1
|
Kim A, Yonemoto C, Feliciano CP, Shashni B, Nagasaki Y. Antioxidant Nanomedicine Significantly Enhances the Survival Benefit of Radiation Cancer Therapy by Mitigating Oxidative Stress-Induced Side Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2008210. [PMID: 33860635 DOI: 10.1002/smll.202008210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Oxidative stress-induced off-target effects limit the therapeutic window of radiation therapy. Although many antioxidants have been evaluated as radioprotective agents, none of them are in widespread clinical use, owing to the side effects of the antioxidants themselves and the lack of apparent benefit. Aiming for a truly effective radioprotective agent in radiation cancer therapy, the performance of a self-assembling antioxidant nanoparticle (herein denoted as redox nanoparticle; RNP) is evaluated in the local irradiation of a subcutaneous tumor-bearing mouse model. Since RNP is covered with a biocompatible shell layer and possesses a core-shell type structure of several tens of nanometers in size, its lifetime in the systemic circulation is prolonged. Moreover, since 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), one of the most potent antioxidants, is covalently encapsulated in the core of RNP, it exerts intense antioxidant activity and induces fewer adverse effects by avoiding leakage of the TEMPO molecules. Preadministration of RNP to the mouse model effectively mitigates side effects in normal tissues and significantly extends the survival benefit of radiation cancer therapy. Moreover, RNP pretreatment noticeably increases the apoptosis/necrosis ratio of radiation-induced cell death, a highly desirable property to reduce the chronic side effects of ionizing irradiation.
Collapse
Affiliation(s)
- Ahram Kim
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Chiaki Yonemoto
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Chitho P Feliciano
- Radiation Research Center (RRC), Philippine Nuclear Research Institute, Department of Science and Technology (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
- Health Physics Research Section, Atomic Research Division, Philippine Nuclear Research Institute, Department of Science and Technology (DOST-PNRI), Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
| | - Babita Shashni
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
- Center for Research in Isotopes and Environmental Dynamics (CRiED), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
2
|
Popović J, Klajn A, Paunesku T, Ma Q, Chen S, Lai B, Stevanović M, Woloschak GE. Neuroprotective Role of Selected Antioxidant Agents in Preventing Cisplatin-Induced Damage of Human Neurons In Vitro. Cell Mol Neurobiol 2019; 39:619-636. [PMID: 30874981 PMCID: PMC6535150 DOI: 10.1007/s10571-019-00667-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/28/2019] [Indexed: 12/17/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of platinum-based chemotherapy and decreases the quality of life of cancer patients. We compared neuroprotective properties of several agents using an in vitro model of terminally differentiated human cells NT2-N derived from cell line NT2/D1. Sodium azide and an active metabolite of amifostine (WR1065) increase cell viability in simultaneous treatment with cisplatin. In addition, WR1065 protects the non-dividing neurons by decreasing cisplatin caused oxidative stress and apoptosis. Accumulation of Pt in cisplatin-treated cells was heterogeneous, but the frequency and concentration of Pt in cells were lowered in the presence of WR1065 as shown by X-ray fluorescence microscopy (XFM). Transition metals accumulation accompanied Pt increase in cells; this effect was equally diminished in the presence of WR1065. To analyze possible chemical modulation of Pt-DNA bonds, we examined the platinum LIII near edge spectrum by X-ray absorption spectroscopy. The spectrum found in cisplatin-DNA samples is altered differently by the addition of either WR1065 or sodium azide. Importantly, a similar change in Pt edge spectra was noted in cells treated with cisplatin and WR1065. Therefore, amifostine should be reconsidered as a candidate for treatments that reduce or prevent CIPN.
Collapse
Affiliation(s)
- Jelena Popović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Andrijana Klajn
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia
| | - Tatjana Paunesku
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA
| | - Qing Ma
- DND CAT, Northwestern Synchrotron Research Center at the Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Si Chen
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Barry Lai
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL, 60439, USA
| | - Milena Stevanović
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, 11010, Serbia.
- Faculty of Biology, University of Belgrade, Belgrade, 11000, Serbia.
- Serbian Academy of Sciences and Arts, Belgrade, 11000, Serbia.
| | - Gayle E Woloschak
- Feinberg School of Medicine, Department of Radiation Oncology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
3
|
Kheradmand A, Nayebi AM, Jorjani M, Khalifeh S, Haddadi R. Effects of WR1065 on 6-hydroxydopamine-induced motor imbalance: Possible involvement of oxidative stress and inflammatory cytokines. Neurosci Lett 2016; 627:7-12. [DOI: 10.1016/j.neulet.2016.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 05/14/2016] [Accepted: 05/20/2016] [Indexed: 01/04/2023]
|
4
|
Hofer M, Falk M, Komůrková D, Falková I, Bačíková A, Klejdus B, Pagáčová E, Štefančíková L, Weiterová L, Angelis KJ, Kozubek S, Dušek L, Galbavý Š. Two New Faces of Amifostine: Protector from DNA Damage in Normal Cells and Inhibitor of DNA Repair in Cancer Cells. J Med Chem 2016; 59:3003-17. [PMID: 26978566 DOI: 10.1021/acs.jmedchem.5b01628] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amifostine protects normal cells from DNA damage induction by ionizing radiation or chemotherapeutics, whereas cancer cells typically remain uninfluenced. While confirming this phenomenon, we have revealed by comet assay and currently the most sensitive method of DNA double strand break (DSB) quantification (based on γH2AX/53BP1 high-resolution immunofluorescence microscopy) that amifostine treatment supports DSB repair in γ-irradiated normal NHDF fibroblasts but alters it in MCF7 carcinoma cells. These effects follow from the significantly lower activity of alkaline phosphatase measured in MCF7 cells and their supernatants as compared with NHDF fibroblasts. Liquid chromatography-mass spectrometry confirmed that the amifostine conversion to WR-1065 was significantly more intensive in normal NHDF cells than in tumor MCF cells. In conclusion, due to common differences between normal and cancer cells in their abilities to convert amifostine to its active metabolite WR-1065, amifostine may not only protect in multiple ways normal cells from radiation-induced DNA damage but also make cancer cells suffer from DSB repair alteration.
Collapse
Affiliation(s)
- Michal Hofer
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Denisa Komůrková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Iva Falková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic.,Department of Medical Technology, St. Elisabeth University of Health and Social Sciences , Palackého 1, SK-810 00 Bratislava, Slovak Republic
| | - Alena Bačíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | | | - Eva Pagáčová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Lenka Štefančíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Lenka Weiterová
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Karel J Angelis
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences , Na Karlovce 1, CZ-160 00 Prague 6, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics, v.v.i., Czech Academy of Sciences , Královopolská 135, CZ-612 65 Brno, Czech Republic
| | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Masaryk University , Kamenice 126/3, CZ-625 00 Brno, Czech Republic
| | - Štefan Galbavý
- Department of Medical Technology, St. Elisabeth University of Health and Social Sciences , Palackého 1, SK-810 00 Bratislava, Slovak Republic
| |
Collapse
|
5
|
Sridharan DM, Asaithamby A, Bailey SM, Costes SV, Doetsch PW, Dynan WS, Kronenberg A, Rithidech KN, Saha J, Snijders AM, Werner E, Wiese C, Cucinotta FA, Pluth JM. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation. Radiat Res 2015; 183:1-26. [PMID: 25564719 DOI: 10.1667/rr13804.1] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures.
Collapse
Affiliation(s)
- D M Sridharan
- a Lawrence Berkeley National Laboratory, Berkeley, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dziegielewski J, Goetz W, Baulch JE. Heavy ions, radioprotectors and genomic instability: implications for human space exploration. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:303-316. [PMID: 20035342 DOI: 10.1007/s00411-009-0261-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 12/09/2009] [Indexed: 05/28/2023]
Abstract
The risk associated with space radiation exposure is unique from terrestrial radiation exposures due to differences in radiation quality, including linear energy transfer (LET). Both high- and low-LET radiations are capable of inducing genomic instability in mammalian cells, and this instability is thought to be a driving force underlying radiation carcinogenesis. Unfortunately, during space exploration, flight crews cannot entirely avoid radiation exposure. As a result, chemical and biological countermeasures will be an important component of successful extended missions such as the exploration of Mars. There are currently several radioprotective agents (radioprotectors) in use; however, scientists continue to search for ideal radioprotective compounds-safe to use and effective in preventing and/or reducing acute and delayed effects of irradiation. This review discusses the agents that are currently available or being evaluated for their potential as radioprotectors. Further, this review discusses some implications of radioprotection for the induction and/or propagation of genomic instability in the progeny of irradiated cells.
Collapse
|
7
|
Takagi M, Sakata KI, Someya M, Tauchi H, Iijima K, Matsumoto Y, Torigoe T, Takahashi A, Hareyama M, Fukushima M. Gimeracil sensitizes cells to radiation via inhibition of homologous recombination. Radiother Oncol 2010; 96:259-66. [PMID: 20584556 DOI: 10.1016/j.radonc.2010.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2010] [Revised: 05/14/2010] [Accepted: 05/27/2010] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE 5-Chloro-2,4-dihydroxypyridine (Gimeracil) is a component of an oral fluoropyrimidine derivative S-1. Gimeracil is originally added to S-1 to yield prolonged 5-FU concentrations in tumor tissues by inhibiting dihydropyrimidine dehydrogenase, which degrades 5-FU. We found that Gimeracil by itself had the radiosensitizing effect. METHODS AND MATERIALS We used various cell lines deficient in non-homologous end-joining (NHEJ) or homologous recombination (HR) as well as DLD-1 and HeLa in clonogenic assay. gamma-H2AX focus formation and SCneo assay was performed to examine the effects of Gimeracil on DNA double strand break (DSB) repair mechanisms. RESULTS Results of gamma-H2AX focus assay indicated that Gimeracil inhibited DNA DSB repair. It did not sensitize cells deficient in HR but sensitized those deficient in NHEJ. In SCneo assay, Gimeracil reduced the frequency of neo-positive clones. Additionally, it sensitized the cells in S-phase more than in G0/G1. CONCLUSIONS Gimeracil inhibits HR. Because HR plays key roles in the repair of DSBH caused by radiotherapy, Gimeracil may enhance the efficacy of radiotherapy through the suppression of HR-mediated DNA repair pathways.
Collapse
Affiliation(s)
- Masaru Takagi
- Department of Radiology, Sapporo Medical University, Hokkaido, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|