autophagy system is involved in a major regulatory pathway in dexamethasone (Dex)-induced muscle atrophy. Sirtuin 2 (SIRT2) is known to modulate autophagy signaling, exerting effects in skeletal muscle atrophy. We examined the effects of SIRT2 on autophagy in Dex-induced myoatrophy. Tostudy this, mice were randomly distributed among the normal, Dex, and sirtinol groups. C2C12 cells were differentiated into myotubes and transduced with lentivirus carrying Sirt2-green fluorescent protein (GFP) or Sirt2 short hairpin RNA (Sirt2-shRNA)-GFP. To evaluate the mass and function of skeletal muscles, we measured myofiber cross-sectional area, myotube size, gastrocnemius (GA) muscle wet mass:body mass ratio (%), and time to exhaustion. The expression levels of SIRT2, myosin heavy chain, microtubule-associated protein 1 light chain 3 (LC3), and Beclin-1 were measured using Western blotting and quantitative reverse transcription - polymerase chain reaction. Inhibition of SIRT2 markedly attenuated GA muscle mass and endurance capacity. The same phenotype was observed in Sirt2-shRNA-treated myotubes, as evidenced by their decreased size. Conversely, overexpression of SIRT2 alleviated Dex-induced myoatrophy in vitro. Moreover, SIRT2 negatively regulated the expression of LC3b and Beclin-1 in skeletal muscles. These findings suggest that SIRT2 activation protects myotubes against Dex-induced atrophy through inhibition of the autophagy system; this phenomenon may serve as a target for treating glucocorticoid-induced myopathy.
Collapse
Affiliation(s)
- Ziqiu Han
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Cen Chang
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Weiyi Zhu
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yanlei Zhang
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jing Zheng
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xiangping Kang
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Guoqin Jin
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhangbin Gong
- Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Department of Biochemistry, College of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
9
|
Li G, Tian Y, Zhu WG. The Roles of Histone Deacetylases and Their Inhibitors in Cancer Therapy. Front Cell Dev Biol 2020; 8:576946. [PMID: 33117804 PMCID: PMC7552186 DOI: 10.3389/fcell.2020.576946] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022] Open
Abstract
Genetic mutations and abnormal gene regulation are key mechanisms underlying tumorigenesis. Nucleosomes, which consist of DNA wrapped around histone cores, represent the basic units of chromatin. The fifth amino group (Nε) of histone lysine residues is a common site for post-translational modifications (PTMs), and of these, acetylation is the second most common. Histone acetylation is modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), and is involved in the regulation of gene expression. Over the past two decades, numerous studies characterizing HDACs and HDAC inhibitors (HDACi) have provided novel and exciting insights concerning their underlying biological mechanisms and potential anti-cancer treatments. In this review, we detail the diverse structures of HDACs and their underlying biological functions, including transcriptional regulation, metabolism, angiogenesis, DNA damage response, cell cycle, apoptosis, protein degradation, immunity and other several physiological processes. We also highlight potential avenues to use HDACi as novel, precision cancer treatments.
Collapse
Affiliation(s)
- Guo Li
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
| | - Yuan Tian
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Science Center, Shenzhen, China
- Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|