1
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
4
|
Bendinger AL, Welzel T, Huang L, Babushkina I, Peschke P, Debus J, Glowa C, Karger CP, Saager M. DCE-MRI detected vascular permeability changes in the rat spinal cord do not explain shorter latency times for paresis after carbon ions relative to photons. Radiother Oncol 2021; 165:126-134. [PMID: 34634380 DOI: 10.1016/j.radonc.2021.09.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE Radiation-induced myelopathy, an irreversible complication occurring after a long symptom-free latency time, is preceded by a fixed sequence of magnetic resonance- (MR-) visible morphological alterations. Vascular degradation is assumed the main reason for radiation-induced myelopathy. We used dynamic contrast-enhanced (DCE-) MRI to identify different vascular changes after photon and carbon ion irradiation, which precede or coincide with morphological changes. MATERIALS AND METHODS The cervical spinal cord of rats was irradiated with iso-effective photon or carbon (12C-)ion doses. Afterwards, animals underwent frequent DCE-MR imaging until they developed symptomatic radiation-induced myelopathy (paresis II). Measurements were performed at certain time points: 1 month, 2 months, 3 months, 4 months, and 6 months after irradiation, and when animals showed morphological (such as edema/syrinx/contrast agent (CA) accumulation) or neurological alterations (such as, paresis I, and paresis II). DCE-MRI data was analyzed using the extended Toft's model. RESULTS Fit quality improved with gradual disintegration of the blood spinal cord barrier (BSCB) towards paresis II. Vascular permeability increased three months after photon irradiation, and rapidly escalated after animals showed MR-visible morphological changes until paresis II. After 12C-ion irradiation, vascular permeability increased when animals showed morphological alterations and increased further until animals had paresis II. The volume transfer constant and the plasma volume showed no significant changes. CONCLUSION Only after photon irradiation, DCE-MRI provides a temporal advantage in detecting early physiological signs in radiation-induced myelopathy compared to morphological MRI. As a generally lower level of vascular permeability after 12C-ions led to an earlier development of paresis as compared to photons, we conclude that other mechanisms dominate the development of paresis II.
Collapse
Affiliation(s)
- Alina L Bendinger
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
| | - Thomas Welzel
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Dept. of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany
| | - Lifi Huang
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Inna Babushkina
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Peschke
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Dept. of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Dept. of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany; Clinical Cooperation Unit Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christin Glowa
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany; Dept. of Radiation Oncology and Radiotherapy, University Hospital of Heidelberg, Heidelberg, Germany
| | - Christian P Karger
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - Maria Saager
- Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| |
Collapse
|
5
|
Boscolo D, Kostyleva D, Safari MJ, Anagnostatou V, Äystö J, Bagchi S, Binder T, Dedes G, Dendooven P, Dickel T, Drozd V, Franczack B, Geissel H, Gianoli C, Graeff C, Grahn T, Greiner F, Haettner E, Haghani R, Harakeh MN, Horst F, Hornung C, Hucka JP, Kalantar-Nayestanaki N, Kazantseva E, Kindler B, Knöbel R, Kuzminchuk-Feuerstein N, Lommel B, Mukha I, Nociforo C, Ishikawa S, Lovatti G, Nitta M, Ozoemelam I, Pietri S, Plaß WR, Prochazka A, Purushothaman S, Reidel CA, Roesch H, Schirru F, Schuy C, Sokol O, Steinsberger T, Tanaka YK, Tanihata I, Thirolf P, Tinganelli W, Voss B, Weber U, Weick H, Winfield JS, Winkler M, Zhao J, Scheidenberger C, Parodi K, Durante M. Radioactive Beams for Image-Guided Particle Therapy: The BARB Experiment at GSI. Front Oncol 2021; 11:737050. [PMID: 34504803 PMCID: PMC8422860 DOI: 10.3389/fonc.2021.737050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
Several techniques are under development for image-guidance in particle therapy. Positron (β+) emission tomography (PET) is in use since many years, because accelerated ions generate positron-emitting isotopes by nuclear fragmentation in the human body. In heavy ion therapy, a major part of the PET signals is produced by β+-emitters generated via projectile fragmentation. A much higher intensity for the PET signal can be obtained using β+-radioactive beams directly for treatment. This idea has always been hampered by the low intensity of the secondary beams, produced by fragmentation of the primary, stable beams. With the intensity upgrade of the SIS-18 synchrotron and the isotopic separation with the fragment separator FRS in the FAIR-phase-0 in Darmstadt, it is now possible to reach radioactive ion beams with sufficient intensity to treat a tumor in small animals. This was the motivation of the BARB (Biomedical Applications of Radioactive ion Beams) experiment that is ongoing at GSI in Darmstadt. This paper will present the plans and instruments developed by the BARB collaboration for testing the use of radioactive beams in cancer therapy.
Collapse
Affiliation(s)
- Daria Boscolo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Daria Kostyleva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Juha Äystö
- University of Jyväskylä, Jyväskylä, Finland.,Helsinki Institute of Physics, Helsinki, Finland
| | | | - Tim Binder
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Timo Dickel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Vasyl Drozd
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,University of Groningen, Groningen, Netherlands
| | | | - Hans Geissel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Christian Graeff
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Tuomas Grahn
- University of Jyväskylä, Jyväskylä, Finland.,Helsinki Institute of Physics, Helsinki, Finland
| | - Florian Greiner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Emma Haettner
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christine Hornung
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - Jan-Paul Hucka
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Erika Kazantseva
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Birgit Kindler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ronja Knöbel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | - Bettina Lommel
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Ivan Mukha
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Chiara Nociforo
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | | | | | | | | | - Stephane Pietri
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Wolfgang R Plaß
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | | | | | - Heidi Roesch
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | - Fabio Schirru
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Olga Sokol
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Timo Steinsberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | | - Isao Tanihata
- Research Center for Nuclear Physics, Osaka University, Osaka, Japan.,Peking University, Beijing, China.,Institute of Modern Physics, Lanzhou, China
| | - Peter Thirolf
- Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Bernd Voss
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Helmut Weick
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - John S Winfield
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Martin Winkler
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Jianwei Zhao
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Peking University, Beijing, China
| | - Christoph Scheidenberger
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany.,Technische Universität Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
6
|
Bendinger AL, Peschke P, Peter J, Debus J, Karger CP, Glowa C. High Doses of Photons and Carbon Ions Comparably Increase Vascular Permeability in R3327-HI Prostate Tumors: A Dynamic Contrast-Enhanced MRI Study. Radiat Res 2020; 194:465-475. [PMID: 33045073 DOI: 10.1667/rade-20-00112.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/04/2020] [Indexed: 11/03/2022]
Abstract
Carbon- (12C-) ion radiotherapy exhibits enhanced biological effectiveness compared to photon radiotherapy, however, the contribution of its interaction with the vasculature remains debatable. The effect of high-dose 12C-ion and photon irradiation on vascular permeability in moderately differentiated rat prostate tumors was compared using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Syngeneic R3327-HI rat prostate tumors were irradiated with a single dose of either 18 or 37 Gy 12C ions, or 37 or 75 Gy 6-MV photons (sub-curative and curative dose levels, respectively). DCE-MRI was performed one day prior to and 3, 7, 14 and 21 days postirradiation. Voxel-based tumor concentration-time curves were clustered based on their curve shape and treatment response was assessed as the longitudinal changes in the relative abundance per cluster. Radiation-induced vascular damage and increased permeability occurred at day 7 postirradiation for all treatment groups except for the 75 Gy photon-irradiated group, where the onset of vascular damage was delayed until day 14. No differences between irradiation modalities were found. Therefore, early vascular damage cannot explain the higher effectiveness of 12C ions relative to photons in terms of local tumor control for this moderately differentiated prostate tumor and the applied single high doses.
Collapse
Affiliation(s)
- Alina L Bendinger
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Peter Peschke
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörg Peter
- Department of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Debus
- Clinical Cooperation Unit, Radiation Therapy, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| | - Christian P Karger
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christin Glowa
- Heidelberg Institute for Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|