1
|
Li K, Ji M, Sun X, Shan J, Su G. Food Polyphenols in Radiation-Related Diseases: The Roles and Possible Mechanisms. Curr Nutr Rep 2024; 13:884-895. [PMID: 39340730 DOI: 10.1007/s13668-024-00582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 09/30/2024]
Abstract
PURPOSE OF REVIEW As science and technology continue to evolve, the potential harm of radiation to the human body cannot be overlooked. Radiation has the capacity to inflict cellular and body-wide damage. Polyphenols are a group of naturally occurring compounds that are found in an array of plant foods. Scientific studies have demonstrated that these compounds possess noteworthy anti-radiation efficacy. Furthermore, they have been observed to be less toxic at higher doses. In the present review, we discussed the mechanisms of ionizing radiation damage and the progress in the research on the radiation resistance mechanism of polyphenol compounds, to provide guidance for the prevention and treatment of radiation related diseases. RECENT FINDINGS Food polyphenols can reduce the oxidative damage caused by ionizing radiation, clear free radicals, reduce DNA damage, regulate NF-KB, MAPK, JAK/STAT, Wnt and other signaling pathways, improve immune function, and have significant protective effects on radiation-induced inflammation, fibrosis, cancer and other aspects. In addition, it also has significant dual effects on radiation sensitization and radiation protection. Food polyphenols come from a wide range of sources, are abundant in daily food, and have no toxic side effects, demonstrating that food polyphenols have great advantages in preventing and treating radiation-related diseases.
Collapse
Affiliation(s)
- Kaidi Li
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Maxin Ji
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xiujuan Sun
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Junyan Shan
- Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Guangyue Su
- Shenyang Pharmaceutical University, Shenyang, 110016, China.
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative, Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Lu CT, Ko JL, Ou CC, Hsu CT, Hsiao YP, Tang SC. Genistein inhibited endocytosis and fibrogenesis in keloid via CTGF signaling pathways. GENES & NUTRITION 2024; 19:23. [PMID: 39465374 PMCID: PMC11520065 DOI: 10.1186/s12263-024-00758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND This study aimed to evaluate soy isoflavones' effect and potential use-specifically genistein-in treating human keloid fibroblast cells (KFs) and in a keloid tissue culture model. METHODS To investigate the effects of genistein on keloid, a wound-healing assay was performed to detect cell migration. Flow cytometry was used to measure apoptosis. Western blotting and immunofluorescence staining were performed to detect the expression of target proteins. KF tissues were isolated, cultured, and divided into the control, silenced connective tissue growth factor (CTGF) proteins, and shNC (negative control) groups. RESULTS Genistein suppressed cell proliferation and migration, triggering the cell cycle at the G2/M phase and increasing the expression of p53 dose-dependent in keloids. Genistein inhibited the expression of COL1A1, FN, and CTGF mRNA and protein. Knockdown CTGF reduced the migrated ability in KFs. Genistein also abated TGF-β1-induced keloid fibrosis through the endocytosis model. Separated and cultured the keloid patient's tissues decreased the cell migration ability by genistein treatment and was time-dose dependent. CONCLUSIONS This study indicated that genistein-induced p53 undergoes cell cycle arrest via the CTGF pathway-inhibited keloid cultured cells, and genistein suppressed the primary keloid cell migration, suggesting that our research provides a new strategy for developing drugs for treating keloids.
Collapse
Affiliation(s)
- Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Jiunn-Liang Ko
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Oncology and Chest Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chu-Chyn Ou
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chih-Ting Hsu
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Manufacturing Class, Puli Brewery, Taiwan Tobacco & Liquor Corporation, Nantou, 545, Taiwan
| | - Yu-Ping Hsiao
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Dermatology, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Sheau-Chung Tang
- Department of Nursing, National Taichung University of Science and Technology, Taichung, 406, Taiwan.
| |
Collapse
|
3
|
Gao HQ, Bu XM, Jiang W, Wan YZ, Song W. Compound Taxus exerts marked anti-tumor activity and radiosensitization effect on hepatocellular carcinoma cells. Heliyon 2024; 10:e27345. [PMID: 38495161 PMCID: PMC10940940 DOI: 10.1016/j.heliyon.2024.e27345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/19/2024] Open
Abstract
Background Compound Taxus capsule, as an antineoplastic Chinese patent drug, has been increasingly applied as an adjunctive treatment for the management of non-small-cell lung cancer (NSCLC) and some other malignancies, but research about its antitumor activity and radiosensitization effect on hepatocellular carcinoma (HCC) cells is very rare. Purpose To investigate the antitumor activity and radiosensitization effect of Compound Taxus on HCC cells and to preliminarily explore the possible molecule mechanisms involved. Methods Cell viability, cell cycle distribution, apoptosis, DNA damage repair and protein expression levels were detected by CCK-8 assay, flow cytometry, immunofluorescence staining, western blotting analysis and immunohistochemical staining, respectively. The migration and invasion activities and vasculogenic mimicry (VM) formation and angiogenesis were evaluated by tube formation and VM formation assay. Radiation survival curves were obtained from the colony formation assay in human HCC cell lines, Smmc7721 and Bel7402 cells, pretreated with or without Compound Taxus before receiving X-ray irradiation. A Bel7402 tumor-bearing mouse model was established and the radiosensitization effect of Compound Taxus in vivo was evaluated by analyzing tumor volume and tumor weight in different groups receiving different treatments. Results Compound Taxus decreased viability, induced G2/M arrest, promoted apoptosis, suppressed migration and invasion, and inhibited VM formation and angiogenesis in Smmc7721 and Bel7402 cells. Furthermore, Compound Taxus inhibited irradiation-induced DNA damage repair, enhanced the radiosensitivity of Smmc7721 and Bel7402 cells and improved the anti-tumor therapeutic efficacy of irradiation in Bel7402 tumor-bearing mice. Radiotherapy in combination with Compound Taxus showed the best tumor inhibition compared to that of Compound Taxus alone or irradiation alone. In addition, Compound Taxus significantly down-regulated NF-κB p65, p-NF-κB p65 and Bcl-2, and up-regulated Bax in vitro and in vivo, yet NF-κB p65 overexpression reversed the proapoptotic effect of Taxus on HCC cells, indicating that the NF-κB signaling pathway might be an important signal mediator in the Compound-Taxus-modulated biological responses. Conclusion Our findings suggest that Compound Taxus shows marked antitumor activity and significant radiosensitization effect on HCC cells, making it possible for Compound Taxus to become a promising auxiliary modality for HCC management and a potential radiosensitizer of HCC in the future.
Collapse
Affiliation(s)
- Hui-quan Gao
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiang-mao Bu
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao Women and Children's Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wei Jiang
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yan-zhen Wan
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao Women and Children's Hospital Affiliated to Qingdao University, Qingdao, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
4
|
Joshi H, Gupta DS, Abjani NK, Kaur G, Mohan CD, Kaur J, Aggarwal D, Rani I, Ramniwas S, Abdulabbas HS, Gupta M, Tuli HS. Genistein: a promising modulator of apoptosis and survival signaling in cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2893-2910. [PMID: 37300702 DOI: 10.1007/s00210-023-02550-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Genistein, a commonly occurring isoflavone, has recently gained popularity owing to its ever-expanding spectrum of pharmacological benefits. In addition to health benefits such as improved bone health and reduced postmenopausal complications owing to its phytoestrogen properties, it has been widely evaluated for its anti-cancer potential. Several studies have established the potential for its usage in the management of breast, lung, and prostate cancers, and its usage has significantly evolved from early applications in traditional systems of medicine. This review offers an insight into its current status of usage, the chemistry, and pharmacokinetics of the molecule, an exploration of its apoptotic mechanisms in cancer management, and opportunities for synergism to improve therapeutic outcomes. In addition to this, the authors have presented an overview of recent clinical trials, to offer an understanding of contemporary studies and explore prospects for a greater number of focused trials, moving forward. Advancements in the application of nanotechnology as a strategy to improve safety and efficacy have also been highlighted, with a brief discussion of results from safety and toxicology studies.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, 400056, India
| | | | - Jagjit Kaur
- Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar College of Medical Sciences and Research (MMCMSR), Sadopur, 134007, Ambala, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala, 56001, Iraq
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
5
|
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers (Basel) 2023; 15:3585. [PMID: 37509245 PMCID: PMC10377328 DOI: 10.3390/cancers15143585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Radiotherapy is an important cancer treatment. However, in addition to killing tumor cells, radiotherapy causes damage to the surrounding cells and is toxic to normal tissues. Therefore, an effective radioprotective agent that prevents the deleterious effects of ionizing radiation is required. Numerous synthetic substances have been shown to have clear radioprotective effects. However, most of these have not been translated for use in clinical applications due to their high toxicity and side effects. Many medicinal plants have been shown to exhibit various biological activities, including antioxidant, anti-inflammatory, and anticancer activities. In recent years, new agents obtained from natural products have been investigated by radioprotection researchers, due to their abundance of sources, high efficiency, and low toxicity. In this review, we summarize the mechanisms underlying the radioprotective effects of natural products, including ROS scavenging, promotion of DNA damage repair, anti-inflammatory effects, and the inhibition of cell death signaling pathways. In addition, we systematically review natural products with radioprotective properties, including polyphenols, polysaccharides, alkaloids, and saponins. Specifically, we discuss the polyphenols apigenin, genistein, epigallocatechin gallate, quercetin, resveratrol, and curcumin; the polysaccharides astragalus, schisandra, and Hohenbuehelia serotina; the saponins ginsenosides and acanthopanax senticosus; and the alkaloids matrine, ligustrazine, and β-carboline. However, further optimization through structural modification, improved extraction and purification methods, and clinical trials are needed before clinical translation. With a deeper understanding of the radioprotective mechanisms involved and the development of high-throughput screening methods, natural products could become promising novel radioprotective agents.
Collapse
Affiliation(s)
- Yi Zhang
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Huang
- College of Management, Sichuan Agricultural University, Chengdu 611130, China
| | - Zheng Li
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hanyou Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou 510060, China
| | - Bingwen Zou
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Xu
- Division of Thoracic Oncology, Cancer Center, Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Lyubitelev A, Studitsky V. Inhibition of Cancer Development by Natural Plant Polyphenols: Molecular Mechanisms. Int J Mol Sci 2023; 24:10663. [PMID: 37445850 PMCID: PMC10341686 DOI: 10.3390/ijms241310663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Malignant tumors remain one of the main sources of morbidity and mortality around the world. A chemotherapeutic approach to cancer treatment poses a multitude of challenges, primarily due to the low selectivity and genotoxicity of the majority of chemotherapeutic drugs currently used in the clinical practice, often leading to treatment-induced tumors formation. Highly selective antitumor drugs can largely resolve this issue, but their high selectivity leads to significant drawbacks due to the intrinsic tumor heterogeneity. In contrast, plant polyphenols can simultaneously affect many processes that are involved in the acquiring and maintaining of hallmark properties of malignant cells, and their toxic dose is typically much higher than the therapeutic one. In the present work we describe the mechanisms of the action of polyphenols on cancer cells, including their effects on genetic and epigenetic instability, tumor-promoting inflammation, and altered microbiota.
Collapse
Affiliation(s)
| | - Vasily Studitsky
- Biology Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
7
|
Chmil V, Filipová A, Tichý A. Looking for the phoenix: the current research on radiation countermeasures. Int J Radiat Biol 2023; 99:1148-1166. [PMID: 36745819 DOI: 10.1080/09553002.2023.2173822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Ionizing radiation (IR) is widely applied in radiotherapy for the treatment of over 50% of cancer patients. IR is also intensively used in medical diagnostics on a daily basis in imaging. Moreover, recent geopolitical events have re-ignited the real threat of the use of nuclear weapons. Medical radiation countermeasures represent one of the effective protection strategies against the effects of IR. The aim of this review was to summarize the most commonly used strategies and procedures in the development of radiation countermeasures and to evaluate the current state of their research, with a focus on those in the clinical trial phase. METHODS Clinical trials for this review were selected in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The search was performed in the clinicaltrials.gov database as of May 2022. RESULTS Our search returned 263 studies, which were screened and of which 25 were included in the review. 10 of these studies had been completed, 3 with promising results: KMRC011 increased G-CSF, IL-6, and neutrophil counts suggesting potential for the treatment of hematopoietic acute radiation syndrome (H-ARS); GC4419 reduced the number of patients with severe oral mucositis and its duration; the combination of enoxaparin, pentoxifylline, and ursodeoxycholic acid reduced the incidence of focal radiation-induced liver injury. CONCLUSION The agents discovered so far show significant side effects or low efficacy, and hence most of the tested agents terminate in the early stages of development. In addition, the low profitability of this type of drug demotivates the private sector to invest in such research. To overcome this problem, there is a need to involve more public resources in funding. Among the technological opportunities, a deeper use of in silico approaches seems to be prospective.
Collapse
Affiliation(s)
- Vojtěch Chmil
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Hussein AM, Attaai AH, Zahran AM. Genistein anticancer efficacy during induced oral squamous cell carcinoma: an experimental study. J Egypt Natl Canc Inst 2022; 34:37. [PMID: 36058937 DOI: 10.1186/s43046-022-00140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND About 7 million people die from various types of cancer every year representing nearly 12.5% of deaths worldwide. This fact raises the demand to develop new, effective anticancer, onco-suppressive, and chemoprotective agents for the future fighting of cancers. Genistein exhibits pleiotropic functions in cancer, metabolism, and inflammation. It functions as an antineoplastic agent through its effect on the cell cycle, apoptotic processes, angiogenesis, invasion, and metastasis. AIM OF THE STUDY The current study aimed to study the genistein onco-suppressive effects during 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral carcinogenesis in hamsters' buccal pouch utilizing flow cytometry analysis (FMA), as a fast-diagnosing tool, in addition to the histopathology. MATERIAL AND METHODS The buccal mucosa of adult male Syrian hamsters was painted with paraffin oil only (group 1), DMBA mixed in mineral oil (group 2), or orally administrated genistein along with painting DMBA (group 2B). The buccal mucosa was utilized for flow cytometric analysis and histopathological examination. RESULTS Grossly, DMBA-induced carcinogenesis started at the 9th week. Progressive signs appeared in the following weeks reaching to large ulcerative oral masses and exophytic nodules at the 21st week. Histologically, invasive well-differentiated oral squamous cell carcinoma (OSCC) appeared in the underlying tissues from the 12th week, showing malignant criteria. Genistein had delayed clinicopathological change, which started 6 weeks later, than the DMBA-painted hamsters, as mild epithelial dysplastic changes. This became moderate during the last 6 weeks, without dysplastic changes. Flow cytometry revealed that DMBA led to considerable variation in DNA proliferation activity, aneuploid DNA pattern, in 47.22% of hamsters and significantly raised the S-phase fragment (SPF) values, which drastically reduced after genistein treatment. CONCLUSION Taken together, genistein could be employed as an onco-suppressive agent for carcinogenesis. Moreover, FMA could be used as an aiding fast tool for diagnosis of cancer.
Collapse
Affiliation(s)
- Ahmed M Hussein
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Assiut University, Assiut, Egypt
| | - Abdelraheim H Attaai
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Asmaa M Zahran
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Nisar S, Masoodi T, Prabhu KS, Kuttikrishnan S, Zarif L, Khatoon S, Ali S, Uddin S, Akil AAS, Singh M, Macha MA, Bhat AA. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed Pharmacother 2022; 154:113610. [PMID: 36030591 DOI: 10.1016/j.biopha.2022.113610] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022] Open
Abstract
Cancer is a devastating disease and is the second leading cause of death worldwide. Surgery, chemotherapy (CT), and/or radiation therapy (RT) are the treatment of choice for most advanced tumors. Unfortunately, treatment failure due to intrinsic and acquired resistance to the current CT and RT is a significant challenge associated with poor patient prognosis. There is an urgent need to develop and identify agents that can sensitize tumor cells to chemo-radiation therapy (CRT) with minimal cytotoxicity to the healthy tissues. While many recent studies have identified the underlying molecular mechanisms and therapeutic targets for CRT failure, using small molecule inhibitors to chemo/radio sensitize tumors is associated with high toxicity and increased morbidity. Natural products have long been used as chemopreventive agents in many cancers. Combining many of these compounds with the standard chemotherapeutic agents or with RT has shown synergistic effects on cancer cell death and overall improvement in patient survival. Based on the available data, there is strong evidence that natural products have a robust therapeutic potential along with CRT and their well-known chemopreventive effects in many solid tumors. This review article reports updated literature on different natural products used as CT or RT sensitizers in many solid tumors. This is the first review discussing CT and RT sensitizers together in cancer.
Collapse
Affiliation(s)
- Sabah Nisar
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Cancer immunology and genetics, Sidra Medicine, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Lubna Zarif
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar
| | - Summaiya Khatoon
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Shahid Ali
- International Potato Center (CIP), Shillong, Meghalaya, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Ammira Al-Shabeeb Akil
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Department of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, AIIMS, New Delhi, India.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu & Kashmir, India.
| | - Ajaz A Bhat
- Depertment of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
10
|
Gong J, Zhao S, Heng N, Wang Y, Hu Z, Wang H, Zhu H. The Dynamic Transcription Profiles of Proliferating Bovine Ovarian Granulosa When Exposed to Increased Levels of β-Hydroxybutyric Acid. Front Vet Sci 2022; 9:915956. [PMID: 35990259 PMCID: PMC9389329 DOI: 10.3389/fvets.2022.915956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
Ketosis is common in high-yield dairy cows. It is a condition that is characterized by the accumulation of serum β-hydroxybutyric acid (BHBA). Both subclinical ketosis and clinical ketosis can compromise the reproductive performance and cause long-lasting negative effects on reproductive efficiency by affecting the proliferation of follicular and granulosa cells. However, the regulatory mechanisms involved in the development of follicular cells and granulosa cells in cows experiencing subclinical ketosis and clinical ketosis remain largely unknown. To investigate the effect of a ketosis-triggered increase in BHBA on bovine follicular granulosa cell development, we detected a significant reduction in the proliferation of granulosa cells (P < 0.05) in the BHBA-1.2 mM and BHBA-2.4 mM groups and a significant increase in the number of granulosa cells in the G1 phase of the cell cycle (P < 0.05). RNA-seq and trend analysis were used to identify differentially expressed genes by comparing three clusters: low-concentration response to 1.2 mM BHBA, high-concentration response to 2.4 mM BHBA, and the similar trend (up or down) response following BHBA concentration increased. GO and KEGG enrichment analyses were performed separately for each cluster. Analysis showed that two novel down-regulated genes (G0S2 and S100A6), which are associated with cell proliferation and cycle progression, were enriched in the low-concentration response to 1.2 mM BHBA. Another differentially expressed gene (PARP), which plays a role in the apoptotic pathway, was enriched in the high-concentration response to 2.4 mM BHBA. We also found that CYP27B1 and CYP17A1, which are associated with Ca2+ homeostasis and estrogen synthesis, were enriched in a similar trend response. In conclusion, we describe the dynamic transcription profiles of granulosa cells under different levels of β-hydroxybutyric stress and report key regulators that may underlie the detrimental effects on the development of follicles and granulosa cells, thus representing potential therapeutic targets to improve fertility in dairy cows with subclinical ketosis or clinical ketosis.
Collapse
|
11
|
Dietary Phytochemicals Targeting Nrf2 to Enhance the Radiosensitivity of Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7848811. [PMID: 35368867 PMCID: PMC8967572 DOI: 10.1155/2022/7848811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Nowadays, cancer has become the second leading cause of death worldwide. Radiotherapy (RT) is the mainstay in management of carcinoma; however, overcoming radioresistance remains a great challenge to successfully treat cancer. Nrf2 is a key transcription factor that is responsible for maintaining cellular redox homeostasis. Activation of Nrf2 signaling pathway could upregulate multifarious antioxidant and detoxifying enzymes, further scavenging excessive reactive oxygen species (ROS). Despite its cytoprotective roles in normal cells, it could also alleviate oxidative stress and DNA damage caused by RT in cancer cells, thus promoting cancer cell survival. Accumulating evidence indicates that overactivation of Nrf2 is associated with radioresistance; therefore, targeting Nrf2 is a promising strategy to enhance radiosensitivity. Dietary phytochemicals coming from natural products are characterized by low cost, low toxicity, and general availability. Numerous phytochemicals are reported to regulate Nrf2 and intensify the killing capability of RT through diverse mechanisms, including promoting oxidative stress, proapoptosis, and proautophagy as well as inhibiting Nrf2-mediated cytoprotective genes expression. This review summarizes recent advances in radiosensitizing effects of dietary phytochemicals by targeting Nrf2 and discusses the underlying mechanisms, including N6-methyladenosine (m6A) modification of Nrf2 mediated by phytochemicals in cancer.
Collapse
|
12
|
Faramarzi S, Piccolella S, Manti L, Pacifico S. Could Polyphenols Really Be a Good Radioprotective Strategy? Molecules 2021; 26:4969. [PMID: 34443561 PMCID: PMC8398122 DOI: 10.3390/molecules26164969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Currently, radiotherapy is one of the most effective strategies to treat cancer. However, deleterious toxicity against normal cells indicate for the need to selectively protect them. Reactive oxygen and nitrogen species reinforce ionizing radiation cytotoxicity, and compounds able to scavenge these species or enhance antioxidant enzymes (e.g., superoxide dismutase, catalase, and glutathione peroxidase) should be properly investigated. Antioxidant plant-derived compounds, such as phenols and polyphenols, could represent a valuable alternative to synthetic compounds to be used as radio-protective agents. In fact, their dose-dependent antioxidant/pro-oxidant efficacy could provide a high degree of protection to normal tissues, with little or no protection to tumor cells. The present review provides an update of the current scientific knowledge of polyphenols in pure forms or in plant extracts with good evidence concerning their possible radiomodulating action. Indeed, with few exceptions, to date, the fragmentary data available mostly derive from in vitro studies, which do not find comfort in preclinical and/or clinical studies. On the contrary, when preclinical studies are reported, especially regarding the bioactivity of a plant extract, its chemical composition is not taken into account, avoiding any standardization and compromising data reproducibility.
Collapse
Affiliation(s)
- Shadab Faramarzi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
- Department of Plant Production and Genetics, Razi University, Kermanshah 67149-67346, Iran
| | - Simona Piccolella
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| | - Lorenzo Manti
- Department of Physics E. Pancini, University of Naples “Federico II”, and Istituto Nazionale di Fisica Nucleare, (INFN), Naples Section, Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy;
| | - Severina Pacifico
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Via Vivaldi 43, 81100 Caserta, Italy; (S.F.); (S.P.)
| |
Collapse
|
13
|
Javed Z, Khan K, Herrera-Bravo J, Naeem S, Iqbal MJ, Sadia H, Qadri QR, Raza S, Irshad A, Akbar A, Reiner Ž, Al-Harrasi A, Al-Rawahi A, Satmbekova D, Butnariu M, Bagiu IC, Bagiu RV, Sharifi-Rad J. Genistein as a regulator of signaling pathways and microRNAs in different types of cancers. Cancer Cell Int 2021; 21:388. [PMID: 34289845 PMCID: PMC8296701 DOI: 10.1186/s12935-021-02091-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Cancers are complex diseases orchestrated by a plethora of extrinsic and intrinsic factors. Research spanning over several decades has provided better understanding of complex molecular interactions responsible for the multifaceted nature of cancer. Recent advances in the field of next generation sequencing and functional genomics have brought us closer towards unravelling the complexities of tumor microenvironment (tumor heterogeneity) and deregulated signaling cascades responsible for proliferation and survival of tumor cells. Phytochemicals have begun to emerge as potent beneficial substances aimed to target deregulated signaling pathways. Isoflavonoid genistein is an essential phytochemical involved in regulation of key biological processes including those in different types of cancer. Emerging preclinical evidence have shown its anti-cancer, anti-inflammatory and anti-oxidant properties. Testing of this substance is in various phases of clinical trials. Comprehensive preclinical and clinical trials data is providing insight on genistein as a modulator of various signaling pathways both at transcription and translation levels. In this review we have explained the mechanistic regulation of several key cellular pathways by genistein. We have also addressed in detail various microRNAs regulated by genistein in different types of cancer. Moreover, application of nano-formulations to increase the efficiency of genistein is also discussed. Understanding the pleiotropic potential of genistein to regulate key cellular pathways and development of efficient drug delivery system will bring us a step towards designing better chemotherapeutics.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile.,Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, 4811230, Temuco, Chile
| | - Sajid Naeem
- School of Life Sciences, Lanzhuo University, Lanzhou, 730000, People's Republic of China
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan.
| | - Haleema Sadia
- Department of Biotechnology, BUITEMS, Quetta, Pakistan
| | - Qamar Raza Qadri
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Punjab, Pakistan
| | - Shahid Raza
- Office of Research Innovation and Commercialization (ORIC), Lahore Garrison University, Sector-C, DHA Phase-VI, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Ali Akbar
- Department of Microbiology, University of Balochistan, Quetta, Pakistan
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Centre Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616, Oman
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Centre, University of Nizwa, Birkat Almouz, Nizwa, 616, Oman
| | - Dinara Satmbekova
- High School of Medicine, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine "King Michael I of Romania" From Timisoara, Timisoara, Romania.
| | - Iulia Cristina Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania.,Multidisciplinary Research Center on Antimicrobial Resistance, Timisoara, Romania
| | - Radu Vasile Bagiu
- Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timisoara, Romania.,Preventive Medicine Study Center, Timisoara, Romania
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Wang B, Yan N, Wu D, Dou Y, Liu Z, Hu X, Chen C. Combination inhibition of triple-negative breast cancer cell growth with CD36 siRNA-loaded DNA nanoprism and genistein. NANOTECHNOLOGY 2021; 32:395101. [PMID: 34153956 DOI: 10.1088/1361-6528/ac0d1e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Currently, a single treatment is less effective for triple-negative breast cancer (TNBC) therapy. Additionally, there are some limitations to the use of siRNA alone as a new method to treat breast cancer, such as its effective delivery into cells. In this study, we proposed a strategy that combines a siRNA-loaded DNA nanostructure and genistein for TNBC therapy. Both CD36 siRNA-loaded self-assembled DNA nanoprisms (NP-siCD36) and genistein knocked down CD36, resulting in enhanced anticancer efficacy through phosphorylation of the p38 MAPK pathway.In vitrostudies showed that combination therapy could effectively enhance cell apoptosis and reduce cell proliferation, achieving an antitumor effect in TNBC cells. The current study suggests that NP-siCD36 combined with genistein might be a promising strategy for breast cancer and treatment.
Collapse
Affiliation(s)
- Beinuo Wang
- Queen Mary College, Medical School of Nanchang University, Nanchang 330006, People's Republic of China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Ni Yan
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Di Wu
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Yin Dou
- Department of Pharmaceutics, College of Pharmacy, Third Military Medical University, Chongqing 400038, People's Republic of China
| | - Zhenyu Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Xiaojuan Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, People's Republic of China
| | - Cancan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang 330006, People's Republic of China
- Institute of Respiratory Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| |
Collapse
|
15
|
Xu G, Bu S, Wang X, Ge H. Silencing the Expression of Cyclin G1 Enhances the Radiosensitivity of Hepatocellular Carcinoma In Vitro and In Vivo by Inducing Apoptosis. Radiat Res 2021; 195:378-384. [PMID: 33543294 DOI: 10.1667/rade-20-00180.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/30/2020] [Indexed: 11/03/2022]
Abstract
Radiotherapy plays an important role in the treatment of hepatocellular carcinoma (HCC). Cyclin G1 is a novel member of the cyclin family, and it is abnormally expressed in HCC. In this study we investigated the role of cyclin G1 in the radiotherapy of HCC cells. The expression of cyclin G1 was silenced by transfection of cyclin G1-siRNA into HepG2 cells and Huh7 cells, and the expression of cyclin G1 mRNA and protein was measured by qRT-PCR and Western blot analysis. The proliferation was analyzed using MTT assay, and the radiosensitivity of HCC cells was detected using colony formation assay and a xenograft tumor model. The expression of apoptosis-related proteins (Bcl-2 and Bax) was detected by Western blot analysis, and caspase-3 was detected using fluorimetry. The expression of cyclin G1 mRNA and protein in HepG2/Huh7-cyclin G1-siRNA cells was found to be significantly decreased compared to that in HepG2/Huh7 cells. Silencing the expression of cyclin G1 inhibited the proliferation of HCC cells and enhanced radiosensitivity in HCC cells in vitro and in vivo. Knockdown of cyclin G1 expression significantly decreased Bcl-2 expression, and increased Bax expression and caspase-3 activity in HCC cells. Silencing of cyclin G1 expression enhances the radiosensitivity of HCC cells in vitro and in vivo. The mechanism for this may be related to the regulation of apoptosis-related proteins.
Collapse
Affiliation(s)
- Gang Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Shanshan Bu
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Xiushen Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, China
| | - Hong Ge
- Department of Radiation Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan Province 450008, China
| |
Collapse
|