1
|
Laurier D, Billarand Y, Klokov D, Leuraud K. The scientific basis for the use of the linear no-threshold (LNT) model at low doses and dose rates in radiological protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:024003. [PMID: 37339605 DOI: 10.1088/1361-6498/acdfd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The linear no-threshold (LNT) model was introduced into the radiological protection system about 60 years ago, but this model and its use in radiation protection are still debated today. This article presents an overview of results on effects of exposure to low linear-energy-transfer radiation in radiobiology and epidemiology accumulated over the last decade and discusses their impact on the use of the LNT model in the assessment of radiation-related cancer risks at low doses. The knowledge acquired over the past 10 years, both in radiobiology and epidemiology, has reinforced scientific knowledge about cancer risks at low doses. In radiobiology, although certain mechanisms do not support linearity, the early stages of carcinogenesis comprised of mutational events, which are assumed to play a key role in carcinogenesis, show linear responses to doses from as low as 10 mGy. The impact of non-mutational mechanisms on the risk of radiation-related cancer at low doses is currently difficult to assess. In epidemiology, the results show excess cancer risks at dose levels of 100 mGy or less. While some recent results indicate non-linear dose relationships for some cancers, overall, the LNT model does not substantially overestimate the risks at low doses. Recent results, in radiobiology or in epidemiology, suggest that a dose threshold, if any, could not be greater than a few tens of mGy. The scientific knowledge currently available does not contradict the use of the LNT model for the assessment of radiation-related cancer risks within the radiological protection system, and no other dose-risk relationship seems more appropriate for radiological protection purposes.
Collapse
Affiliation(s)
- Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Yann Billarand
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Dmitry Klokov
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
2
|
The long-term effects of exposure to ionising radiation on gene expression in mice. Mutat Res 2020; 821:111723. [PMID: 33096319 DOI: 10.1016/j.mrfmmm.2020.111723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 11/20/2022]
Abstract
Despite great advancement in our understanding of the biological response to ionising radiation in mammals, a number of pertinent questions remain unanswered. For instance, the mechanisms underlying the long-term effects of acute radiation in vivo still eludes us. Here we report that acute exposure to X-rays in male mice significantly affects their transcriptome. Using microarrays and miRNA-sequencing, we profiled the gene expression pattern in the brain, the kidney, the liver and the sperm of irradiated and control from CBA/Ca and BALB/c in the timeline of 4 h, 24 h, 1 week and 10 weeks post-exposure. Acute exposure to 1 Gy of X-rays resulted in profound tissue- and strain-specific changes in gene expression pattern. There was profound change in the gene expression in the kidney of BALB/c irradiated mice over the period of 10 weeks after irradiation, whereas in the CBA/Ca strain the significant transcriptomic changes manifest over a shorter period of time up to 1 week post exposure. In the brain of irradiated CBA/Ca, significant changes in transcriptome were seen up to 10 weeks post-irradiation, while only short-term changes up to 4 h post-exposure was detected in the brain of irradiation BALB/c. Similarly, alteration in gene expression pattern was observed in the liver of irradiated BALB/c up to 10 weeks post-radiation, whereas only immediate but significant changes were observed in the CBA/Ca at 4 h post-irradiation. Furthermore, the analysis of miRNA in irradiated and control male mice also revealed highly tissue- and strain-specific changes in expression level, with no overlap between the differentially regulated miRNA genes across the three somatic tissues and the two inbred strains. We also analysed the pattern of miRNA expression in sperm of irradiated males, sacrificed at 24 h, 1 week and 10 weeks after irradiation. Only one miRNA (mmu-miR-217-5p) was significantly down-regulated in the CBA/Ca males. The results of our study may provide a plausible explanation for the delayed in vivo effects of irradiation.
Collapse
|
3
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
4
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
5
|
Qian L, Wu Z, Cen J, Pasca S, Tomuleasa C. Medical Application of Hydrogen in Hematological Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3917393. [PMID: 31871547 PMCID: PMC6906850 DOI: 10.1155/2019/3917393] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/13/2019] [Indexed: 11/17/2022]
Abstract
Hydrogen gas has been reported to have medical efficacy since the 1880s. Still, medical researchers did not pay much attention to hydrogen gas until the 20th century. Recent research, both basic and clinical, has proven that hydrogen is an important physiological regulatory factor with antioxidative, anti-inflammatory, and antiapoptotic effects. In the past two decades, more than 1000 papers have been published on the topic, including organ ischemia-reperfusion injury, radiation injury, diabetes, atherosclerosis, hypertension, or cancer. We have previously hypothesized and proven the therapeutic effects of hydrogen gas in graft-versus-host disease following stem cell transplantation. In the current manuscript, we present the clinical advances of hydrogen gas in hematological disorders.
Collapse
Affiliation(s)
- Liren Qian
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, China
| | - Zhengcheng Wu
- Department of Medical Service, The Sixth Medical Center, Chinese PLA General Hospital, China
| | - Jian Cen
- Department of Hematology, The Sixth Medical Center, Chinese PLA General Hospital, China
| | - Sergiu Pasca
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Hematology, Ion Chiricuta Oncology Institute, Cluj-Napoca, Romania
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Leblanc JE, Burtt JJ. Radiation Biology and Its Role in the Canadian Radiation Protection Framework. HEALTH PHYSICS 2019; 117:319-329. [PMID: 30907783 DOI: 10.1097/hp.0000000000001060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The linear no-threshold (linear-non-threshold) model is a dose-response model that has long served as the foundation of the international radiation protection framework, which includes the Canadian regulatory framework. Its purpose is to inform the choice of appropriate dose limits and subsequent as low as reasonably achievable requirements, social and economic factors taken into account. The linear no-threshold model assumes that the risk of developing cancer increases proportionately with increasing radiation dose. The linear no-threshold model has historically been applied by extrapolating the risk of cancer at high doses (>1,000 mSv) down to low doses in a linear manner. As the health effects of radiation exposure at low doses remain ambiguous, reducing uncertainties found in cancer risk dose-response models can be achieved through in vitro and animal-based studies. The purpose of this critical review is to analyze whether the linear no-threshold model is still applicable for use by modern nuclear regulators for radiation protection purposes, or if there is sufficient scientific evidence supporting an alternate model from which to derive regulatory dose limits.
Collapse
|
7
|
Ulyanenko S, Pustovalova M, Koryakin S, Beketov E, Lychagin A, Ulyanenko L, Kaprin A, Grekhova A, M Ozerova A, V Ozerov I, Vorobyeva N, Shegay P, Ivanov S, Leonov S, Klokov D, Osipov AN. Formation of γH2AX and pATM Foci in Human Mesenchymal Stem Cells Exposed to Low Dose-Rate Gamma-Radiation. Int J Mol Sci 2019; 20:E2645. [PMID: 31146367 PMCID: PMC6600277 DOI: 10.3390/ijms20112645] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/21/2019] [Accepted: 05/23/2019] [Indexed: 12/12/2022] Open
Abstract
DNA double-strand breaks (DSB) are among the most harmful DNA lesions induced by ionizing radiation (IR). Although the induction and repair of radiation-induced DSB is well studied for acute irradiation, responses to DSB produced by chronic IR exposures are poorly understood, especially in human stem cells. The aim of this study was to examine the formation of DSB markers (γH2AX and phosphorylated kinase ATM, pATM, foci) in human mesenchymal stem cells (MSCs) exposed to chronic gamma-radiation (0.1 mGy/min) in comparison with acute irradiation (30 mGy/min) at cumulative doses of 30, 100, 160, 240 and 300 mGy. A linear dose-dependent increase in the number of both γH2AX and pATM foci, as well as co-localized γH2AX/pATM foci ("true" DSB), were observed after an acute radiation exposure. In contrast, the response of MSCs to a chronic low dose-rate IR exposure deviated from linearity towards a threshold model, for γH2AX, pATM foci and γH2AX/pATM foci, with an indication of a "plateau". The state of equilibrium between newly formed DSB at a low rate during the protracted exposure time and the elimination of a fraction of DSB is proposed as a mechanistic explanation of the non-linear DSB responses following a low dose-rate irradiation. This notion is supported by the observation of the elimination of a substantial fraction of DSB 6 h after the cessation of the exposures. Our results demonstrate non-linear dose responses for γH2AX and pATM foci in human MSCs exposed to low dose-rate IR and showed the existence of a threshold, which may have implications for radiation protection in humans.
Collapse
Affiliation(s)
- Stepan Ulyanenko
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Margarita Pustovalova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
| | - Sergey Koryakin
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Evgenii Beketov
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Anatolii Lychagin
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Liliya Ulyanenko
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Andrey Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Moscow 125284, Russia.
| | - Anna Grekhova
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
- Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Alexandra M Ozerova
- Faculty of Biology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia.
| | - Ivan V Ozerov
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
| | - Natalia Vorobyeva
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.
| | - Peter Shegay
- Center for Innovative Radiological and Regenerative Technologies of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Sergey Ivanov
- A. Tsyb Medical Radiological Research Centre-Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| | - Sergey Leonov
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
- Institute of Cell Biophysics, Russian Academy of Sciences, Institutskaya St., 3, Pushchino 142290, Russia.
| | - Dmitry Klokov
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Andreyan N Osipov
- State Research Center-Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow 123098, Russia.
- Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia.
- Center for Innovative Radiological and Regenerative Technologies of the Ministry of Health of the Russian Federation, Koroleva 4, Obninsk 249030, Russia.
| |
Collapse
|
8
|
Tharmalingam S, Sreetharan S, Brooks AL, Boreham DR. Re-evaluation of the linear no-threshold (LNT) model using new paradigms and modern molecular studies. Chem Biol Interact 2019; 301:54-67. [PMID: 30763548 DOI: 10.1016/j.cbi.2018.11.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/13/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
The linear no-threshold (LNT) model is currently used to estimate low dose radiation (LDR) induced health risks. This model lacks safety thresholds and postulates that health risks caused by ionizing radiation is directly proportional to dose. Therefore even the smallest radiation dose has the potential to cause an increase in cancer risk. Advances in LDR biology and cell molecular techniques demonstrate that the LNT model does not appropriately reflect the biology or the health effects at the low dose range. The main pitfall of the LNT model is due to the extrapolation of mutation and DNA damage studies that were conducted at high radiation doses delivered at a high dose-rate. These studies formed the basis of several outdated paradigms that are either incorrect or do not hold for LDR doses. Thus, the goal of this review is to summarize the modern cellular and molecular literature in LDR biology and provide new paradigms that better represent the biological effects in the low dose range. We demonstrate that LDR activates a variety of cellular defense mechanisms including DNA repair systems, programmed cell death (apoptosis), cell cycle arrest, senescence, adaptive memory, bystander effects, epigenetics, immune stimulation, and tumor suppression. The evidence presented in this review reveals that there are minimal health risks (cancer) with LDR exposure, and that a dose higher than some threshold value is necessary to achieve the harmful effects classically observed with high doses of radiation. Knowledge gained from this review can help the radiation protection community in making informed decisions regarding radiation policy and limits.
Collapse
Affiliation(s)
- Sujeenthar Tharmalingam
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada.
| | - Shayenthiran Sreetharan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, 1280 Main Street W, Hamilton ON, L8S 4K1, Canada
| | - Antone L Brooks
- Environmental Science, Washington State University, Richland, WA, USA
| | - Douglas R Boreham
- Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Rd, Sudbury, ON, P3E 2C6, Canada; Bruce Power, Tiverton, ON(3), UK.
| |
Collapse
|
9
|
Seong KM, Kwon T, Park J, Youn B, Cha HJ, Kim Y, Moon C, Lee SS, Jin YW. Proactive strategy for long-term biological research aimed at low-dose radiation risk in Korea. Int J Radiat Biol 2018; 94:685-693. [PMID: 29775393 DOI: 10.1080/09553002.2018.1478163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Since the 2011 Fukushima nuclear power plant accident, Korean radiation experts have agreed that reliable data on health risks of low-dose radiation (LDR) are needed to ease the anxiety of lay people. The intent of this study was to devise a sustainable biological program suited for the research environment in Korea and aimed at the health effects of radiation exposures <100 millisieverts (mSv). To address pressing public concerns over LDR risk, we investigated the current understanding of LDR effects by analyzing the previous reports of international authorities for radiation protection and research publications that appeared after the Chernobyl accident. A research program appropriate for societal and scientific inclinations of Korea was then devised based on input from Korean radiation scientists. CONCLUSIONS After review by our advisory committee, program priorities were set, calling for an agenda that focused on dose-response relationships in carcinogenesis, health span responses to lifestyle variations, and systemic metabolic changes. Our long-term biological research program may contribute scientific evidence to reduce the uncertainties of LDR health risks and help stakeholders formulate policies for radiation protection.
Collapse
Affiliation(s)
- Ki Moon Seong
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - TaeWoo Kwon
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Jina Park
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - BuHyun Youn
- b Department of Biological Sciences , Pusan National University , Busan , Republic of Korea
| | - Hyuk-Jin Cha
- c School of Pharmacy , Seoul National University , Seoul , Republic of Korea
| | - Yonghwan Kim
- d Department of Biological Sciences , Sookmyung Women's University , Seoul , Republic of Korea
| | - Changjong Moon
- e Department of Veterinary Anatomy, College of Veterinary Medicine and BK21 PLUS Project Team , Chonnam National University , Gwangju , Republic of Korea
| | - Seung-Sook Lee
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea.,f Department of Pathology , Korea Cancer Center Hospital, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| | - Young Woo Jin
- a Laboratory of Low Dose Risk Assessment , National Radiation Emergency Medical Center, Korea Institute of Radiological & Medical Sciences , Seoul , Republic of Korea
| |
Collapse
|
10
|
Lemon JA, Phan N, Boreham DR. Multiple CT Scans Extend Lifespan by Delaying Cancer Progression in Cancer-Prone Mice. Radiat Res 2017; 188:495-504. [DOI: 10.1667/rr14575.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jennifer A. Lemon
- Medical Sciences, Northern Ontario School of Medicine, Sudbury, Canada, P3E 2C6
| | - Nghi Phan
- Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R. Boreham
- Medical Sciences, Northern Ontario School of Medicine, Sudbury, Canada, P3E 2C6
| |
Collapse
|
11
|
Lemon JA, Phan N, Boreham DR. Single CT Scan Prolongs Survival by Extending Cancer Latency inTrp53Heterozygous Mice. Radiat Res 2017; 188:505-511. [DOI: 10.1667/rr14576.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jennifer A. Lemon
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Canada, P3E 2C6
| | - Nghi Phan
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Canada, L8S 4K1
| | - Douglas R. Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, Canada, P3E 2C6
| |
Collapse
|
12
|
Singh VK, Seed TM. A review of radiation countermeasures focusing on injury-specific medicinals and regulatory approval status: part I. Radiation sub-syndromes, animal models and FDA-approved countermeasures. Int J Radiat Biol 2017. [PMID: 28650707 DOI: 10.1080/09553002.2017.1332438] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE The increasing global risk of nuclear and radiological accidents or attacks has driven renewed research interest in developing medical countermeasures to potentially injurious exposures to acute irradiation. Clinical symptoms and signs of a developing acute radiation injury, i.e. the acute radiation syndrome, are grouped into three sub-syndromes named after the dominant organ system affected, namely the hematopoietic, gastrointestinal, and neurovascular systems. The availability of safe and effective countermeasures against the above threats currently represents a significant unmet medical need. This is the first article within a three-part series covering the nature of the radiation sub-syndromes, various animal models for radiation countermeasure development, and the agents currently approved by the United States Food and Drug Administration for countering the medical consequences of several of these prominent radiation exposure-associated syndromes. CONCLUSIONS From the U.S. and global perspectives, biomedical research concerning medical countermeasure development is quite robust, largely due to increased government funding following the 9/11 incidence and subsequent rise of terrorist-associated threats. A wide spectrum of radiation countermeasures for specific types of radiation injuries is currently under investigation. However, only a few radiation countermeasures have been fully approved by regulatory agencies for human use during radiological/nuclear contingencies. Additional research effort, with additional funding, clearly will be needed in order to fill this significant, unmet medical health problem.
Collapse
Affiliation(s)
- Vijay K Singh
- a Division of Radioprotection, Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | | |
Collapse
|
13
|
Edin NFJ, Altaner Č, Altanerova V, Ebbesen P, Pettersen EO. Low-Dose-Rate Irradiation for 1 Hour Induces Protection Against Lethal Radiation Doses but Does Not Affect Life Span of DBA/2 Mice. Dose Response 2016; 14:1559325816673901. [PMID: 27867323 PMCID: PMC5102071 DOI: 10.1177/1559325816673901] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Prior findings showed that serum from DBA/2 mice that had been given whole-body irradiation for 1 hour at a low dose rate (LDR) of 30 cGy/h induced protection against radiation in reporter cells by a mechanism depending on transforming growth factor β3 and inducible nitric oxide synthase activity. In the present study, the effect of the 1 hour of LDR irradiation on the response of the preirradiated mice to a subsequent lethal dose and on the life span is examined. These DBA/2 mice were prime irradiated for 1 hour at 30 cGy/h. Two experiments with 9 and 9.5 Gy challenge doses given 6 weeks after priming showed increased survival in primed mice compared to unprimed mice followed up to 225 and 81 days after challenge irradiation, respectively. There was no overall significant difference in life span between primed and unprimed mice when no challenge irradiation was given. The males seemed to have a slight increase in lifespan after priming while the opposite was seen for the females.
Collapse
Affiliation(s)
| | - Čestmír Altaner
- Cancer Research Institute, Laboratory of Molecular Oncology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Veronika Altanerova
- Cancer Research Institute, Laboratory of Molecular Oncology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Ebbesen
- Department of Physics, University of Oslo, Oslo, Norway; Laboratory for Stem Cell Research, Aalborg University, Aalborg, Denmark
| | | |
Collapse
|
14
|
Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. HORMESIS: A Fundamental Concept with Widespread Biological and Biomedical Applications. Gerontology 2015; 62:530-5. [DOI: 10.1159/000441520] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/07/2015] [Indexed: 11/19/2022] Open
Abstract
Hormesis is a biphasic dose response with specific quantitative features for the amplitude and width of the stimulation. It is highly generalizable and independent of biological model, endpoint, inducing agent, level of biological organization and mechanism. Hormesis may be induced via a direct stimulation or by overcompensation to a disruption of homeostasis. The induction of hormesis by low-level stressor agents not only rapidly upregulates adaptive processes to repair damage but also protects the adapted system from damage due to a subsequent challenging dose (toxic) within a definable temporal window. The striking consistency of the amplitude of hormetic response suggests that hormesis provides a quantitative description of biological plasticity. Knowledge of hormesis has particular potential biomedical significance with respect to slowing or retarding both normal aging processes and the progression of severe neurological diseases.
Collapse
|
15
|
Radiation-driven lipid accumulation and dendritic cell dysfunction in cancer. Sci Rep 2015; 5:9613. [PMID: 25923834 PMCID: PMC4413852 DOI: 10.1038/srep09613] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/09/2015] [Indexed: 01/21/2023] Open
Abstract
Dendritic cells (DCs) play important roles in the initiation and maintenance of the immune response. The dysfunction of DCs contributes to tumor evasion and growth. Here we report our findings on the dysfunction of DCs in radiation-induced thymic lymphomas, and the up-regulation of the expression of the lipoprotein lipase (LPL) and the fatty acid binding protein (FABP4), and the level of triacylglycerol (TAG) in serum after total body irradiation, which contribute to DCs lipid accumulation. DCs with high lipid content showed low expression of co-stimulatory molecules and DCs-related cytokines, and were not able to effectively stimulate allogeneic T cells. Normalization of lipid abundance in DCs with an inhibitor of acetyl-CoA carboxylase restored the function of DCs. A high-fat diet promoted radiation-induced thymic lymphoma growth. In all, our study shows that dysfunction of DCs in radiation-induced thymic lymphomas was due to lipid accumulation and may represent a new mechanism in radiation-induced carcinogenesis.
Collapse
|
16
|
Sasaki MS, Tachibana A, Takeda S. Cancer risk at low doses of ionizing radiation: artificial neural networks inference from atomic bomb survivors. JOURNAL OF RADIATION RESEARCH 2014; 55:391-406. [PMID: 24366315 PMCID: PMC4014156 DOI: 10.1093/jrr/rrt133] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/20/2013] [Accepted: 10/22/2013] [Indexed: 06/03/2023]
Abstract
Cancer risk at low doses of ionizing radiation remains poorly defined because of ambiguity in the quantitative link to doses below 0.2 Sv in atomic bomb survivors in Hiroshima and Nagasaki arising from limitations in the statistical power and information available on overall radiation dose. To deal with these difficulties, a novel nonparametric statistics based on the 'integrate-and-fire' algorithm of artificial neural networks was developed and tested in cancer databases established by the Radiation Effects Research Foundation. The analysis revealed unique features at low doses that could not be accounted for by nominal exposure dose, including (i) the presence of a threshold that varied with organ, gender and age at exposure, and (ii) a small but significant bumping increase in cancer risk at low doses in Nagasaki that probably reflects internal exposure to (239)Pu. The threshold was distinct from the canonical definition of zero effect in that it was manifested as negative excess relative risk, or suppression of background cancer rates. Such a unique tissue response at low doses of radiation exposure has been implicated in the context of the molecular basis of radiation-environment interplay in favor of recently emerging experimental evidence on DNA double-strand break repair pathway choice and its epigenetic memory by histone marking.
Collapse
Affiliation(s)
- Masao S. Sasaki
- Kyoto University, 17-12 Shironosato, Nagaokakyo-shi, Kyoto 617-0835, Japan
| | - Akira Tachibana
- Department of Biology, Faculty of Science, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida-konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
17
|
Qian L, Shen J, Chuai Y, Cai J. Hydrogen as a new class of radioprotective agent. Int J Biol Sci 2013; 9:887-94. [PMID: 24155664 PMCID: PMC3805896 DOI: 10.7150/ijbs.7220] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Accepted: 08/24/2013] [Indexed: 12/22/2022] Open
Abstract
It is well known that most of the ionizing radiation-induced damage is caused by hydroxyl radicals (·OH) follows radiolysis of H2O. Molecular hydrogen (H2) has antioxidant activities by selectively reducing ·OH and peroxynitrite(ONOO-). We firstly hypothesized and demonstrated the radioprotective effect of H2 in vitro and in vivo, which was also repeated on different experimental animal models by different departments. A randomized, placebo-controlled study showed that consumption of hydrogen-rich water reduces the biological reaction to radiation-induced oxidative stress without compromising anti-tumor effects. These encouraging results suggested that H2 represents a potentially novel preventative strategy for radiation-induced oxidative injuries. H2 is explosive. Therefore, administration of hydrogen-rich solution (physiological saline/pure water/other solutions saturated with H2) may be more practical in daily life and more suitable for daily consumption. This review focuses on major scientific and clinical advances of hydrogen-rich solution/H2 as a new class of radioprotective agent.
Collapse
Affiliation(s)
- Liren Qian
- 1. Department of Haematology, Navy General Hospital, Fucheng Road, Beijing, PR China
| | | | | | | |
Collapse
|
18
|
Bong JJ, Kang YM, Shin SC, Choi SJ, Lee KM, Kim HS. Differential expression of thymic DNA repair genes in low-dose-rate irradiated AKR/J mice. J Vet Sci 2013; 14:271-9. [PMID: 23820165 PMCID: PMC3788152 DOI: 10.4142/jvs.2013.14.3.271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 10/23/2012] [Indexed: 12/13/2022] Open
Abstract
We previously determined that AKR/J mice housed in a low-dose-rate (LDR) ((137)Cs, 0.7 mGy/h, 2.1 Gy) γ-irradiation facility developed less spontaneous thymic lymphoma and survived longer than those receiving sham or high-dose-rate (HDR) ((137)Cs, 0.8 Gy/min, 4.5 Gy) radiation. Interestingly, histopathological analysis showed a mild lymphomagenesis in the thymus of LDR-irradiated mice. Therefore, in this study, we investigated whether LDR irradiation could trigger the expression of thymic genes involved in the DNA repair process of AKR/J mice. The enrichment analysis of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways showed immune response, nucleosome organization, and the peroxisome proliferator-activated receptors signaling pathway in LDR-irradiated mice. Our microarray analysis and quantitative polymerase chain reaction data demonstrated that mRNA levels of Lig4 and RRM2 were specifically elevated in AKR/J mice at 130 days after the start of LDR irradiation. Furthermore, transcriptional levels of H2AX and ATM, proteins known to recruit DNA repair factors, were also shown to be upregulated. These data suggest that LDR irradiation could trigger specific induction of DNA repair-associated genes in an attempt to repair damaged DNA during tumor progression, which in turn contributed to the decreased incidence of lymphoma and increased survival. Overall, we identified specific DNA repair genes in LDR-irradiated AKR/J mice.
Collapse
Affiliation(s)
- Jin Jong Bong
- Radiation Health Research Institute, Korea Hydro and Nuclear Power, Seoul 132-703, Korea
| | | | | | | | | | | |
Collapse
|
19
|
Bong JJ, Kang YM, Shin SC, Choi SJ, Lee KM, Kim HS. Identification of radiation-sensitive expressed genes in the ICR and AKR/J mouse thymus. Cell Biol Int 2013; 37:485-94. [PMID: 23444016 DOI: 10.1002/cbin.10065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/26/2013] [Indexed: 11/06/2022]
Abstract
We have investigated radiation-sensitive expressed genes (EGs), their signal pathways, and the effects of ionizing radiation in the thymus of ICR and AKR/J mice. Whole-body and relative thymus weights were taken and microarray analyses were done on the thymuses of high-dose-rate (HDR, (137) Cs, 0.8 Gy/min, a single dose of 4.5 Gy) and low-dose-rate (LDR, (137) Cs, 0.7 mGy/h, a cumulative dose of 1.7 Gy) irradiated ICR and AKR/J mice. Gene expression patterns were validated by quantitative polymerase chain reaction (qPCR). The effect of ionizing radiation on thymus cell apoptosis was measured terminal deoxynucleotidyl-transferase-mediated dUTP-end labeling (TUNEL). LDR-irradiation increased the mean whole-body weight, but decreased the relative thymus weight of AKR/J mice. Radiation-sensitive EGs were found by comparing HDR- and LDR-irradiated ICR and AKR/J mice. qPCR analysis showed that 12 EGs had dose and dose-rate dependent expression patterns. Gene-network analysis indicated that Ighg, Igh-VJ558, Defb6, Reg3g, and Saa2 may be involved in the immune response, leukocyte migration, and apoptosis. Our data suggest that expression of the HDR (Glut1, Glut4, and PKLR) and LDR radiation-response genes (Ighg and Igh-VJ558) can be dose or dose-rate dependent. There was an increased number of apoptotic cells in HDR-irradiated ICR mice and LDR-irradiated AKR/J mice. Thus, changes of the mean whole-body weight and relative thymus weight, EGs, signal pathways, and the effects of ionizing radiation on the thymus of ICR and AKR/J mice are described.
Collapse
Affiliation(s)
- Jin Jong Bong
- Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., 388-1, Ssangmun-Dong, Dobong-Gu, Seoul 132-703, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
20
|
Sonn CH, Choi JR, Kim TJ, Yu YB, Kim K, Shin SC, Park GH, Shirakawa T, Kim HS, Lee KM. Augmentation of natural cytotoxicity by chronic low-dose ionizing radiation in murine natural killer cells primed by IL-2. JOURNAL OF RADIATION RESEARCH 2012; 53:823-9. [PMID: 22915781 PMCID: PMC3483842 DOI: 10.1093/jrr/rrs037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 05/22/2012] [Accepted: 05/23/2012] [Indexed: 05/20/2023]
Abstract
The possible beneficial effects of chronic low-dose irradiation (LDR) and its mechanism of action in a variety of pathophysiological processes such as cancer are a subject of intense investigation. While animal studies involving long-term exposure to LDR have yielded encouraging results, the influence of LDR at the cellular level has been less well defined. We reasoned that since natural killer (NK) cells constitute an early responder to exogenous stress, NK cells may reveal sentinel alterations in function upon exposure to LDR. When purified NK cells received LDR at 4.2 mGy/h for a total of 0.2 Gy in vitro, no significant difference in cell viability was observed. Likewise, no functional changes were detected in LDR-exposed NK cells, demonstrating that LDR alone was insufficient to generate changes at the cellular level. Nonetheless, significant augmentation of cytotoxic, but not proliferative, function was detected when NK cells were stimulated with low-dose IL-2 prior to irradiation. This enhancement of NK cytotoxicity was not due to alterations in NK-activating receptors, NK1.1, NKG2D, CD69 and 2B4, or changes in the rate of early or late apoptosis. Therefore, LDR, in the presence of suboptimal cytokine levels, can facilitate anti-tumor cytotoxicity of NK cells without influencing cellular proliferation or apoptosis. Whether these results translate to in vivo consequences remains to be seen; however, our data provide initial evidence that exposure to LDR can lead to subtle immune-enhancing effects on NK cells and may explain, in part, the functional basis underlying, diverse beneficial effects seen in the animals chronically exposed to LDR.
Collapse
Affiliation(s)
- Chung Hee Sonn
- Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Jong Rip Choi
- Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Tae-Jin Kim
- Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Young-Bin Yu
- Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Kwanghee Kim
- Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Suk Chul Shin
- Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703, Korea
| | - Gil-Hong Park
- Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea
| | - Toshiro Shirakawa
- Center for Infectious Diseases, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-Cho, Chuo-Ku, Kobe 650-0017, Japan
| | - Hee Sun Kim
- Radiation Health Research Institute, Korea Hydro & Nuclear Power Co., Ltd., 388-1, Ssangmun-dong, Dobong-gu, Seoul 132-703, Korea
- Corresponding authors. Tel: +82-2-3499-6661; Fax: +82-2-3499-6669; (H. S. Kim); Tel: +82-2-920-6251; Fax: +82-2-920-6253; (K. M. Lee)
| | - Kyung-Mi Lee
- Global Research Lab, BAERI Institute, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, Korea
- Corresponding authors. Tel: +82-2-3499-6661; Fax: +82-2-3499-6669; (H. S. Kim); Tel: +82-2-920-6251; Fax: +82-2-920-6253; (K. M. Lee)
| |
Collapse
|
21
|
Yi M. Systems analysis of a mouse xenograft model reveals annexin A1 as a regulator of gene expression in tumor stroma. PLoS One 2012; 7:e43551. [PMID: 23077482 PMCID: PMC3471933 DOI: 10.1371/journal.pone.0043551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 07/23/2012] [Indexed: 12/26/2022] Open
Abstract
Annexin A1 is a multi functional molecule which is involved in inflammation, innate and adaptive immune systems, tumor progression and metastasis. We have previously showed the impaired tumor growth, metastasis, angiogenesis and wound healing in annexin A1 knockout mice. While tumor is a piece of heterogeneous mass including not only malignant tumor cells but also the stroma, the importance of the tumor stroma for tumor progression and metastasis is becoming increasingly clear. The tumor stroma is comprised by various components including extracellular matrix and non-malignant cells in the tumor, such as endothelial cells, fibroblasts, immune cells, inflammatory cells. Based on our previous finding of pro-angiogenic functions for annexin A1 in vascular endothelial cell sprouting, wound healing, tumor growth and metastasis, and the previously known properties for annexin A1 in immune cells and inflammation, this study hypothesized that annexin A1 is a key functional player in tumor development, linking the various components in tumor stroma by its actions in endothelial cells and immune cells. Using systems analysis programs commercially available, this paper further compared the gene expression between tumors from annexin A1 wild type mice and annexin A1 knockout mice and found a list of genes that significantly changed in the tumor stroma that lacked annexin A1. This revealed annexin A1 to be an effective regulator in tumor stroma and suggested a mechanism that annexin A1 affects tumor development and metastasis through interaction with the various components in the microenvironment surrounding the tumor cells.
Collapse
Affiliation(s)
- Ming Yi
- Sidney Kimmel Cancer Center and Proteogenomics Research Institute for Systems Medicine, San Diego, California, USA.
| |
Collapse
|
22
|
Zhao L, Zhou C, Zhang J, Gao F, Li B, Chuai Y, Liu C, Cai J. Hydrogen protects mice from radiation induced thymic lymphoma in BALB/c mice. Int J Biol Sci 2011; 7:297-300. [PMID: 21448340 PMCID: PMC3065742 DOI: 10.7150/ijbs.7.297] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 03/20/2011] [Indexed: 11/13/2022] Open
Abstract
Ionizing radiation (IR) is a well-known carcinogen, however the mechanism of radiation induced thymic lymphoma is not well known. Moreover, an easy and effective method to protect mice from radiation induced thymic lymphoma is still unknown. Hydrogen, or H2, is seldom regarded as an important agent in medical usage, especially as a therapeutic gas. Here in this study, we found that H2 protects mice from radiation induced thymic lymphoma in BALB/c mice.
Collapse
Affiliation(s)
- Luqian Zhao
- Department of Radiation Medicine, Second Military Medical University, Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Shin SC, Lee KM, Kang YM, Kim K, Lim SA, Yang KH, Kim JY, Nam SY, Kim HS. Differential expression of immune-associated cancer regulatory genes in low- versus high-dose-rate irradiated AKR/J mice. Genomics 2011; 97:358-63. [PMID: 21266193 DOI: 10.1016/j.ygeno.2011.01.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 11/15/2010] [Accepted: 01/16/2011] [Indexed: 11/26/2022]
Abstract
AKR/J mice carrying leukemia viral inserts develop thymic lymphoma. Recently, we demonstrated that the incidence of thymic lymphoma was decreased when these mice were raised in a low-dose-rate γ-irradiation facility. In contrast, mice irradiated at a high-dose rate developed severe thymic lymphoma and died much earlier. To understand the genetic changes occurred by low- versus high-dose-rate γ-irradiation whole genome microarray was performed. Both groups of mice demonstrated up-regulation of Ifng, Igbp1, and IL7 in their thymuses, however, mice exposed to high-dose-rate γ-irradiation exhibited marked down-regulation of Sp3, Il15, Traf6, IL2ra, Pik3r1, and Hells. In contrast, low-dose-rate irradiated mice demonstrated up-regulation of Il15 and Jag2. These gene expression profiles imply the impaired immune signaling pathways by high-dose-rate γ-irradiation while the facilitation of anti-tumor immune responses by low-dose-rate γ-irradiation. Therefore, our data delineate common and distinct immune-associated pathways downstream of low- versus high-dose-rate irradiation in the process of cancer progression in AKR/J mice.
Collapse
Affiliation(s)
- Suk Chul Shin
- Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd., SSangmun-dong, Dobong-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|