1
|
Hood MN, Ayompe E, Holmes-Hampton GP, Korotcov A, Wuddie K, Aschenake Z, Ahmed AE, Creavalle M, Knollmann-Ritschel B. Preliminary Promising Findings for Manganese Chloride as a Novel Radiation Countermeasure Against Acute Radiation Syndrome. Mil Med 2024; 189:598-607. [PMID: 39160887 DOI: 10.1093/milmed/usae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION Military members and first responders may, at moment's notice, be asked to assist in incidents that may result in radiation exposure such as Operation Tomadachi in which the U.S. Navy provided significant relief for the Fukushima Daiichi Nuclear Reactor accident in Japan after an earthquake and tsunami in 2011. We are also currently facing potential threats from nuclear power plants in the Ukraine should a power disruption to a nuclear plant interfere with cooling or other safety measures. Exposure to high doses of radiation results in acute radiation syndrome (ARS) characterized by symptoms arising from hematopoietic, gastrointestinal, and neurovascular injuries. Although there are mitigators FDA approved to treat ARS, there are currently no FDA-approved prophylactic medical interventions to help protect persons who may need to respond to radiation emergencies. There is strong evidence that manganese (Mn) has radiation protective efficacy as a promising prophylactic countermeasure. MATERIALS AND METHODS All animal procedures were approved by the Institutional Animal Care and Use Committee. Male and female B6D2F1J mice, 10 to 11 weeks old, were used for neurotoxicity studies and temporal effects of Mn. Four groups were evaluated: (1) vehicle injection, (2) dose of 4.5 mg/kg for 3 days, (3) dose of 13.5 mg/kg, and (4) sham. Irradiated mice were exposed to 9.5 Gy whole body Co60 γ-radiation. MRI was performed with a high dose of manganese chloride (MnCl2) (150 mg/kg) to assess the distribution of the MnCl2. RESULTS The mice have promising survival curves (highest survival-13.5 mg/kg dose over 3 days of MnCl2 at 80% [87% female, 73% male] P = 0.0004). The complete blood count (CBC) results demonstrated a typical hematopoietic response in all of the irradiated groups, followed by mildly accelerated recovery by day 28 in the treated groups. No difference between groups was measured by Rota Rod, DigiGait, and Y-maze. Histologic evaluation of the bone marrow sections in the group given 13.5 mg/kg dose over 3 days had the best return to cellularity at 80%. MRI showed a systemic distribution of MnCl2. DISCUSSION The preliminary data suggest that a dose of 13.5 mg/kg of MnCl2 given over 3 days prior to exposure of radiation may have a protective benefit while not exhibiting the neurobehavioral problems. A countermeasure that can prophylactically protect emergency personnel entering an area contaminated with high levels of radiation is needed, especially in light that nuclear accidents are a continued global threat. There is a need for a protective agent with easy long-term storage, easy to transport, easy to administer, and low cost. Histologic evaluation supports the promising effect of MnCl2 in protecting tissue, especially the bone marrow using the dose given over 3 days (4.5 mg/kg per day) of MnCl2. CONCLUSIONS Initial experiments show that MnCl2 is a promising safe and effective prophylactic countermeasure against ARS. MRI data support the systemic distribution of MnCl2 which is needed in order to protect multiple tissues in the body. The pathology data in bone marrow and the brain support faster recovery from radiation exposure in the treated animals and decreased organ damage.
Collapse
Affiliation(s)
- Maureen N Hood
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Emmanuel Ayompe
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Alexandru Korotcov
- Department of Radiology & Radiological Sciences, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Kefale Wuddie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Zemenu Aschenake
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Anwar E Ahmed
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Marqus Creavalle
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | |
Collapse
|
2
|
Mukherjee A, Epperly MW, Fisher R, Shields D, Hou W, Pennathur A, Luketich J, Wang H, Greenberger JS. Carcinogen 4-Nitroquinoline Oxide (4-NQO) Induces Oncostatin-M (OSM) in Esophageal Cells. In Vivo 2023; 37:506-518. [PMID: 36881075 PMCID: PMC10026636 DOI: 10.21873/invivo.13108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND/AIM The earliest cellular and molecular biologic changes in the esophagus that lead to esophageal cancer were evaluated in a mouse model. We correlated numbers of senescent cells with the levels of expression of potentially carcinogenic genes in sorted side population (SP) cells containing esophageal stem cells and non-stem cells in the non-side population cells in the 4-nitroquinolone oxide (NQO)-treated esophagus. MATERIALS AND METHODS We compared stem cells with non-stem cells from the esophagus of mice treated with the chemical carcinogen 4-NQO (100 μg/ml) in drinking water. We also compared gene expression in human esophagus samples treated with 4-NQO (100 μg/ml media) to non-treated samples. We separated and quantitated the relative levels of expression of RNA using RNAseq analysis. We identified senescent cells by luciferase imaging of p16+/LUC mice and senescent cells in excised esophagus from tdTOMp16+ mice. RESULTS A significant increase in the levels of RNA for oncostatin-M was found in senescent cells of the esophagus from 4-NQO-treated mice and human esophagus in vitro. CONCLUSION Induction of OSM in chemically-induced esophageal cancer in mice correlates with the appearance of senescent cells.
Collapse
Affiliation(s)
- Amitava Mukherjee
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Renee Fisher
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Wen Hou
- Department Radiation Oncology, UPMC-Hillman Cancer Center, Pittsburgh, PA, U.S.A
| | - Arjun Pennathur
- Department Thoracic Surgery, UPMC-Presbyterian Hospital, Pittsburgh, PA, U.S.A
| | - James Luketich
- Department Thoracic Surgery, UPMC-Presbyterian Hospital, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department Radiation Oncology, UPMC-Hillman Cancer Center, UPMC Cancer Pavilion, Pittsburgh, PA, U.S.A.
| |
Collapse
|
3
|
Thermozier S, Zhang X, Hou W, Fisher R, Epperly MW, Liu B, Bahar I, Wang H, Greenberger JS. Radioresistance of Serpinb3a-/- Mice and Derived Hematopoietic and Marrow Stromal Cell Lines. Radiat Res 2019; 192:267-281. [PMID: 31295086 PMCID: PMC6759811 DOI: 10.1667/rr15379.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Serpins are a group of serine-proteases involved in multiple signal transduction pathways in mammalian cells. In particular, Serpinb3a is involved in the lysosomal necrosis cell death pathway with components that overlap with radiation-induced apoptosis. We investigated the radiation response of Serpinb3a-/- mice compared to Serpinb3a+/+ mice on the Balb/c background. Serpinb3a-/- mice showed significant radioresistance to a dose of 8.0 Gy total-body irradiation, compared to Serpinb3a+/+ Balb/c mice. Long-term bone marrow cultures from Serpinb3a-/- mice showed increased longevity. In clonogenic survival assays, fresh bone marrow hematopoietic progenitors, as well as clonal interleukin-3 (IL-3)-dependent hematopoietic progenitor and bone marrow stromal cell lines from Serpinb3a-/- mice were radioresistant. Serpinb3a-/- mouse bone marrow-derived stromal cell lines had increased baseline and postirradiation antioxidant capacity. Serpinb3a-/- bone marrow stromal cells showed increased radiation-induced RNA transcripts for MnSOD and p21, and decreased levels of p53 and TGF-b. Both irradiated Serpinb3a-/- mouse bone marrow stromal cell lines and plasma removed from total-body irradiated mice had decreased levels of expression of stress response and inflammation-associated proteins. Abrogation of Serpinb3a may be a potential new target for mitigation of radiation effects.
Collapse
Affiliation(s)
- Stephanie Thermozier
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Xichen Zhang
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Wen Hou
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Renee Fisher
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Michael W. Epperly
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| | - Bing Liu
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Ivet Bahar
- Department of Computational Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joel S. Greenberger
- Department of Radiation Oncology, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
4
|
Hu Y, Gaedcke J, Emons G, Beissbarth T, Grade M, Jo P, Yeager M, Chanock SJ, Wolff H, Camps J, Ghadimi BM, Ried T. Colorectal cancer susceptibility loci as predictive markers of rectal cancer prognosis after surgery. Genes Chromosomes Cancer 2017; 57:140-149. [PMID: 29119627 DOI: 10.1002/gcc.22512] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022] Open
Abstract
To understand the molecular mechanism of rectal cancer and develop markers for disease prognostication, we generated and explored a dataset from 243 rectal cancer patients by gene expression microarray analysis of cancer samples and matched controls, and SNP-arrays of germline DNA. We found that two of the loci most strongly linked with colorectal cancer (CRC) risk, 8q24 (upstream of MYC) and 18q21 (in the intron of SMAD7), as well as 20q13 (in the intron of LAMA5), are tightly associated with the prognosis of rectal cancer patients. For SNPs on 18q21 (rs12953717 and rs4464148) and 20q13 (rs4925386), alleles that correlate with higher risk for the development of CRC are associated with shorter disease free survival (DFS). However, for rs6983267 on 8q24, the low risk allele is associated with a higher risk for recurrence and metastasis after surgery, and importantly, is strongly correlated with the resistance of CRC cell lines to chemoradiotherapy (CRT). We also found that although MYC expression is dramatically increased in cancer, patients with higher levels of MYC have a better prognosis. The expression of SMAD7 is weakly correlated with DFS. Notably, the presence of the 8q24 and 18q21 SNP alleles is not correlated with expression levels of MYC and SMAD7. rs4464148, and probably rs6983267 and rs4925386, are linked with overall survival time of patients. In conclusion, we show that several CRC risk SNPs detect subpopulations of rectal cancer patients with poor prognosis, and that rs6983267 probably affects prognosis through interfering with the resistance of cancer cells to CRT.
Collapse
Affiliation(s)
- Yue Hu
- Section of Cancer Genomics, Genetics Branch, National Cancer Institute, Bethesda, MD, 20892
| | - Jochen Gaedcke
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Georg Emons
- Section of Cancer Genomics, Genetics Branch, National Cancer Institute, Bethesda, MD, 20892.,Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Tim Beissbarth
- Department of Medical Statistics, University Medical Center, Göttingen, 37075, Germany
| | - Marian Grade
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Peter Jo
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20850
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, 20850
| | - Hendrik Wolff
- Department of Radiation Oncology, University Medical Center, Göttingen, 37075, Germany
| | - Jordi Camps
- Section of Cancer Genomics, Genetics Branch, National Cancer Institute, Bethesda, MD, 20892
| | - B Michael Ghadimi
- Department of General, Visceral and Pediatric Surgery, University Medical Center, Göttingen, 37075, Germany
| | - Thomas Ried
- Section of Cancer Genomics, Genetics Branch, National Cancer Institute, Bethesda, MD, 20892
| |
Collapse
|
5
|
Maria OM, Eliopoulos N, Muanza T. Radiation-Induced Oral Mucositis. Front Oncol 2017; 7:89. [PMID: 28589080 PMCID: PMC5439125 DOI: 10.3389/fonc.2017.00089] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 04/21/2017] [Indexed: 01/11/2023] Open
Abstract
Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Osama Muhammad Maria
- Faculty of Medicine, Experimental Medicine Department, McGill University, Montreal, QC, Canada
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
| | - Nicoletta Eliopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Faculty of Medicine, Surgery Department, McGill University, Montreal, QC, Canada
| | - Thierry Muanza
- Faculty of Medicine, Experimental Medicine Department, McGill University, Montreal, QC, Canada
- Radiation Oncology Department, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada
- Oncology Department, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Song X, Xie Y, Kang R, Hou W, Sun X, Epperly MW, Greenberger JS, Tang D. FANCD2 protects against bone marrow injury from ferroptosis. Biochem Biophys Res Commun 2016; 480:443-449. [PMID: 27773819 PMCID: PMC6591579 DOI: 10.1016/j.bbrc.2016.10.068] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 02/07/2023]
Abstract
Bone marrow injury remains a serious concern in traditional cancer treatment. Ferroptosis is an iron- and oxidative-dependent form of regulated cell death that has become part of an emerging strategy for chemotherapy. However, the key regulator of ferroptosis in bone marrow injury remains unknown. Here, we show that Fanconi anemia complementation group D2 (FANCD2), a nuclear protein involved in DNA damage repair, protects against ferroptosis-mediated injury in bone marrow stromal cells (BMSCs). The classical ferroptosis inducer erastin remarkably increased the levels of monoubiquitinated FANCD2, which in turn limited DNA damage in BMSCs. FANCD2-deficient BMSCs were more sensitive to erastin-induced ferroptosis (but not autophagy) than FANCD2 wild-type cells. Knockout of FANCD2 increased ferroptosis-associated biochemical events (e.g., ferrous iron accumulation, glutathione depletion, and malondialdehyde production). Mechanically, FANCD2 regulated genes and/or expression of proteins involved in iron metabolism (e.g., FTH1, TF, TFRC, HAMP, HSPB1, SLC40A1, and STEAP3) and lipid peroxidation (e.g., GPX4). Collectively, these findings indicate that FANCD2 plays a novel role in the negative regulation of ferroptosis. FANCD2 could represent an amenable target for the development of novel anticancer therapies aiming to reduce the side effects of ferroptosis inducers.
Collapse
Affiliation(s)
- Xinxin Song
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yangchun Xie
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Wen Hou
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Xiaofang Sun
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China.
| |
Collapse
|
7
|
Antiferroptotic activity of non-oxidative dopamine. Biochem Biophys Res Commun 2016; 480:602-607. [PMID: 27793671 DOI: 10.1016/j.bbrc.2016.10.099] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
Abstract
Dopamine is a neurotransmitter that has many functions in the nervous and immune systems. Ferroptosis is a non-apoptotic form of regulated cell death that is involved in cancer and neurodegenerative diseases. However, the role of dopamine in ferroptosis remains unidentified. Here, we show that the non-oxidative form of dopamine is a strong inhibitor of ferroptotic cell death. Dopamine dose-dependently blocked ferroptosis in cancer (PANC1 and HEY) and non-cancer (MEF and HEK293) cells following treatment with erastin, a small molecule ferroptosis inducer. Notably, dopamine reduced erastin-induced ferrous iron accumulation, glutathione depletion, and malondialdehyde production. Mechanically, dopamine increased the protein stability of glutathione peroxidase 4, a phospholipid hydroperoxidase that protects cells against membrane lipid peroxidation. Moreover, dopamine suppressed dopamine receptor D4 protein degradation and promoted dopamine receptor D5 gene expression. Thus, our findings uncover a novel function of dopamine in cell death and provide new insight into the regulation of iron metabolism and lipid peroxidation by neurotransmitters.
Collapse
|
8
|
Shinde A, Berhane H, Rhieu BH, Kalash R, Xu K, Goff J, Epperly MW, Franicola D, Zhang X, Dixon T, Shields D, Wang H, Wipf P, Parmar K, Guinan E, Kagan V, Tyurin V, Ferris RL, Zhang X, Li S, Greenberger JS. Intraoral Mitochondrial-Targeted GS-Nitroxide, JP4-039, Radioprotects Normal Tissue in Tumor-Bearing Radiosensitive Fancd2(-/-) (C57BL/6) Mice. Radiat Res 2016; 185:134-50. [PMID: 26789701 DOI: 10.1667/rr14035.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We evaluated normal tissue specific radioprotection of the oral cavity in radiosensitive Fanconi Anemia (FA) Fancd2(-/-) mice with orally established tumors using mitochondrial-targeted GS-nitroxide (JP4-039). Adult (10-12 weeks old) Fancd2(+/+), Fancd2(+/-) and Fancd2(-/-) mice (C57BL/6 background) and subgroups with orally established TC-1 epithelial cell tumors received a single fraction of 28 Gy or four daily fractions of 8 Gy to the head and neck. Subgroups received JP4-039 in F15 emulsion (F15/JP4-039; 0.4 mg/mouse), 4-amino-Tempo in F15 emulsion (F15/4-amino-Tempo; 0.2 mg/mouse) or F15 emulsion alone prior to each irradiation. Oral mucosa of Fancd2(-/-) mice showed baseline elevated RNA transcripts for Sod2, p53, p21 and Rad51 (all P < 0.0012) and suppressed levels of Nfkb and Tgfb, (all P < 0.0020) compared with Fancd2(+/+) mice. The oral mucosa in tumor-bearing mice of all genotypes showed decreased levels of p53 and elevated Tgfb and Gadd45a (P ≤ 0.0001 for all three genotypes). Intraoral F15/JP4-039, but not F15/4-amino-Tempo, modulated radiation-induced normal tissue transcript elevation, ameliorated mucosal ulceration and reduced the depletion of antioxidant stores in oral cavity tissue of all genotypes, but did not radioprotect tumors. Mitochondrial targeting makes F15/JP4-039 an effective normal tissue radioprotector for Fancd2(-/-) mice, as well as wild-type mice.
Collapse
Affiliation(s)
- Ashwin Shinde
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Hebist Berhane
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Byung Han Rhieu
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Ronny Kalash
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Karen Xu
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Julie Goff
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Michael W Epperly
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Darcy Franicola
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Xichen Zhang
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Tracy Dixon
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Donna Shields
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Hong Wang
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | | | - Kalindi Parmar
- b Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115; and Departments of
| | - Eva Guinan
- b Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115; and Departments of
| | | | | | | | - Xiaolan Zhang
- f School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Song Li
- f School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Joel S Greenberger
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
9
|
Gene therapy for radioprotection. Cancer Gene Ther 2015; 22:172-80. [PMID: 25721205 DOI: 10.1038/cgt.2015.8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/01/2014] [Accepted: 01/22/2015] [Indexed: 11/08/2022]
Abstract
Radiation therapy is a critical component of cancer treatment with over half of patients receiving radiation during their treatment. Despite advances in image-guided therapy and dose fractionation, patients receiving radiation therapy are still at risk for side effects due to off-target radiation damage of normal tissues. To reduce normal tissue damage, researchers have sought radioprotectors, which are agents capable of protecting tissue against radiation by preventing radiation damage from occurring or by decreasing cell death in the presence of radiation damage. Although much early research focused on small-molecule radioprotectors, there has been a growing interest in gene therapy for radioprotection. The amenability of gene therapy vectors to targeting, as well as the flexibility of gene therapy to accomplish ablation or augmentation of biologically relevant genes, makes gene therapy an excellent strategy for radioprotection. Future improvements to vector targeting and delivery should greatly enhance radioprotection through gene therapy.
Collapse
|
10
|
Greenberger J, Kagan V, Bayir H, Wipf P, Epperly M. Antioxidant Approaches to Management of Ionizing Irradiation Injury. Antioxidants (Basel) 2015; 4:82-101. [PMID: 26785339 PMCID: PMC4665573 DOI: 10.3390/antiox4010082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/12/2015] [Indexed: 11/25/2022] Open
Abstract
Ionizing irradiation induces acute and chronic injury to tissues and organs. Applications of antioxidant therapies for the management of ionizing irradiation injury fall into three categories: (1) radiation counter measures against total or partial body irradiation; (2) normal tissue protection against acute organ specific ionizing irradiation injury; and (3) prevention of chronic/late radiation tissue and organ injury. The development of antioxidant therapies to ameliorate ionizing irradiation injury began with initial studies on gene therapy using Manganese Superoxide Dismutase (MnSOD) transgene approaches and evolved into applications of small molecule radiation protectors and mitigators. The understanding of the multiple steps in ionizing radiation-induced cellular, tissue, and organ injury, as well as total body effects is required to optimize the use of antioxidant therapies, and to sequence such approaches with targeted therapies for the multiple steps in the irradiation damage response.
Collapse
Affiliation(s)
- Joel Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Rm. 533, Pittsburgh, PA 15232, USA.
| | - Valerian Kagan
- Department of Environmental/Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Hulya Bayir
- Department of Critical Care Medicine, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Rm. 533, Pittsburgh, PA 15232, USA.
| |
Collapse
|
11
|
Rhieu BH, Shinde A, Epperly MW, Dixon T, Wang H, Chaillet R, Greenberger JS. Organ-specific responses of total body irradiated doxycycline-inducible manganese superoxide dismutase Tet/Tet mice. In Vivo 2014; 28:1033-1043. [PMID: 25398796 PMCID: PMC6436100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND/AIM We evaluated doxycycline-inducible manganese superoxide dismutase (MnSOD(tet/tet)) mice after 9.25 Gy total-body irradiation (TBI) or 20 Gy thoracic irradiation. MATERIALS AND METHODS Six-week-old MnSOD(tet/tet) or control C57BL/6NHsd mice on or off doxycycline (doxy) in food received 9.25 Gy TBI, were sacrificed at day 19 and bone marrow, brain, esophagus, heart, intestine, kidney, liver, lung, spleen and tongue harvested, total RNAs extracted and transcripts for irradiation response genes quantitated by real time-polymerase chain reaction (RT-PCR). RESULTS MnSOD(tet/tet) mice only survived with daily injections of doxy beginning 5 days after birth until weaning, at which time they were placed on food containing doxy. Manganese superoxide dismutase (MnSOD) transcript levels were reduced in all tissues except the lung. Adult mice survived with low MnSOD levels, but induced by doxy or TBI. Thoracic-irradiated MnSOD(tet/tet) mice survived past day 120. CONCLUSION MnSOD(tet/tet) mice should be valuable for elucidating the role of MnSOD in growth and irradiation response.
Collapse
Affiliation(s)
- Byung Han Rhieu
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Ashwin Shinde
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Tracy Dixon
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Richard Chaillet
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
12
|
Shinde A, Epperly MW, Cao S, Holt D, Goff J, Shields D, Franicola D, Wipf P, Wang H, Greenberger JS. Improved hematopoiesis in GS-nitroxide (JP4-039)-treated mouse long-term bone marrow cultures and radioresistance of derived bone marrow stromal cell lines. In Vivo 2014; 28:699-708. [PMID: 25189880 PMCID: PMC6477534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
AIM To determine if the small-molecule radioprotector GS-nitroxide, JP4-039, improved hematopoiesis in long-term bone marrow cultures (LTBMCs), explanted marrow from in vivo drug-treated C57BL/6NTac mice was maintained in JP4-039 for 25 weeks. Hematopoietic cell production and radiobiology of derived stromal cell lines was measured. MATERIALS AND METHODS Groups of LTBMCs were established from mouse groups. Stromal cell lines were established from the adherent layer of JP4-039-treated and untreated control groups. RESULTS LTBMCs maintained in JP4-039 exhibited increased production of total non-adherent and 7-day and 14-day hematopoietic colony-forming cells. Stromal cell lines derived from JP4-039-treated cultures were radioresistant in vitro, demonstrated a distinct squamous/epithelial morphology and overexpressed Nrf2, Ctgf, Lox, Tlr1, collagen 1a, Brd3, and Brd4. CONCLUSION Chronic treatment of bone marrow cultures and derived stromal cell lines with JP4-039 was non-toxic, and conferred resistance to oxidative stress.
Collapse
Affiliation(s)
- Ashwin Shinde
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Shaonan Cao
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Douglas Holt
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Julie Goff
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry and Ctr. for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
13
|
Burger N, Biswas A, Barzan D, Kirchner A, Hosser H, Hausmann M, Hildenbrand G, Herskind C, Wenz F, Veldwijk MR. A method for the efficient cellular uptake and retention of small modified gold nanoparticles for the radiosensitization of cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1365-73. [DOI: 10.1016/j.nano.2014.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/28/2014] [Accepted: 03/16/2014] [Indexed: 12/16/2022]
|
14
|
Berhane H, Shinde A, Kalash R, Xu K, Epperly MW, Goff J, Franicola D, Zhang X, Dixon T, Shields D, Wang H, Wipf P, Li S, Gao X, Greenberger JS. Amelioration of radiation-induced oral cavity mucositis and distant bone marrow suppression in fanconi anemia Fancd2-/- (FVB/N) mice by intraoral GS-nitroxide JP4-039. Radiat Res 2014; 182:35-49. [PMID: 24932534 PMCID: PMC4101533 DOI: 10.1667/rr13633.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The altered DNA damage response pathway in patients with Fanconi anemia (FA) may increase the toxicity of clinical radiotherapy. We quantitated oral cavity mucositis in irradiated Fanconi anemia Fancd2(-/-) mice, comparing this to Fancd2(+/-) and Fancd2(+/+) mice, and we measured distant bone marrow suppression and quantitated the effect of the intraoral radioprotector GS-nitroxide, JP4-039 in F15 emulsion. We found that FA mice were more susceptible to radiation injury and that protection from radiation injury by JP4-039/F15 was observed at all radiation doses. Adult 10-12-week-old mice, of FVB/N background Fancd2(-/-), Fancd2(+/-) and Fancd2(+/+) were head and neck irradiated with 24, 26, 28 or 30 Gy (large fraction sizes typical of stereotactic radiosurgery treatments) and subgroups received intraoral JP4-039 (0.4 mg/mouse in 100 μL F15 liposome emulsion) preirradiation. On day 2 or 5 postirradiation, mice were sacrificed, tongue tissue and femur marrow were excised for quantitation of radiation-induced stress response, inflammatory and antioxidant gene transcripts, histopathology and assay for femur marrow colony-forming hematopoietic progenitor cells. Fancd2(-/-) mice had a significantly higher percentage of oral mucosal ulceration at day 5 after 26 Gy irradiation (59.4 ± 8.2%) compared to control Fancd2(+/+) mice (21.7 ± 2.9%, P = 0.0063). After 24 Gy irradiation, Fancd2(-/-) mice had a higher oral cavity percentage of tongue ulceration compared to Fancd2(+/+) mice irradiated with higher doses of 26 Gy (P = 0.0123). Baseline and postirradiation oral cavity gene transcripts were altered in Fancd2(-/-) mice compared to Fancd2(+/+) controls. Fancd2(-/-) mice had decreased baseline femur marrow CFU-GM, BFUe and CFU-GEMM, which further decreased after 24 or 26 Gy head and neck irradiation. These changes were not seen in head- and neck-irradiated Fancd2(+/+) mice. In radiosensitive Fancd2(-/-) mice, biomarkers of both local oral cavity and distant marrow radiation toxicity were ameliorated by intraoral JP4-039/F15. We propose that Fancd2(-/-) mice are a valuable radiosensitive animal model system, which can be used to evaluate potential radioprotective agents.
Collapse
Affiliation(s)
- Hebist Berhane
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Ashwin Shinde
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Ronny Kalash
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Karen Xu
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Julie Goff
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Tracy Dixon
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Donna Shields
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Song Li
- School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Xiang Gao
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
15
|
Epperly MW, Goff JP, Franicola D, Wang H, Wipf P, Li S, Greenberger JS. Esophageal radioprotection by swallowed JP4-039/F15 in thoracic-irradiated mice with transgenic lung tumors. In Vivo 2014; 28:435-440. [PMID: 24982207 PMCID: PMC6436097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND/AIM To determine whether Gramicidin S (GS)-nitroxide, JP4-039, esophageal radiation protection protected lung tumors in a transgenic model, LoxP-Stoop-LoxP Kristen Rat Sarcoma Viral oncogene (LSL-K-RAS) mice were administered intra-tracheal- Carbapenem-resistant Enterobacteriaceae (CRE) recombinase, bilateral lung tumors were confirmed at 11 weeks, then thoracic irradiation was delivered. MATERIALS AND METHODS Mice received single-fraction 15 Gy or 24 Gy to both lungs, in subgroups receiving intraesophageal administration 10 min before irradiation of JP4-039 (in F15 emulsion) tumor size reduction and survival were investigated. Mice were followed for survival, and reduction in tumor size. RESULTS There was no evidence of tumor radioprotection in mice receiving JP4-039/F15. CONCLUSION Intraesophageal radioprotective small-molecule antioxidant therapy protects normal tissue but not tumor tissue in mice with transgenic lung tumors.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, UPCI Cancer Institute, Pittsburgh, PA, USA
| | - Julie P Goff
- Department of Radiation Oncology, UPCI Cancer Institute, Pittsburgh, PA, USA
| | - Darcy Franicola
- Department of Radiation Oncology, UPCI Cancer Institute, Pittsburgh, PA, USA
| | - Hong Wang
- Department of Radiation Oncology, UPCI Cancer Institute, Pittsburgh, PA, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A. Center for Chemical Methodologies & Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Song Li
- Department of Pharmaceutical Science, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, UPCI Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Shinde A, Epperly MW, Cao S, Franicola D, Shields D, Wang H, Wipf P, Sprachman MM, Greenberger JS. Effects of the bifunctional sulfoxide MMS350, a radiation mitigator, on hematopoiesis in long-term bone marrow cultures and on radioresistance of marrow stromal cell lines. In Vivo 2014; 28:457-465. [PMID: 24982210 PMCID: PMC6591577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The ionizing irradiation mitigator MMS350 prolongs survival of mice treated with total-body irradiation and prevents radiation-induced pulmonary fibrosis when added to drinking water at day 100 after thoracic irradiation. The effects of MMS350 on hematopoiesis in long-term bone marrow culture and on the radiobiology of derived bone marrow stromal cell lines were tested. Long-term bone marrow cultures were established from C57BL/6NTac mice and maintained in a high-humidity incubator, with 7% CO2 and the addition of 100 μM MMS350 at the weekly media change. Over 10 weeks in culture, MMS350 had no significant effect on maintenance of hematopoietic stem cell production, or on nonadherent cells or colony-forming units of hematopoietic progenitor cells. Stromal cell lines derived from non MMS350-treated long-term cultures or control stromal cells treated with MMS350 were radioresistant in the clonogenic survival curve assay. MMS350 is a non-toxic, highly water-soluble radiation mitigator that exhibits radioprotective effects on bone marrow stromal cells.
Collapse
Affiliation(s)
- Ashwin Shinde
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Shaonan Cao
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Donna Shields
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A. Center For Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Melissa M Sprachman
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, U.S.A. Center For Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, PA, U.S.A
| | - Joel S Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, U.S.A.
| |
Collapse
|
17
|
Kalash R, Berhane H, Au J, Rhieu BH, Epperly MW, Goff J, Dixon T, Wang H, Zhang X, Franicola D, Shinde A, Greenberger JS. Differences in irradiated lung gene transcription between fibrosis-prone C57BL/6NHsd and fibrosis-resistant C3H/HeNHsd mice. In Vivo 2014; 28:147-71. [PMID: 24632969 PMCID: PMC4074886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND/AIM We compared pulmonary irradiation-induced whole-lung, gene transcripts over 200 days after 20 Gy thoracic irradiation in female fibrosis-prone C57BL/6NHsd mice with fibrosis-resistant C3H/HeNHsd mice. MATERIALS AND METHODS Lung specimens were analyzed by real time polymerase chain reaction (rt-PCR) and changes over time in representative gene transcript levels were correlated with protein levels using western blot. RESULTS C3H/HeNHsd mice showed a significantly longer duration of elevation of gene transcripts for stress-response genes nuclear factor kappa-light-chain-enhancer of activated B cells (Nfkb), nuclear factor (erythroid-derived 2)-like 2 (Nrf2), transcription factor SP1 (SP1), activator protein 1 (AP1), radioprotection gene manganese superoxide dismutase (Sod2), and endothelial cell-associated genes von Willebrand factor (Vwf) and vascular endothelial growth factor (Vegf). C57BL/6NHsd mice showed acute elevation then down-regulation and a second elevation in gene transcripts for Nfkb, connective tissue growth factor (Ctgf), insulin-like growth factor-binding protein 7 (Igfbp7), tumor necrosis factor-alpha (Tnfa) Ctgf, Igfbp7, Tnfa, collagen 1a, and toll like receptor 4 (Tlr4). There were reciprocal patterns of elevation and decrease in levels of transcripts for epigenetic reader proteins bromodomain coding protein 1 (Brd1)Brd2,-3, and -4 between mouse strains. CONCLUSION Regulatory pathways linked to radiation pulmonary fibrosis may identify new targets for mitigators of radiation-induced fibrosis.
Collapse
Affiliation(s)
- Ronny Kalash
- Professor and Chairman, Department of Radiation Oncology, University of Pittsburgh Cancer Institute, UPMC Cancer Pavilion, 5150 Centre Avenue, Rm. 533, Pittsburgh, P A 15232, U.S.A.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Berhane H, Epperly MW, Goff J, Kalash R, Cao S, Franicola D, Zhang X, Shields D, Houghton F, Wang H, Wipf P, Parmar K, Greenberger JS. Radiologic differences between bone marrow stromal and hematopoietic progenitor cell lines from Fanconi Anemia (Fancd2(-/-)) mice. Radiat Res 2014; 181:76-89. [PMID: 24397476 DOI: 10.1667/rr13405.1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
FancD2 plays a central role in the human Fanconi anemia DNA damage response (DDR) pathway. Fancd2(-/-) mice exhibit many features of human Fanconi anemia including cellular DNA repair defects. Whether the DNA repair defect in Fancd2(-/-) mice results in radiologic changes in all cell lineages is unknown. We measured stress of hematopoiesis in long-term marrow cultures and radiosensitivity in clonogenic survival curves, as well as comet tail intensity, total antioxidant stores and radiation-induced gene expression in hematopoietic progenitor compared to bone marrow stromal cell lines. We further evaluated radioprotection by a mitochondrial-targeted antioxidant GS-nitroxide, JP4-039. Hematopoiesis longevity in Fancd2(-/-) mouse long-term marrow cultures was diminished and bone marrow stromal cell lines were radiosensitive compared to Fancd2(+/+) stromal cells (Fancd2(-/-) D0 = 1.4 ± 0.1 Gy, ñ = 5.0 ± 0.6 vs. Fancd2(+/+) D0 = 1.6 ± 0.1 Gy, ñ = 6.7 ± 1.6), P = 0.0124 for D0 and P = 0.0023 for ñ, respectively). In contrast, Fancd2(-/-) IL-3-dependent hematopoietic progenitor cells were radioresistant (D0 = 1.71 ± 0.04 Gy and ñ = 5.07 ± 0.52) compared to Fancd2(+/+) (D0 = 1.39 ± 0.09 Gy and ñ = 2.31 ± 0.85, P = 0.001 for D0). CFU-GM from freshly explanted Fancd2(-/-) marrow was also radioresistant. Consistent with radiosensitivity, irradiated Fancd2(-/-) stromal cells had higher DNA damage by comet tail intensity assay compared to Fancd2(+/+) cells (P < 0.0001), slower DNA damage recovery, lower baseline total antioxidant capacity, enhanced radiation-induced depletion of antioxidants, and increased CDKN1A-p21 gene transcripts and protein. Consistent with radioresistance, Fancd2(-/-) IL-3-dependent hematopoietic cells had higher baseline and post irradiation total antioxidant capacity. While, there was no detectable alteration of radiation-induced cell cycle arrest with Fancd2(-/-) stromal cells, hematopoietic progenitor cells showed reduced G2/M cell cycle arrest. The absence of the mouse Fancd2 gene product confers radiosensitivity to bone marrow stromal but not hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Hebist Berhane
- a Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15213
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kalash R, Berhane H, Yang Y, Epperly MW, Wang H, Dixon T, Rhieu B, Greenberger JS, Huq MS. Improved survival of mice after total body irradiation with 10 MV photon, 2400 MU/min SRS beam. In Vivo 2014; 28:1-12. [PMID: 24425830 PMCID: PMC4046118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND/AIM We evaluated the radiobiological effects of stereotactic radiosurgery (SRS) photon beams on survival of C57BL/6NTac mice following total body irradiation. MATERIALS AND METHODS Survival of Lewis lung carcinoma (3LL) cells was tested after irradiation using 6 MV: 300 MU/min or 1400 MU/min; or 10 MV: 300 MU/min or 2400 MU/min. Survival of C57BL/6NTac mice after a dose which is lethal to 50% of the mice in 30 days (LD50/30) (9.25 Gy) total body irradiation (TBI) and 21 Gy to orthotopic 3LL tumors was tested. We quantitated levels of organ-specific gene transcripts by Real Time Polymerase Chain Reaction (RT-PCR). RESULTS While 3LL cell survival and inhibition of orthotopic tumor growth was uniform, 10 MV photons at 2400 MU/min TBI led to significantly greater survival (p=0.0218), with higher levels of intestinal (Sod2), (Gpx1), (Nrf2), and (NFκB) RNA transcripts. CONCLUSION Clinical 10 MV-2400 cGy/min SRS beams led to unexpected protection of mice on TBI and increased radioprotective gene transcripts.
Collapse
Affiliation(s)
- Ronny Kalash
- Professor and Chairman, Department of Radiation Oncology, University of Pittsburgh Cancer Institute, UPMC Cancer Pavilion, 5150 Centre Avenue, Rm. 533, Pittsburgh, PA 15232, U.S.A.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kalash R, Epperly MW, Goff J, Dixon T, Sprachman MM, Zhang X, Shields D, Cao S, Franicola D, Wipf P, Berhane H, Wang H, Au J, Greenberger JS. Amelioration of radiation-induced pulmonary fibrosis by a water-soluble bifunctional sulfoxide radiation mitigator (MMS350). Radiat Res 2013; 180:474-90. [PMID: 24125487 PMCID: PMC3894523 DOI: 10.1667/rr3233.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A water-soluble ionizing radiation mitigator would have considerable advantages for the management of acute and chronic effects of ionizing radiation. We report that a novel oxetanyl sulfoxide (MMS350) is effective both as a protector and a mitigator of clonal mouse bone marrow stromal cell lines in vitro, and is an effective in vivo mitigator when administered 24 h after 9.5 Gy (LD100/30) total-body irradiation of C57BL/6NHsd mice, significantly improving survival (P = 0.0097). Furthermore, MMS350 (400 μM) added weekly to drinking water after 20 Gy thoracic irradiation significantly decreased: expression of pulmonary inflammatory and profibrotic gene transcripts and proteins; migration into the lungs of bone marrow origin luciferase+/GFP+ (luc+/GFP+) fibroblast progenitors (in both luc+ marrow chimeric and luc+ stromal cell line injected mouse models) and decreased radiation-induced pulmonary fibrosis (P < 0.0001). This nontoxic and orally administered small molecule may be an effective therapeutic in clinical radiotherapy and as a counter measure against the acute and chronic effects of ionizing radiation.
Collapse
Affiliation(s)
- Ronny Kalash
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Michael W. Epperly
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Julie Goff
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Tracy Dixon
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Melissa M. Sprachman
- Chemistry Department and Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xichen Zhang
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Donna Shields
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Shaonan Cao
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Darcy Franicola
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Peter Wipf
- Chemistry Department and Center for Chemical Methodologies and Library Development, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hebist Berhane
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Hong Wang
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Jeremiah Au
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Joel S. Greenberger
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Berhane H, Epperly MW, Cao S, Goff JP, Franicola D, Wang H, Greenberger JS. Radioresistance of bone marrow stromal and hematopoietic progenitor cell lines derived from Nrf2-/- homozygous deletion recombinant-negative mice. In Vivo 2013; 27:571-582. [PMID: 23988890 PMCID: PMC4023272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
AIM We determined whether bone marrow from Nrf2(-/-) compared with Nrf2(+/+) mice differed in response to the oxidative stress of continuous marrow culture, and in radiosensitivity of derived stromal and interleukin-3 (IL-3)-dependent hematopoietic progenitor cells. MATERIALS AND METHODS Hematopoiesis longevity in Nrf2(-/-) was compared with Nrf2(+/+) mice in long-term bone marrow cultures. Clonogenic irradiation survival curves were performed on derived cell lines. Total antioxidant capacity at baseline in nonirradiated cells and at 24 hours after 5 Gy and 10 Gy irradiation was quantitated using an antioxidant reductive capacity assay. RESULTS Long-term cultures of bone marrow from Nrf2(-/-) compared to Nrf2(+/+) mice demonstrated equivalent longevity of production of total cells and hematopoietic progenitor cells forming multi-lineage hematopoietic colonies over 26 weeks in culture. Both bone marrow stromal cell lines and Il-3-dependent hematopoietic progenitor cell lines derived from Nrf2(-/-) mouse marrow cultures were radioresistant compared to Nrf2(+/+)-derived cell lines. Both DNA repair assay and total antioxidant capacity assay showed no defect in Nrf2(-/-) compared to Nrf2(+/+) stromal cells and IL-3-dependent cells. CONCLUSION The absence of a functional Nrf2 gene product does not alter cellular interactions in continuous marrow culture, nor response to dsDNA damage repair and antioxidant response. However, lack of the Nrf2 gene does confer radioresistance on marrow stromal and hematopoietic cells.
Collapse
Affiliation(s)
- Hebist Berhane
- University of Pittsburgh Cancer Institute, Department of Radiation Oncology, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Epperly MW, Chaillet JR, Kalash R, Shaffer B, Goff J, Franicola D, Zhang X, Dixon T, Houghton F, Wang H, Berhane H, Romero C, Kim JH, Greenberger JS. Conditional radioresistance of Tet-inducible manganese superoxide dismutase bone marrow stromal cell lines. Radiat Res 2013; 180:189-204. [PMID: 23862693 DOI: 10.1667/rr3177.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial targeted manganese superoxide dismutase is a major antioxidant enzyme, the levels of which modulate the response of cells, tissues and organs to ionizing irradiation. We developed a Tet-regulated MnSOD mouse (MnSOD(tet)) to examine the detailed relationship between cellular MnSOD concentration and radioresistance and carried out in vitro studies using bone marrow culture derived stromal cell lines (mesenchymal stem cells). Homozygous MnSOD(tet/tet) cells had low levels of MnSOD, reduced viability and proliferation, increased radiosensitivity, elevated overall antioxidant stores, and defects in cell proliferation and DNA strand-break repair. Doxycycline (doxy) treatment of MnSOD(tet/tet) cells increased MnSOD levels and radioresistance from ñ of 2.79 ± 1.04 to 8.69 ± 1.09 (P = 0.0060) and normalized other biologic parameters. In contrast, MnSOD(tet/tet) cells showed minimal difference in baseline and radiation induced mRNA and protein levels of TGF-β, Nrf2 and NF-κB and radiation induced cell cycle arrest was not dependent upon MnSOD level. These novel MnSOD(tet/tet) mouse derived cells should be valuable for elucidating several parameters of the oxidative stress response to ionizing radiation.
Collapse
Affiliation(s)
- Michael W Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania 15232, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Epperly M, Berhane H, Cao S, Shields D, Franicola D, Goff JP, Zhang X, Wang H, Friedlander R, Greenberger JS. Increased longevity of hematopoiesis in continuous marrow cultures and radiation resistance of marrow stromal and hematopoietic progenitor cells from caspase-1 homozygous recombinant-negative (knockout) mice. In Vivo 2013; 27:419-430. [PMID: 23812211 PMCID: PMC3775015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
AIM We determined whether absence of caspase-1 altered the stress response of hematopoietic and bone marrow stromal cells in vitro. MATERIALS AND METHODS Long-term bone marrow cultures from caspase-1 -/- and control caspase-1 +/+ mice were established and the derived bone marrow stromal and interleukin-3 (Il-3)-dependent hematopoietic progenitor cell lines were evaluated for radiosensitivity. RESULTS Long-term bone marrow cultures from caspase-1 -/- mice generated hematopoietic cells for over 30 weeks in vitro, significantly longer than controls did (p=0.0018). Bone marrow stromal (mesenchymal stem cell) and Il-3-dependent hematopoietic progenitor cell lines from caspase-1-/- marrow cultures compared to caspase-1 +/+ were radioresistant (p=0.0486 and p=0.0235 respectively). Total-body irradiated caspase-1 -/- mice were not significantly radioresistant compared to controls (p=0.6542). CONCLUSION Caspase-1 deletion increases hematopoiesis and radioresistance of bone marrow cells in vitro.
Collapse
Affiliation(s)
- Michael Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kalash R, Berhane H, Goff J, Houghton F, Epperly MW, Dixon T, Zhang X, Sprachman MM, Wipf P, Franicola D, Wang H, Greenberger JS. Effects of thoracic irradiation on pulmonary endothelial compared to alveolar type-II cells in fibrosis-prone C57BL/6NTac mice. In Vivo 2013; 27:291-297. [PMID: 23606683 PMCID: PMC3783952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND/AIM Thoracic irradiation results in an acute inflammatory response, latent period, and late fibrosis. Little is known about the mechanisms involved in triggering late radiation fibrosis. MATERIALS AND METHODS Thoracic irradiated fibrosis prone C57BL/6NTac mice were followed for detectable mRNA transcripts in isolated lung cells and micro-RNA in whole-tissues, and the effect of administration of water-soluble oxetanyl sulfoxide MMS350 was studied. Marrow stromal cell motility in medium from fibrotic-phase explanted pulmonary endothelial and alveolar type-II cells was measured. RESULTS RNA and micro-RNA expression in lung correlated with fibrosis. MMS350 reduced pro-fibrotic gene expression in both endothelial and alveolar type-II cells in irradiated mice. Conditioned medium from irradiated cells did not alter cell motility in vitro. CONCLUSION These studies should facilitate identification of potential new drug targets for ameliorating irradiation-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Ronny Kalash
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hebist Berhane
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Julie Goff
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Frank Houghton
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Michael W. Epperly
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Tracy Dixon
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Xichen Zhang
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Melissa M. Sprachman
- Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Wipf
- Center for Chemical Methodologies and Library Development, Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Darcy Franicola
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hong Wang
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Joel S. Greenberger
- Radiation Oncology Department, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
25
|
Dysregulated in vitro hematopoiesis, radiosensitivity, proliferation, and osteoblastogenesis with marrow from SAMP6 mice. Exp Hematol 2012; 40:499-509. [PMID: 22326715 DOI: 10.1016/j.exphem.2012.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 01/12/2023]
Abstract
The senescence accelerated-prone mouse variant 6 (SAMP6) shows normal growth followed by rapid aging, development of osteopenia, and shortened lifespan, compared with control R1 mice. Because oxidative stress is a fundamental mechanism of tissue aging, we tested whether cellular parameters that are associated with oxidative stress are impaired with marrow from SAMP6 mice. We compared in vitro hematopoiesis, irradiation sensitivity, proliferative potential, and osteoblastogenesis with marrow cells from SAMP6 and R1 mice. Marrow cells from SAMP6 mice showed shortened in vitro hematopoiesis; their stromal cells showed greater radiation sensitivity and decreased proliferation. Consistent with those properties, there was constitutive upregulation of transforming growth factor-β(1), an inhibitor of hematopoiesis, and of cell cycle inhibitory genes, p16(INK4A) and p19(ARF). Paradoxically, there was constitutive expression of osteoblast genes in stromal cells from SAMP6 mice, but in vitro matrix mineralization was impaired. These studies and data included in other reports indicate that impaired proliferation of osteoblast progenitors in SAMP6 marrow may be a major factor contributing to accelerated loss of bone mass. In sum, marrow from SAMP6 mice had diminished capacity for long-term hematopoiesis, increased radiosensitivity, and reduced proliferative capacity.
Collapse
|
26
|
Greenberger JS, Clump D, Kagan V, Bayir H, Lazo JS, Wipf P, Li S, Gao X, Epperly MW. Strategies for discovery of small molecule radiation protectors and radiation mitigators. Front Oncol 2012; 1:59. [PMID: 22655254 PMCID: PMC3356036 DOI: 10.3389/fonc.2011.00059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 12/20/2011] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial targeted radiation damage protectors (delivered prior to irradiation) and mitigators (delivered after irradiation, but before the appearance of symptoms associated with radiation syndrome) have been a recent focus in drug discovery for (1) normal tissue radiation protection during fractionated radiotherapy, and (2) radiation terrorism counter measures. Several categories of such molecules have been discovered: nitroxide-linked hybrid molecules, including GS-nitroxide, GS-nitric oxide synthase inhibitors, p53/mdm2/mdm4 inhibitors, and pharmaceutical agents including inhibitors of the phosphoinositide-3-kinase pathway and the anti-seizure medicine, carbamazepine. Evaluation of potential new radiation dose modifying molecules to protect normal tissue includes: clonogenic radiation survival curves, assays for apoptosis and DNA repair, and irradiation-induced depletion of antioxidant stores. Studies of organ specific radioprotection and in total body irradiation-induced hematopoietic syndrome in the mouse model for protection/mitigation facilitate rational means by which to move candidate small molecule drugs along the drug discovery pipeline into clinical development.
Collapse
Affiliation(s)
- Joel S. Greenberger
- Radiation Oncology Department, University of Pittsburgh Cancer InstitutePittsburgh, PA, USA
| | - David Clump
- Radiation Oncology Department, University of Pittsburgh Cancer InstitutePittsburgh, PA, USA
| | - Valerian Kagan
- Environmental and Occupational Health Department, University of PittsburghPittsburgh, PA, USA
| | - Hülya Bayir
- Critical Care Medicine Department, University of Pittsburgh Medical CenterPittsburgh, PA, USA
| | - John S. Lazo
- Pharmacology Department, University of VirginiaCharlottesville, VA, USA
| | - Peter Wipf
- Department of Chemistry, Accelerated Chemical Discovery Center, University of PittsburghPittsburgh, PA, USA
| | - Song Li
- Pharmaceutical Science Department, University of PittsburghPittsburgh, PA, USA
| | - Xiang Gao
- Pharmaceutical Science Department, University of PittsburghPittsburgh, PA, USA
| | - Michael W. Epperly
- Radiation Oncology Department, University of Pittsburgh Cancer InstitutePittsburgh, PA, USA
| |
Collapse
|
27
|
Bernard ME, Kim H, Rajagopalan MS, Stone B, Salimi U, Rwigema JC, Epperly MW, Shen H, Goff JP, Franicola D, Dixon T, Cao S, Zhang X, Wang H, Stolz DB, Greenberger JS. Repopulation of the irradiation damaged lung with bone marrow-derived cells. In Vivo 2012; 26:9-18. [PMID: 22210711 PMCID: PMC3312241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
AIM The effect of lung irradiation on reduction of lung stem cells and repopulation with bone marrow-derived cells was measured. MATERIALS AND METHODS Expression of green fluorescent protein positive cells (GFP(+)) in the lungs of thoracic irradiated FVB/NHsd mice (Harlan Sprague Dawley, Indianapolis, IN, USA) was determined. This was compared to the repopulation of bone marrow-derived cells found in the lungs from naphthalene treated male FVB/NHsd mice and gangciclovir (GCV) treated FeVBN GFP(+) male marrow chimeric HSV-TK-CCSP. The level of mRNA for lung stem cell markers clara cell (CCSP), epithelium 1 (FOXJ1) and surfactant protein C (SP-C), and sorted single cells positive for marrow origin epithelial cells (GFP(+)CD45(-)) was measured. RESULTS The expression of pulmonary stem cells as determined by PCR was reduced most by GCV, then naphthalene, and least by thoracic irradiation. Irradiation, like GCV, reduced mRNA expression of CCSP, CYP2F2, and FOXJ1, while naphthalene reduced that of CCSP and CYP2F2. Ultrastructural analysis showed GFP(+) pulmonary cells of bone marrow origin, with the highest frequency being found in GCV-treated groups. CONCLUSION Bone marrow progenitor cells may not participate in the repopulation of the lung following irradiation.
Collapse
Affiliation(s)
- Mark E. Bernard
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hyun Kim
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Malolan S. Rajagopalan
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Brandon Stone
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Umar Salimi
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Jean-Claude Rwigema
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hongmei Shen
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie P. Goff
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Darcy Franicola
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Tracy Dixon
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Shaonan Cao
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Xichen Zhang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hong Wang
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Pearce LL, Zheng X, Martinez-Bosch S, Kerr PP, Khlangwiset P, Epperly MW, Fink MP, Greenberger JS, Peterson J. L-arginine is a radioprotector for hematopoietic progenitor cells. Radiat Res 2011; 177:792-803. [PMID: 22175298 DOI: 10.1667/rr1281.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
L-arginine is shown to protect hematopoietic progenitor (32D cl 3) cells from death due to exposure to γ radiation ((137)Cs). Some of the other intermediates in the urea cycle, namely ornithine and citrulline, plus urea itself, were not found to have any significant impact on cell survival after irradiation. Intriguingly, supplementation of irradiated cells with L-arginine results in decreased production of peroxynitrite, suggesting that suppression of superoxide generation by nitric oxide synthase in one or more microenvironments is an important factor in the observed radioprotection. The absence of any radioprotective effect of L-arginine in cells at 3% oxygen also confirms the involvement of one or more oxygen-derived species. Knockdown experiments with nitric oxide synthase (NOS) siRNAs in cells and NOS knockout animals confirm that the observed radioprotection is associated with nNOS (NOS-1). L-arginine also ameliorates the transient inhibition of the electron-transport chain complex I that occurs within 30 min of completing the dose (10 Gy) and that appears to be a functional marker for postirradiation mitochondrial oxidant production.
Collapse
Affiliation(s)
- Linda L Pearce
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219-3138, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bernard ME, Kim H, Rwigema JC, Epperly MW, Kelley EE, Murdoch GH, Dixon T, Wang H, Greenberger JS. Role of the esophageal vagus neural pathway in ionizing irradiation-induced seizures in nitric oxide synthase-1 homologous recombinant negative NOS1-/- mice. In Vivo 2011; 25:861-869. [PMID: 22021678 PMCID: PMC3593194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
AIM We sought to define the mechanism of total body irradiation (TBI)-induced seizures in NOS1(-/-) mice and amelioration by intra-esophageal manganese superoxide dismutase-plasmid liposomes (MnSOD-PL). MATERIALS AND METHODS We evaluated the role of vagus nerve pathways in irradiation-induced seizures using biochemical, physiologic, and histopathologic techniques. RESULTS Heterozygous NOS1(+/-) mice demonstrated radioresistance similar to wild-type C57BL/6NHsd mice (p=0.9269). Irradiation-induced lipid peroxidation in fetal brain cultures from NOS1(-/-) or wild-type mice was reduced by MnSOD-PL. Right-sided vagotomy did not alter the TBI radiation response of wild-type or reverse the radiosensitivity of NOS1(-/-) mice. Excised esophagus from irradiated NOS1(-/-) mice demonstrated an increased histopathologic inflammatory response compared to C57BL/6NHsd mice. CONCLUSION NOS1(-/-) mice represent a model system for dissecting the developmental abnormalities leading to esophageal-mediated TBI-induced seizures.
Collapse
Affiliation(s)
- Mark E Bernard
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Epperly MW, Smith T, Zhang X, Goff JP, Franicola D, Greenberger B, Komanduri P, Wang H, Greenberger JS. Modulation of in utero total body irradiation induced newborn mouse growth retardation by maternal manganese superoxide dismutase-plasmid liposome (MnSOD-PL) gene therapy. Gene Ther 2011; 18:579-83. [PMID: 21248791 PMCID: PMC3111807 DOI: 10.1038/gt.2010.178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To determine the effects of manganese superoxide dismutase (MnSOD) plasmid liposome (PL) maternal radioprotection on fetal mice, timed pregnant female mice (E14 gestation) were irradiated to 3.0 Gy total body irradiation (TBI) dose, and the number, weight and growth and development over 6 months after birth of newborn mice was quantitated compared with irradiated controls. Maternal MnSOD-PL treatment at E13 improved pup survival at birth (5.4±0.9 per litter) compared with non-irradiated 3.0 Gy controls 4.9±1.1. There was no statistically significant difference in newborn abnormalities, male to female ratio in newborn litters, or other evidence of teratogenesis in surviving newborn mice from MnSOD-PL treated compared with irradiated controls. However, E14 3 Gy irradiated pups from gene therapy-treated mothers showed a significant increase in both growth and overall survival over 6 months after birth (P=0.0022). To determine if transgene product crossed the placenta pregnant E13 mice were injected intravenously with hemagglutinin-epitope-tagged MnSOD (100 μg plasmid in 100 μl liposomes), then after 24 h, fetal mice, placentas and maternal tissues were removed and tested by both immunohistochemistry and reverse transcriptase-PCR for transgene and product. There was no evidence of transgene or product in placenta or any fetal tissue while maternal liver was positive by both assays. The data provide evidence for fetal radioprotection by maternal MnSOD-PL gene therapy before irradiation, which is mediated by an indirect bystander effect and is associated with a significant improvement in both survival at birth and growth and development of newborn mice.
Collapse
Affiliation(s)
- M W Epperly
- Department of Radiation Oncology, UPCI Cancer Institute, Pittsburgh, PA 15232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|