1
|
Azimzadeh O, Merl-Pham J, Subramanian V, Oleksenko K, Krumm F, Mancuso M, Pasquali E, Tanaka IB, Tanaka S, Atkinson MJ, Tapio S, Moertl S. Late Effects of Chronic Low Dose Rate Total Body Irradiation on the Heart Proteome of ApoE -/- Mice Resemble Premature Cardiac Ageing. Cancers (Basel) 2023; 15:3417. [PMID: 37444528 DOI: 10.3390/cancers15133417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Recent epidemiologic studies support an association between chronic low-dose radiation exposure and the development of cardiovascular disease (CVD). The molecular mechanisms underlying the adverse effect of chronic low dose exposure are not fully understood. To address this issue, we have investigated changes in the heart proteome of ApoE deficient (ApoE-/-) C57Bl/6 female mice chronically irradiated for 300 days at a very low dose rate (1 mGy/day) or at a low dose rate (20 mGy/day), resulting in cumulative whole-body doses of 0.3 Gy or 6.0 Gy, respectively. The heart proteomes were compared to those of age-matched sham-irradiated ApoE-/- mice using label-free quantitative proteomics. Radiation-induced proteome changes were further validated using immunoblotting, enzyme activity assays, immunohistochemistry or targeted transcriptomics. The analyses showed persistent alterations in the cardiac proteome at both dose rates; however, the effect was more pronounced following higher dose rates. The altered proteins were involved in cardiac energy metabolism, ECM remodelling, oxidative stress, and ageing signalling pathways. The changes in PPARα, SIRT, AMPK, and mTOR signalling pathways were found at both dose rates and in a dose-dependent manner, whereas more changes in glycolysis and ECM remodelling were detected at the lower dose rate. These data provide strong evidence for the possible risk of cardiac injury following chronic low dose irradiation and show that several affected pathways following chronic irradiation overlap with those of ageing-associated heart pathology.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Section of Radiation Biology, Federal Office of Radiation Protection (BfS), 85764 Nauenberg, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Munich, Germany
| | - Vikram Subramanian
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kateryna Oleksenko
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Franziska Krumm
- Section of Radiation Biology, Federal Office of Radiation Protection (BfS), 85764 Nauenberg, Germany
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00196 Rome, Italy
| | - Emanuela Pasquali
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA), 00196 Rome, Italy
| | - Ignacia B Tanaka
- Institute for Environmental Sciences (IES), Rokkasho, Aomori 039-3212, Japan
| | - Satoshi Tanaka
- Institute for Environmental Sciences (IES), Rokkasho, Aomori 039-3212, Japan
| | - Michael J Atkinson
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
- Radiation Oncology, Klinikum rechts der Isar, Technical University, 80333 Munich, Germany
| | - Soile Tapio
- Institute of Radiation Biology, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - Simone Moertl
- Section of Radiation Biology, Federal Office of Radiation Protection (BfS), 85764 Nauenberg, Germany
| |
Collapse
|
2
|
Zhang SQ, Chen HB, Liu J, Dai WJ, Lu QQ, Li JC. Research status and prospects of acupuncture for prevention and treatment of chemo- and radiotherapy-induced salivary gland dysfunction in head and neck cancer. Anat Rec (Hoboken) 2021; 304:2381-2396. [PMID: 34626452 DOI: 10.1002/ar.24784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023]
Abstract
Salivary gland dysfunction (SGD) induced by chemo- and radiotherapy for head and neck cancer (HNC) has always been a difficult problem in modern medicine. The quality of life of a large number of HNC patients is severely impaired by SGD such as xerostomia and dysphagia. In recent years, several studies have found that acupuncture can improve patients' salivary secretion, but it has not yet been approved as an alternative therapy for SGD. For this reason, we collected the clinical study reports on acupuncture in the treatment of SGD induced by chemo- and radiotherapy in HNC patients in the past 20 years, and analyzed and discussed the advantages and disadvantages of these studies with respect to tumor types, group setting, intervention modality, acupoints selection, outcome evaluation, and safety. We believed that acupuncture is beneficial for SGD, but the existing objective evidence is insufficient to support its effectiveness. Therefore, improving the Standards for Reporting Interventions in Clinical Trials of Acupuncture, selecting the optimal combination of acupoints through scientific and rigorous study design, and exploring the potential mechanism of acupuncture in the treatment of diseases combined with the meridian theory may be effective ways to promote the acceptance of acupuncture as an alternative therapy for SGD in future. The significance of this review is to provide a reference for researchers to carry out high-quality clinical trials of acupuncture in the treatment of SGD in future from the perspective of the combination of modern medicine and traditional Chinese medicine.
Collapse
Affiliation(s)
- Shan-Qiang Zhang
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Jun Liu
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Wen-Jie Dai
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Qi-Qi Lu
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
| | - Ji-Cheng Li
- Medical Research Center, Yue Bei People's Hospital, Shantou University Medical College, Shaoguan, China
- Department of Anatomy and Embryology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Farella I, Panza R, Capozza M, Laforgia N. Lecithinized superoxide dismutase in the past and in the present: Any role in the actual pandemia of COVID-19? Biomed Pharmacother 2021; 141:111922. [PMID: 34323703 PMCID: PMC8277551 DOI: 10.1016/j.biopha.2021.111922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 01/08/2023] Open
Abstract
The Coronavirus disease 19 (Covid-19) pandemic is devastating the public health: it is urgent to find a viable therapy to reduce the multiorgan damage of the disease. A validated therapeutic protocol is still missing. The most severe forms of the disease are related to an exaggerated inflammatory response. The pivotal role of reactive oxygen species (ROS) in the amplification of inflammation makes the antioxidants a potential therapy, but clinical trials are needed. The lecitinized superoxide dismutase (PC-SOD) could represent a possibility because of bioaviability, safety, and its modulatory effect on the innate immune response in reducing the harmful consequences of oxidative stress. In this review we summarize the evidence on lecitinized superoxide dismutase in animal and human studies, to highlight the rationale for using the PC-SOD to treat COVID-19.
Collapse
Affiliation(s)
- Ilaria Farella
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy.
| | - Raffaella Panza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy.
| | - Manuela Capozza
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| | - Nicola Laforgia
- Neonatology and Neonatal Intensive Care Unit, Department of Biomedical Science and 6 Human Oncology, "Aldo Moro" University of Bari, Policlinico Hospital-Piazza Giulio Cesare n. 11, 70124 Bari, Italy
| |
Collapse
|
4
|
Bezinelli LM, Eduardo FDP, Ferreira MH, Gobbi M, Lopes RMG, Rosin FCP, Vogel C, Hamerschlak N, Corrêa L. Salivary antioxidant enzymes associated with oral toxicity in haematopoietic cell transplantation: An observational study. Eur J Clin Invest 2021; 51:e13379. [PMID: 32959899 DOI: 10.1111/eci.13379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND In haematopoietic cell transplantation (HCT), oral mucositis and xerostomia are related to conditioning-related oxidative stress. The role of salivary antioxidant enzymes in oral toxicity is poorly described. The aim of this study was to verify the association between salivary antioxidant enzymes and oral mucositis and xerostomia in HCT. DESIGN Saliva from autologous and allogeneic HCT patients (n = 77) was selected before conditioning (T0), during the neutropenia period (T1) and after marrow engraftment (T2). Salivary flow, total salivary proteins, and superoxide dismutase, catalase and glutathione reductase activities were measured. RESULTS There were no significant differences in salivary flow, total salivary proteins and catalase at the three HCT time points. Glutathione reductase levels were reduced at T1 compared to T0 (P = .013) and T2 (P = .001). Superoxide dismutase levels were increased from T0 to T2 (P = .013). Neither of these enzymes was associated with oral mucositis. Increased superoxide dismutase levels were associated with xerostomia frequency. Levels of this enzyme also showed significant correlation with days of xerostomia in T2 (ρ = .40, P = .002). CONCLUSIONS Salivary antioxidant enzymes changed before and during early periods after HCT. The increase in salivary superoxide dismutase suggested partial activation of the salivary antioxidant system and was associated with xerostomia.
Collapse
Affiliation(s)
| | | | - Mariana Henriques Ferreira
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - Marcella Gobbi
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | - Flavia C P Rosin
- Hospital Israelita Albert Einstein, São Paulo, Brazil.,School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | | - Luciana Corrêa
- School of Dentistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Gramatyka M, Sokół M. Radiation metabolomics in the quest of cardiotoxicity biomarkers: the review. Int J Radiat Biol 2020; 96:349-359. [PMID: 31976800 DOI: 10.1080/09553002.2020.1704299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Purpose: Ionizing radiation is a risk factor to the whole organism, including the heart. Cardiac damage is considered to be a late effect of radiation exposure. While the acute cardiotoxicity of high doses is well characterized, the knowledge about nature and magnitude of the cardiac risk following lower doses exposure is incomplete. It has been shown that the cardiotoxic effects of radiation are source-, dose- and time-dependent. This paper provides an overview on these dependencies with regard to the molecular responses at the cellular and tissue levels. Main focus is put on the Nuclear Magnetic Resonance (NMR)-based and Mass Spectrometry (MS)-based metabolomic approaches in search of toxicity markers of relatively small doses of radiation.Conclusions: Available literature indicates that radiation exposure affects metabolites associated with: energy production, degradation of proteins and cell membranes, expression of proteins and stress response. Such effects are common for both animal and human studies. However, the specific metabolic response depends on several factors, including the examined organ. Radiation metabolomics can be used to explain the mechanisms of development of radiation-induced heart disease and to find an organ-specific biomarker of radiation exposure. The main aim of this review was to collect the information on the human cardiotoxicity biomarkers. In addition it also summarizes results of the studies on the metabolic responses to ionizing radiation for other organs, as well as the comparative data concerning animal studies.
Collapse
Affiliation(s)
- Michalina Gramatyka
- Department of Medical Physics, Maria Sklodowska-Curie Memorial Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie Memorial Center and Institute of Oncology Gliwice Branch, Gliwice, Poland
| |
Collapse
|
6
|
Yang Q, Zhang P, Liu T, Zhang X, Pan X, Cen Y, Liu Y, Zhang H, Chen X. Magnesium isoglycyrrhizinate ameliorates radiation-induced pulmonary fibrosis by inhibiting fibroblast differentiation via the p38MAPK/Akt/Nox4 pathway. Biomed Pharmacother 2019; 115:108955. [DOI: 10.1016/j.biopha.2019.108955] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/26/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
|
7
|
Sakurai H, Yokoyama M, Katsumata-Kato O, Fujita-Yoshigaki J. Suppression of parotid acinar cell dysfunction by the free radical scavenger 3-methyl-1-phenyl-2-pyrazolin-5-one. J Oral Sci 2019; 61:475-480. [DOI: 10.2334/josnusd.18-0405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Hajime Sakurai
- Division of Cellular Physiology, Nihon University Graduate School of Dentistry at Matsudo
| | - Megumi Yokoyama
- Department of Physiology, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Osamu Katsumata-Kato
- Department of Physiology, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| | - Junko Fujita-Yoshigaki
- Department of Physiology, Nihon University School of Dentistry at Matsudo
- Research Institute of Oral Science, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
8
|
Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018; 29:1660-1690. [PMID: 29113454 PMCID: PMC6207163 DOI: 10.1089/ars.2017.7423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Head and neck squamous cell cancer (HNSCC) is a complex disease characterized by high genetic and metabolic heterogeneity. Radiation therapy (RT) alone or combined with systemic chemotherapy is widely used for treatment of HNSCC as definitive treatment or as adjuvant treatment after surgery. Antibodies against epidermal growth factor receptor are used in definitive or palliative treatment. Recent Advances: Emerging targeted therapies against other proteins of interest as well as programmed cell death protein 1 and programmed death-ligand 1 immunotherapies are being explored in clinical trials. CRITICAL ISSUES The disease heterogeneity, invasiveness, and resistance to standard of care RT or chemoradiation therapy continue to constitute significant roadblocks for treatment and patients' quality of life (QOL) despite improvements in treatment modality and the emergence of new therapies over the past two decades. FUTURE DIRECTIONS As reviewed here, alterations in redox metabolism occur at all stages of HNSCC management, providing opportunities for improved prevention, early detection, response to therapies, and QOL. Bioinformatics and computational systems biology approaches are key to integrate redox effects with multiomics data from cells and clinical specimens and to identify redox modifiers or modifiable target proteins to achieve improved clinical outcomes. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jade Mims
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiumei Huang
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Naveen Singh
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Edward Motea
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | | | - Muhammad Beg
- Department of Internal Medicine, Division of Hematology-Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mercedes Porosnicu
- Department of Internal Medicine, Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David A. Boothman
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
9
|
Azimzadeh O, Azizova T, Merl-Pham J, Subramanian V, Bakshi MV, Moseeva M, Zubkova O, Hauck SM, Anastasov N, Atkinson MJ, Tapio S. A dose-dependent perturbation in cardiac energy metabolism is linked to radiation-induced ischemic heart disease in Mayak nuclear workers. Oncotarget 2018; 8:9067-9078. [PMID: 27391067 PMCID: PMC5354715 DOI: 10.18632/oncotarget.10424] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/17/2016] [Indexed: 12/21/2022] Open
Abstract
Epidemiological studies show a significant increase in ischemic heart disease (IHD) incidence associated with total external gamma-ray dose among Mayak plutonium enrichment plant workers. Our previous studies using mouse models suggest that persistent alteration of heart metabolism due to the inhibition of peroxisome proliferator-activated receptor (PPAR) alpha accompanies cardiac damage after high doses of ionising radiation. The aim of the present study was to elucidate the mechanism of radiation-induced IHD in humans. The cardiac proteome response to irradiation was analysed in Mayak workers who were exposed only to external doses of gamma rays. All participants were diagnosed during their lifetime with IHD that also was the cause of death. Label-free quantitative proteomics analysis was performed on tissue samples from the cardiac left ventricles of individuals stratified into four radiation dose groups (0 Gy, < 100 mGy, 100–500 mGy, and > 500 mGy). The groups could be separated using principal component analysis based on all proteomics features. Proteome profiling showed a dose-dependent increase in the number of downregulated mitochondrial and structural proteins. Both proteomics and immunoblotting showed decreased expression of several oxidative stress responsive proteins in the irradiated hearts. The phosphorylation of transcription factor PPAR alpha was increased in a dose-dependent manner, which is indicative of a reduction in transcriptional activity with increased radiation dose. These data suggest that chronic external radiation enhances the risk for IHD by inhibiting PPAR alpha and altering the expression of mitochondrial, structural, and antioxidant components of the heart.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Radiation Biology, Neuherberg, Germany
| | - Tamara Azizova
- Southern Urals Biophysics Institute, Russian Federation, Ozyorsk, Russia
| | - Juliane Merl-Pham
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Research Unit Protein Science, Munich, Germany
| | - Vikram Subramanian
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Radiation Biology, Neuherberg, Germany
| | - Mayur V Bakshi
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Radiation Biology, Neuherberg, Germany
| | - Maria Moseeva
- Southern Urals Biophysics Institute, Russian Federation, Ozyorsk, Russia
| | - Olga Zubkova
- Southern Urals Biophysics Institute, Russian Federation, Ozyorsk, Russia
| | - Stefanie M Hauck
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Research Unit Protein Science, Munich, Germany
| | - Nataša Anastasov
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Radiation Biology, Neuherberg, Germany
| | - Michael J Atkinson
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Radiation Biology, Neuherberg, Germany.,Chair of Radiation Biology, Technical University of Munich, Munich, Germany
| | - Soile Tapio
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute of Radiation Biology, Neuherberg, Germany
| |
Collapse
|
10
|
Study of the Photodynamic Activity of N-Doped TiO₂ Nanoparticles Conjugated with Aluminum Phthalocyanine. NANOMATERIALS 2017; 7:nano7100338. [PMID: 29053580 PMCID: PMC5666503 DOI: 10.3390/nano7100338] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023]
Abstract
TiO2 nanoparticles modified with phthalocyanines (Pc) have been proven to be a potential photosensitizer in the application of photodynamic therapy (PDT). However, the generation of reactive oxygen species (ROS) by TiO2 nanoparticles modified with Pc has not been demonstrated clearly. In this study, nitrogen-doped TiO2 conjugated with Pc (N-TiO2-Pc) were studied by means of monitoring the generation of ROS. The absorbance and photokilling effect on HeLa cells upon visible light of different regions were also studied and compared with non-doped TiO2-Pc and Pc. Both N-TiO2-Pc and TiO2-Pc can be activated by visible light and exhibited much higher photokilling effect on HeLa cells than Pc. In addition, nitrogen-doping can greatly enhance the formation of 1O2 and •O2−, while it suppresses the generation of OH•. This resulted in significant photodynamic activity. Therefore, N-TiO2-Pc can be an excellent candidate for a photosensitizer in PDT with wide-spectrum visible irradiation.
Collapse
|
11
|
Azimzadeh O, Tapio S. Proteomics landscape of radiation-induced cardiovascular disease: somewhere over the paradigm. Expert Rev Proteomics 2017; 14:987-996. [PMID: 28976223 DOI: 10.1080/14789450.2017.1388743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Epidemiological studies clearly show that thoracic or whole body exposure to ionizing radiation increases the risk of cardiac morbidity and mortality. Radiation-induced cardiovascular disease (CVD) has been intensively studied during the last ten years but the underlying molecular mechanisms are still poorly understood. Areas covered: Heart proteomics is a powerful tool holding promise for the future research. The central focus of this review is to compare proteomics data on radiation-induced CVD with data arising from proteomics of healthy and diseased cardiac tissue in general. In this context we highlight common and unique features of radiation-related and other heart pathologies. Future prospects and challenges of the field are discussed. Expert commentary: Data from comprehensive cardiac proteomics have deepened the knowledge of molecular mechanisms involved in radiation-induced cardiac dysfunction. State-of-the-art proteomics has the potential to identify novel diagnostic and therapeutic markers of this disease.
Collapse
Affiliation(s)
- Omid Azimzadeh
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| | - Soile Tapio
- a Institute of Radiation Biology , Helmholtz Zentrum München, German Research Center for Environmental Health GmbH , Neuherberg , Germany
| |
Collapse
|
12
|
Kang M, Park H, Jun JH, Son M, Kang MJ. Facilitated saliva secretion and reduced oral inflammation by a novel artificial saliva system in the treatment of salivary hypofunction. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:185-191. [PMID: 28138222 PMCID: PMC5241125 DOI: 10.2147/dddt.s121254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Saliva substitutes and/or lubricants are commonly employed to lessen dry mouth symptoms by stimulating and/or substituting for the secretion of saliva. In this study, a novel artificial saliva containing inorganic salts, including sodium chloride and potassium chloride, and bactericidal agents, including potassium thiocyanate and lactoperoxidase, was formulated in the form of a solution (DM-sol) or gel (DM-gel). Those in vivo therapeutic efficacies were assessed in terms of saliva secretion and anti-inflammatory activity in rats and mice, respectively. Salivary secretion was promoted by mucosal application of DM-formulations in normal rats. In particular, DM-gel resulted in 2.5- and 1.9-fold greater salivary flow rates compared to normal saline and DM-sol, respectively. In an in vivo efficacy evaluation in diabetic mice with salivary hypofunction, repeated application of DM-formulations alleviated histopathological changes in the buccal mucosa in terms of atrophy and thinning of the epithelium, compared to vehicle, after 4 weeks. Moreover, the DM-sol and DM-gel were comparably effective for relieving periodontal gingivitis, reducing infiltration of inflammatory cells, and normalizing the neutrophil level in the gingival gingiva, after 4 weeks. Therefore, the novel artificial saliva is expected to facilitate salivary secretion and restore physiological conditions in the mouth of patients with salivary hypofunction.
Collapse
Affiliation(s)
- Minkyung Kang
- Pharmaceutical Product Research Laboratories, Dong-A ST Research Institute, Gyeonggi
| | - Hyounggeun Park
- Pharmaceutical Product Research Laboratories, Dong-A ST Research Institute, Gyeonggi
| | - Joon-Ho Jun
- Pharmaceutical Product Research Laboratories, Dong-A ST Research Institute, Gyeonggi
| | - Miwon Son
- Pharmaceutical Product Research Laboratories, Dong-A ST Research Institute, Gyeonggi
| | - Myung Joo Kang
- Division of Pharmaceutical Sciences, College of Pharmacy, Dankook University, Cheonan, Chungnam, Korea
| |
Collapse
|
13
|
Terrizzi AR, Fernandez-Solari J, Lee CM, Conti MI, Martínez MP. Deleterious effect of chronic continuous hypoxia on oral health. Arch Oral Biol 2016; 72:1-7. [PMID: 27521733 DOI: 10.1016/j.archoralbio.2016.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 06/21/2016] [Accepted: 08/04/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To evaluate the effect of chronic continuous hypoxia (CCH) in alveolar bone and its correlation with the inflammatory markers which play a key role in the development of periodontitis. MATERIAL AND METHODS Wistar rats were exposed to CCH (600mbar, 3 months). Macroscopic and histological analyses of alveolar bone were performed, together with measurement of oxidative stress and inflammatory parameters in gums and submandibular glands (SMG). RESULTS HCC induced cortical alveolar bone loss, decreased interradicular bone volume and increased the periodontal ligament height compared to control rats (p<0.05). CCH enhanced iNOS activity in gums (from 2735,04±662,96 nmol/min/mg proteins to 4289,58±915,63 p<0.05) and in SMG (from 56,71±12,05 nmol/min/mg proteins to 90,15±21,78 p<0.05). PGE2 did not change in gums or in SMG by means of CCH, while TNFα decreased in gums (p<0.05). Regarding oxidative stress, thiobarbituric acid reactive species concentration in CCH animals was higher both in gums as in SMG, and catalase activity was decreased in SMG. CONCLUSION Higher iNOS activity both in gums and SMG under CCH could be associated with the alveolar bone loss observed. The increase in oxidative stress occurring in SMG and gums, together with a lower antioxidant capacity might indicate a deleterious effect of HX in oral health.
Collapse
Affiliation(s)
- Antonela R Terrizzi
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET), Argentina
| | - Javier Fernandez-Solari
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina; National Council for Scientific and Technical Research (CONICET), Argentina
| | - Ching M Lee
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - María Ines Conti
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina
| | - María Pilar Martínez
- Department of Physiology, Faculty of Dentistry, University of Buenos Aires, Argentina.
| |
Collapse
|
14
|
Takahashi A, Inoue H, Mishima K, Ide F, Nakayama R, Hasaka A, Ryo K, Ito Y, Sakurai T, Hasegawa Y, Saito I. Evaluation of the effects of quercetin on damaged salivary secretion. PLoS One 2015; 10:e0116008. [PMID: 25629520 PMCID: PMC4309588 DOI: 10.1371/journal.pone.0116008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/03/2014] [Indexed: 12/17/2022] Open
Abstract
With the aim of discovering an effective method to treat dry mouth, we analyzed the effects of quercetin on salivary secretion and its mechanism of action. We created a mouse model with impaired salivary secretion by exposure to radiation and found that impaired secretion is suppressed by quercetin intake. Moreover, secretion levels were enhanced in quercetin-fed normal mice. To elucidate the mechanisms of these effects on salivary secretion, we conducted an analysis using mouse submandibular gland tissues, a human salivary gland epithelial cell line (HSY), and mouse aortic endothelial cells (MAECs). The results showed that quercetin augments aquaporin 5 (AQP5) expression and calcium uptake, and suppresses oxidative stress and inflammatory responses induced by radiation exposure, suggesting that quercetin intake may be an effective method to treat impaired salivary secretion.
Collapse
Affiliation(s)
- Ayako Takahashi
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Hiroko Inoue
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- Department of Pharmaceutical Sciences, Nihon Pharmaceutical University, Saitama, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| | - Fumio Ide
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ryoko Nakayama
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Ayaka Hasaka
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Koufuchi Ryo
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Yumi Ito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
| | - Takashi Sakurai
- Department of Radiopraxis Science, Graduate School of Dentistry, Kanagawa Dental University, Yokosuka, Japan
| | - Yoshinori Hasegawa
- Department of Human Genome Research, Kazusa DNA Research Institute, Chiba, Japan
| | - Ichiro Saito
- Department of Pathology, Tsurumi University School of Dental Medicine, Yokohama, Japan
- * E-mail:
| |
Collapse
|
15
|
Imamura TK, Yoshino Y, Yamachika S, Ishii H, Watanabe NY, Inoue H, Nakagawa Y. Inhibition of pilocarpine-induced saliva secretion by adrenergic agonists in ICR mice. Clin Exp Pharmacol Physiol 2014; 39:1038-43. [PMID: 23075092 DOI: 10.1111/1440-1681.12023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to clarify the effects of the adrenoceptor agonist isoproterenol (IPR) on saliva secretion stimulated by the muscarinic receptor agonist pilocarpine (PILO) in mice. Mice were injected with either 0.5 mg/kg, i.p. PILO alone or simultaneously with 2 mg/kg, i.p., IPR to evaluate the inhibitory effects of adrenoceptor agonists on saliva secretion. The mechanisms underlying changes in saliva flow rate were evaluated by histological examination of aquaporin 5 (AQP5) and saliva flow rate using the adenylate cyclase (AC) inhibitor SQ22536 (0.25 mg per mouse, s.c.), which was administered 30 min prior to PILO and/or IPR. Saliva volume decreased significantly in the mice treated simultaneously with PILO + IPR compared with that in mice treated with PILO alone. Changes in the intracellular localization of AQP5 were seen in PILO + IPR-treated mice, and those changes were reversed by SQ22536 pretreatment. In addition, the decreased salivary flow rate in the PILO + IPR-treated mice was partially restored by SQ22536 pretreatment. There were no significant changes in intracellular calcium or ATP levels among the groups. The results of the present study suggest the existence of an inhibitory effect of the sympathetic nervous system on parasympathetic-stimulated salivary secretion from the salivary gland.
Collapse
Affiliation(s)
- Takahiro K Imamura
- Department of Clinical Pathophysiology, Tsurumi University Dental Hospital, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Azimzadeh O, Sievert W, Sarioglu H, Yentrapalli R, Barjaktarovic Z, Sriharshan A, Ueffing M, Janik D, Aichler M, Atkinson MJ, Multhoff G, Tapio S. PPAR alpha: a novel radiation target in locally exposed Mus musculus heart revealed by quantitative proteomics. J Proteome Res 2013; 12:2700-14. [PMID: 23560462 DOI: 10.1021/pr400071g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Radiation exposure of the thorax is associated with a markedly increased risk of cardiac morbidity and mortality with a latency period of decades. Although many studies have confirmed the damaging effect of ionizing radiation on the myocardium and cardiac endothelial structure and function, the molecular mechanism behind this damage is not yet elucidated. Peroxisome proliferator-activated receptor alpha (PPAR alpha), a transcriptional regulator of lipid metabolism in heart tissue, has recently received great attention in the development of cardiovascular disease. The goal of this study was to investigate radiation-induced cardiac damage in general and the role of PPAR alpha in this process in particular. C57BL/6 mice received local heart irradiation with X-ray doses of 8 and 16 gray (Gy) at the age of 8 weeks. The mice were sacrificed 16 weeks later. Radiation-induced changes in the cardiac proteome were quantified using the Isotope Coded Protein Label (ICPL) method followed by mass spectrometry and software analysis. Significant alterations were observed in proteins involved in lipid metabolism and oxidative phosphorylation. Ionizing radiation markedly changed the phosphorylation and ubiquitination status of PPAR alpha. This was reflected as decreased expression of its target genes involved in energy metabolism and mitochondrial respiratory chain confirming the proteomics data. This study suggests that persistent alteration of cardiac metabolism due to impaired PPAR alpha activity contributes to the heart pathology after radiation.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Radiation Biology, Neuherberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mishima K, Inoue H, Nishiyama T, Mabuchi Y, Amano Y, Ide F, Matsui M, Yamada H, Yamamoto G, Tanaka J, Yasuhara R, Sakurai T, Lee MCI, Chiba K, Sumimoto H, Kawakami Y, Matsuzaki Y, Tsubota K, Saito I. Transplantation of side population cells restores the function of damaged exocrine glands through clusterin. Stem Cells 2012; 30:1925-37. [DOI: 10.1002/stem.1173] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Azimzadeh O, Scherthan H, Sarioglu H, Barjaktarovic Z, Conrad M, Vogt A, Calzada-Wack J, Neff F, Aubele M, Buske C, Atkinson MJ, Tapio S. Rapid proteomic remodeling of cardiac tissue caused by total body ionizing radiation. Proteomics 2011; 11:3299-311. [DOI: 10.1002/pmic.201100178] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Mahmood J, Jelveh S, Calveley V, Zaidi A, Doctrow SR, Hill RP. Mitigation of radiation-induced lung injury by genistein and EUK-207. Int J Radiat Biol 2011; 87:889-901. [PMID: 21675818 DOI: 10.3109/09553002.2011.583315] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE We examined the effects of genistein and/or Eukarion (EUK)-207 on radiation-induced lung damage and investigated whether treatment for 0-14 weeks (wks) post-irradiation (PI) would mitigate late lung injury. MATERIALS AND METHODS The lungs of female Sprague-Dawley (SD) rats were irradiated with 10 Gy. EUK-207 was delivered by infusion and genistein was delivered as a dietary supplement starting immediately after irradiation (post irradiation [PI]) and continuing until 14 wks PI. Rats were sacrificed at 0, 4, 8, 14 and 28 wks PI. Breathing rate was monitored and lung fibrosis assessed by lung hydroxyproline content at 28 wks. DNA damage was assessed by micronucleus (MN) assay and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. The expression of the cytokines Interleukin (IL)-1α, IL-1β, IL-6, Tumor necrosis factor (TNF)-α and Transforming growth factor (TGF)-β1, and macrophage activation were analyzed by immunohistochemistry. RESULTS Increases in breathing rate observed in the irradiated rats were significantly reduced by both drug treatments during the pneumonitis phase and the later fibrosis phase. The drug treatments decreased micronuclei (MN) formation from 4-14 wks but by 28 wks the MN levels had increased again. The 8-OHdG levels were lower in the drug treated animals at all time points. Hydroxyproline content and levels of activated macrophages were decreased at 28 wks in all drug treated rats. The treatments had limited effects on the expression of the cytokines. CONCLUSION Genistein and EUK-207 can provide partial mitigation of radiation-induced lung damage out to at least 28 wks PI even after cessation of treatment at 14 wks PI.
Collapse
Affiliation(s)
- Javed Mahmood
- Ontario Cancer Institute/Princess Margaret Hospital, University Health Network, and the Campbell Family Institute for Cancer Research, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Guo MY, Satoh K, Qi B, Narita T, Katsumata-Kato O, Matsuki-Fukushima M, Fujita-Yoshigaki J, Sugiya H. Thiol-oxidation reduces the release of amylase induced by β-adrenergic receptor activation in rat parotid acinar cells. Biomed Res 2010; 31:293-9. [DOI: 10.2220/biomedres.31.293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|