1
|
Postuma I, Magni C, Marcaccio B, Fatemi S, Vercesi V, Ciocca M, Magro G, Orlandi E, Vischioni B, Ronchi S, Liu YH, Han Y, Geng C, González SJ, Bortolussi S. Using the photon isoeffective dose formalism to compare and combine BNCT and CIRT in a head and neck tumour. Sci Rep 2024; 14:418. [PMID: 38172585 PMCID: PMC10764928 DOI: 10.1038/s41598-023-50522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Boron Neutron Capture Therapy (BNCT) is a radiotherapy technique based on the enrichment of tumour cells with suitable 10-boron concentration and on subsequent neutron irradiation. Low-energy neutron irradiation produces a localized deposition of radiation dose caused by boron neutron capture reactions. Boron is vehiculated into tumour cells via proper borated formulations, able to accumulate in the malignancy more than in normal tissues. The neutron capture releases two high-LET charged particles (i.e., an alpha particle and a lithium ion), losing their energy in a distance comparable to the average dimension of one cell. Thus BNCT is selective at the cell level and characterized by high biological effectiveness. As the radiation field is due to the interaction of neutrons with the components of biological tissues and with boron, the dosimetry requires a formalism to express the absorbed dose into photon-equivalent units. This work analyzes a clinical case of an adenoid cystic carcinoma treated with carbon-ion radiotherapy (CIRT), located close to optic nerve and deep-seated as a practical example of how to apply the formalism of BNCT photon isoeffective dose and how to evaluate the BNCT dose distribution against CIRT. The example allows presenting different dosimetrical and radiobiological quantities and drawing conclusions on the potential of BNCT stemming on the clinical result of the CIRT. The patient received CIRT with a dose constraint on the optic nerve, affecting the peripheral part of the Planning Target Volume (PTV). After the treatment, the tumour recurred in this low-dose region. BNCT was simulated for the primary tumour, with the goal to calculate the dose distribution in isoeffective units and a Tumour Control Probability (TCP) to be compared with the one of the original treatment. BNCT was then evaluated for the recurrence in the underdosed region which was not optimally covered by charged particles due to the proximity of the optic nerve. Finally, a combined treatment consisting in BNCT and carbon ion therapy was considered to show the consistency and the potential of the model. For the primary tumour, the photon isoeffective dose distribution due to BNCT was evaluated and the resulted TCP was higher than that obtained for the CIRT. The formalism produced values that are consistent with those of carbon-ion. For the recurrence, BNCT dosimetry produces a similar TCP than that of primary tumour. A combined treatment was finally simulated, showing a TCP comparable to the BNCT-alone with overall dosimetric advantage in the most peripheral parts of the treatment volume. Isoeffective dose formalism is a robust tool to analyze BNCT dosimetry and to compare it with the photon-equivalent dose calculated for carbon-ion treatment. This study introduces for the first time the possibility to combine the dosimetry obtained by two different treatment modalities, showing the potential of exploiting the cellular targeting of BNCT combined with the precision of charged particles in delivering an homogeneous dose distribution in deep-seated tumours.
Collapse
Affiliation(s)
- Ian Postuma
- National Institute of Nuclear Physics, INFN, Unit of Pavia, Pavia, 27100, Italy
| | - Chiara Magni
- National Institute of Nuclear Physics, INFN, Unit of Pavia, Pavia, 27100, Italy
- Department of Physics, University of Pavia, Pavia, 27100, Italy
| | - Barbara Marcaccio
- National Institute of Nuclear Physics, INFN, Unit of Pavia, Pavia, 27100, Italy
- Department of Physics, University of Pavia, Pavia, 27100, Italy
- National University of San Martín, Dan Beninson Institute, Buenos Aires, Argentina
| | - Setareh Fatemi
- National Institute of Nuclear Physics, INFN, Unit of Pavia, Pavia, 27100, Italy
| | - Valerio Vercesi
- National Institute of Nuclear Physics, INFN, Unit of Pavia, Pavia, 27100, Italy
| | - Mario Ciocca
- National Institute of Nuclear Physics, INFN, Unit of Pavia, Pavia, 27100, Italy
- National Centre for Oncological Hadrontherapy, CNAO, Pavia, 27100, Italy
| | - Giuseppe Magro
- National Centre for Oncological Hadrontherapy, CNAO, Pavia, 27100, Italy
| | - Ester Orlandi
- National Centre for Oncological Hadrontherapy, CNAO, Pavia, 27100, Italy
| | - Barbara Vischioni
- National Centre for Oncological Hadrontherapy, CNAO, Pavia, 27100, Italy
| | - Sara Ronchi
- National Centre for Oncological Hadrontherapy, CNAO, Pavia, 27100, Italy
| | - Yuan-Hao Liu
- Neuboron Medtech Ltd, Nanjing, China
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, NUAA, Nanjing, China
| | - Yang Han
- Department of Physics, University of Pavia, Pavia, 27100, Italy
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, NUAA, Nanjing, China
| | - Changran Geng
- Department of Nuclear Science and Technology, Nanjing University of Aeronautics and Astronautics, NUAA, Nanjing, China
| | - Sara Josefina González
- National University of San Martín, Dan Beninson Institute, Buenos Aires, Argentina
- National Atomic Energy Commission, CNEA, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Silva Bortolussi
- National Institute of Nuclear Physics, INFN, Unit of Pavia, Pavia, 27100, Italy.
- Department of Physics, University of Pavia, Pavia, 27100, Italy.
| |
Collapse
|
2
|
Portu AM, Espain MS, Thorp SI, Trivillin VA, Curotto P, Monti Hughes A, Pozzi ECC, Garabalino MA, Palmieri MA, Granell PN, Golmar F, Schwint AE, Saint Martin G. Enhanced Resolution of Neutron Autoradiography with UV-C Sensitization to Study Boron Microdistribution in Animal Models. Life (Basel) 2023; 13:1578. [PMID: 37511953 PMCID: PMC10381447 DOI: 10.3390/life13071578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The assessment of boron microdistribution is essential to evaluate the suitability of boron neutron capture therapy (BNCT) in different biological models. In our laboratory, we have reported a methodology to produce cell imprints on polycarbonate through UV-C sensitization. The aim of this work is to extend the technique to tissue samples in order to enhance spatial resolution. As tissue structure largely differs from cultured cells, several aspects must be considered. We studied the influence of the parameters involved in the imprint and nuclear track formation, such as neutron fluence, different NTDs, etching and UV-C exposure times, tissue absorbance, thickness, and staining, among others. Samples from different biological models of interest for BNCT were used, exhibiting homogeneous and heterogeneous histology and boron microdistribution. The optimal conditions will depend on the animal model under study and the resolution requirements. Both the imprint sharpness and the fading effect depend on tissue thickness. While 6 h of UV-C was necessary to yield an imprint in CR-39, only 5 min was enough to observe clear imprints on Lexan. The information related to microdistribution of boron obtained with neutron autoradiography is of great relevance when assessing new boron compounds and administration protocols and also contributes to the study of the radiobiology of BNCT.
Collapse
Affiliation(s)
- Agustina Mariana Portu
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
| | - María Sol Espain
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
| | - Silvia Inés Thorp
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Verónica Andrea Trivillin
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | - Paula Curotto
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
| | - Andrea Monti Hughes
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | | | | - Mónica Alejandra Palmieri
- Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, University of Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires C1428EGA, Argentina
| | - Pablo Nicolás Granell
- Micro and Nanotechnology Centre of the Bicentennial (CNMB), National Institute of Industrial Technology (INTI), San Martín B1650JKA, Argentina
| | - Federico Golmar
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
- School of Science & Technology, National University of San Martín (UNSAM), San Martín B1650JKA, Argentina
- Micro and Nanotechnology Centre of the Bicentennial (CNMB), National Institute of Industrial Technology (INTI), San Martín B1650JKA, Argentina
| | - Amanda Elena Schwint
- National Atomic Energy Commission (CNEA), San Martín C1429BNP, Argentina
- National Scientific and Technological Research Council (CONICET), Ciudad Autónoma de Buenos Aires C1425FQB, Argentina
| | | |
Collapse
|
3
|
Monti Hughes A, Schwint AE. Animal Tumor Models for Boron Neutron Capture Therapy Studies (Excluding Central Nervous System Solid Tumors). Cancer Biother Radiopharm 2022. [PMID: 36130136 DOI: 10.1089/cbr.2022.0054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translational research in adequate experimental models is necessary to optimize boron neutron capture therapy (BNCT) for different pathologies. Multiple radiobiological in vivo studies have been performed in a wide variety of animal models, studying multiple boron compounds, routes of compound administration, and a range of administration strategies. Animal models are useful for the study of the stability and potential toxicity of new boron compounds or delivery systems, BNCT theranostic strategies, the evaluation of biomarkers to monitor BNCT therapeutic and adverse effects, and to study the BNCT immune response by the host against tumor cells. This article will mention examples of these studies, highlighting the importance of experimental animal models for the advancement of BNCT. Animal models are essential to design novel, safe, and effective clinical BNCT protocols for existing or new targets for BNCT.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Amanda E Schwint
- Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
4
|
Importance of radiobiological studies for the advancement of boron neutron capture therapy (BNCT). Expert Rev Mol Med 2022; 24:e14. [PMID: 35357286 DOI: 10.1017/erm.2022.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Boron neutron capture therapy (BNCT) is a tumour selective particle radiotherapy, based on the administration of boron carriers incorporated preferentially by tumour cells, followed by irradiation with a thermal or epithermal neutron beam. BNCT clinical results to date show therapeutic efficacy, associated with an improvement in patient quality of life and prolonged survival. Translational research in adequate experimental models is necessary to optimise BNCT for different pathologies. This review recapitulates some examples of BNCT radiobiological studies for different pathologies and clinical scenarios, strategies to optimise boron targeting, enhance BNCT therapeutic effect and minimise radiotoxicity. It also describes the radiobiological mechanisms induced by BNCT, and the importance of the detection of biomarkers to monitor and predict the therapeutic efficacy and toxicity of BNCT alone or combined with other strategies. Besides, there is a brief comment on the introduction of accelerator-based neutron sources in BNCT. These sources would expand the clinical BNCT services to more patients, and would help to make BNCT a standard treatment modality for various types of cancer. Radiobiological BNCT studies have been of utmost importance to make progress in BNCT, being essential to design novel, safe and effective clinical BNCT protocols.
Collapse
|
5
|
Trivillin VA, Langle YV, Palmieri MA, Pozzi ECC, Thorp SI, Benitez Frydryk DN, Garabalino MA, Monti Hughes A, Curotto PM, Colombo LL, Santa Cruz IS, Ramos PS, Itoiz ME, Argüelles C, Eiján AM, Schwint AE. Evaluation of local, regional and abscopal effects of Boron Neutron Capture Therapy (BNCT) combined with immunotherapy in an ectopic colon cancer model. Br J Radiol 2021; 94:20210593. [PMID: 34520668 DOI: 10.1259/bjr.20210593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of the present study was to evaluate the local and regional therapeutic efficacy and abscopal effect of BNCT mediated by boronophenyl-alanine, combined with Bacillus Calmette-Guerin (BCG) as an immunotherapy agent in this model. METHODS The local effect of treatment was evaluated in terms of tumor response in the irradiated tumor-bearing right hind flank. Metastatic spread to tumor-draining lymph nodes was analyzed as an indicator of regional effect. The abscopal effect of treatment was assessed as tumor growth inhibition in the contralateral (non-irradiated) left hind flank inoculated with tumor cells 2 weeks post-irradiation. The experimental groups BNCT, BNCT + BCG, BCG, Beam only (BO), BO +BCG, SHAM (tumor-bearing, no treatment, same manipulation) were studied. RESULTS BNCT and BNCT + BCG induced a highly significant local anti-tumor response, whereas BCG alone induced a weak local effect. BCG and BNCT + BCG induced a significant abscopal effect in the contralateral non-irradiated leg. The BNCT + BCG group showed significantly less metastatic spread to tumor-draining lymph nodes vs SHAM and vs BO. CONCLUSION This study suggests that BNCT + BCG-immunotherapy would induce local, regional and abscopal effects in tumor-bearing animals. BNCT would be the main effector of the local anti-tumor effect whereas BCG would be the main effector of the abscopal effect. ADVANCES IN KNOWLEDGE Although the local effect of BNCT has been widely evidenced, this is the first study to show the local, regional and abscopal effects of BNCT combined with immunotherapy, contributing to comprehensive cancer treatment with combined therapies.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yanina V Langle
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Mónica A Palmieri
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | - Silvia I Thorp
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | | | | | - Andrea Monti Hughes
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula M Curotto
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Lucas L Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Iara S Santa Cruz
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Paula S Ramos
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - María E Itoiz
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Facultad de Odontología, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Claudia Argüelles
- Instituto Nacional de Producción de Biológicos, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Ana M Eiján
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Amanda E Schwint
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
6
|
Schwint AE, Monti Hughes A, Garabalino MA, Santa Cruz GA, González SJ, Longhino J, Provenzano L, Oña P, Rao M, Cantarelli MDLÁ, Leiras A, Olivera MS, Trivillin VA, Alessandrini P, Brollo F, Boggio E, Costa H, Ventimiglia R, Binia S, Pozzi ECC, Nievas SI, Santa Cruz IS. Clinical Veterinary Boron Neutron Capture Therapy (BNCT) Studies in Dogs with Head and Neck Cancer: Bridging the Gap between Translational and Clinical Studies. BIOLOGY 2020; 9:biology9100327. [PMID: 33036386 PMCID: PMC7599538 DOI: 10.3390/biology9100327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Simple Summary Boron Neutron Capture Therapy (BNCT) is a treatment for cancer based on the selective accumulation in tumor of boron compounds, followed by external irradiation with neutrons. The interaction between boron-10 and a neutron gives rise to very energetic particles that travel only a very short distance (approximately the diameter of a cell) and are lethal for the cell. In this way, BNCT damages tumor tissue selectively while preserving normal tissue. BNCT has proved effective to treat certain tumors in clinical trials worldwide, with room for improvement. Our group has worked on animal models to improve the efficacy of BNCT, in particular for head and neck cancer. Herein we performed clinical veterinary BNCT studies in five terminal dog patients with head and neck cancer with no other therapeutic option. In all cases we observed partial tumor response, clinical benefit, and extension of estimated survival time at recruitment with excellent quality of life. Toxicity associated to the treatment was mild/moderate and reversible. These studies contribute towards preparation for clinical BNCT trials for head and neck cancer in Argentina and suggest a potential role for BNCT in veterinary medicine. Abstract Translational Boron Neutron Capture Therapy (BNCT) studies performed by our group and clinical BNCT studies worldwide have shown the therapeutic efficacy of BNCT for head and neck cancer. The present BNCT studies in veterinary patients with head and neck cancer were performed to optimize the therapeutic efficacy of BNCT, contribute towards exploring the role of BNCT in veterinary medicine, put in place technical aspects for an upcoming clinical trial of BNCT for head and neck cancer at the RA-6 Nuclear Reactor, and assess the feasibility of employing the existing B2 beam to treat large, deep-seated tumors. Five dogs with head and neck cancer with no other therapeutic option were treated with two applications of BNCT mediated by boronophenyl-alanine (BPA) separated by 3–5 weeks. Two to three portals per BNCT application were used to achieve a potentially therapeutic dose over the tumor without exceeding normal tissue tolerance. Clinical and Computed Tomography results evidenced partial tumor control in all cases, with slight-moderate mucositis, excellent life quality, and prolongation in the survival time estimated at recruitment. These exploratory studies show the potential value of BNCT in veterinary medicine and contribute towards initiating a clinical BNCT trial for head and neck cancer at the RA-6 clinical facility.
Collapse
Affiliation(s)
- Amanda E. Schwint
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
- National Research Council (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
- Correspondence: ; Tel.: +54-911-6496-7168
| | - Andrea Monti Hughes
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
- National Research Council (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Marcela A. Garabalino
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| | - Gustavo A. Santa Cruz
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| | - Sara J. González
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
- National Research Council (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Juan Longhino
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| | - Lucas Provenzano
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
- National Research Council (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Paulina Oña
- Fundación INTECNUS: Instituto de Tecnologías Nucleares para la Salud, Ruta Provincial 82, San Carlos de Bariloche, R8402AGP, Provincia Rio Negro, Argentina; (P.O.); (H.C.); (R.V.); (S.B.)
| | - Monica Rao
- Hospital Veterinario, Gobernador M. Ugarte 2152, Olivos, B1636BWT, Provincia Buenos Aires, Argentina;
| | | | - Andrea Leiras
- Independent Veterinarian, Huilqui 12356, San Carlos de Bariloche, 8400, Provincia Rio Negro, Argentina;
| | - María Silvina Olivera
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| | - Verónica A. Trivillin
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
- National Research Council (CONICET), Godoy Cruz 2290, C1425FQB, Buenos Aires, Argentina
| | - Paula Alessandrini
- Independent Veterinarian, Lonquimay 3817, San Carlos de Bariloche, 8400, Provincia Rio Negro, Argentina;
| | - Fabricio Brollo
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| | - Esteban Boggio
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| | - Hernan Costa
- Fundación INTECNUS: Instituto de Tecnologías Nucleares para la Salud, Ruta Provincial 82, San Carlos de Bariloche, R8402AGP, Provincia Rio Negro, Argentina; (P.O.); (H.C.); (R.V.); (S.B.)
| | - Romina Ventimiglia
- Fundación INTECNUS: Instituto de Tecnologías Nucleares para la Salud, Ruta Provincial 82, San Carlos de Bariloche, R8402AGP, Provincia Rio Negro, Argentina; (P.O.); (H.C.); (R.V.); (S.B.)
| | - Sergio Binia
- Fundación INTECNUS: Instituto de Tecnologías Nucleares para la Salud, Ruta Provincial 82, San Carlos de Bariloche, R8402AGP, Provincia Rio Negro, Argentina; (P.O.); (H.C.); (R.V.); (S.B.)
| | - Emiliano C. C. Pozzi
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| | - Susana I. Nievas
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| | - Iara S. Santa Cruz
- National Atomic Energy Commission (CNEA), Avenida del Libertador 8250, C1429 BNP, Buenos Aires, Argentina; (A.M.H.); (M.A.G.); (G.A.S.C.); (S.J.G.); (J.L.); (L.P.); (M.S.O.); (V.A.T.); (F.B.); (E.B.); (E.C.C.P.); (S.I.N.); (I.S.S.C.)
| |
Collapse
|
7
|
Garabalino MA, Olaiz N, Portu A, Saint Martin G, Thorp SI, Pozzi ECC, Curotto P, Itoiz ME, Monti Hughes A, Colombo LL, Nigg DW, Trivillin VA, Marshall G, Schwint AE. Electroporation optimizes the uptake of boron-10 by tumor for boron neutron capture therapy (BNCT) mediated by GB-10: a boron biodistribution study in the hamster cheek pouch oral cancer model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2019; 58:455-467. [PMID: 31123853 DOI: 10.1007/s00411-019-00796-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/07/2019] [Indexed: 05/17/2023]
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer binary therapy modality that utilizes the nuclear capture reaction of thermal neutrons by boron-10 resulting in a localized release of high- and low-linear energy transfer (LET) radiation. Electrochemotherapy (ECT) is based on electroporation (EP) that induces opening of pores in cell membranes, allowing the entry of compounds. Because EP is applied locally to a tumor, the compound is incorporated preferentially by tumor cells. Based on the knowledge that the therapeutic success of BNCT depends centrally on the boron content in tumor and normal tissues and that EP has proven to be an excellent facilitator of tumor biodistribution of an anti-tumor agent, the aim of this study was to evaluate if EP can optimize the delivery of boronated compounds. We performed biodistribution studies and qualitative microdistribution analyses of boron employing the boron compound sodium decahydrodecaborate (GB-10) + EP in the hamster cheek pouch oral cancer model. Syrian hamsters with chemically induced exophytic squamous cell carcinomas were used. A typical EP treatment was applied to each tumor, varying the moment of application with respect to the administration of GB-10 (early or late). The results of this study showed a significant increase in the absolute and relative tumor boron concentration and optimization of the qualitative microdistribution of boron by the use of early EP + GB-10 versus GB-10 without EP. This strategy could be a tool to improve the therapeutic efficacy of BNCT/GB-10 in vivo.
Collapse
Affiliation(s)
- Marcela A Garabalino
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina.
| | - Nahuel Olaiz
- Departamento de Sistemas complejos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Agustina Portu
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Gisela Saint Martin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Silvia I Thorp
- Sub-gerencia Instrumentación y Control, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
| | - Emiliano C C Pozzi
- Departamento de Reactores de Investigación y Producción, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Paula Curotto
- Departamento de Reactores de Investigación y Producción, Centro Atómico Ezeiza, Camino Real Presbítero González y Aragón 15, B1802AYA, Ezeiza, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - María E Itoiz
- Departamento de Anatomía Patología, Facultad de Odontología, Universidad de Buenos Aires, Marcelo T. de Alvear 2142, C1122AAH, Ciudad Autónoma De Buenos Aires, Argentina
| | - Andrea Monti Hughes
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Lucas L Colombo
- Instituto de Oncología Angel H. Roffo, Avenida San Martin 5481, C1417DTB, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - David W Nigg
- Idaho National Laboratory, 2525 Fremont Ave, Idaho Falls, ID, 83402, USA
| | - Verónica A Trivillin
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Guillermo Marshall
- Departamento de Sistemas complejos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA, Ciudad Autónoma De Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| | - Amanda E Schwint
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, Centro Atómico Constituyentes, Avenida General Paz 1499, B1650KNA, San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, Cuidad Autónoma De Buenos Aires, Argentina
| |
Collapse
|
8
|
Wang Q, Wang P, Xiao Z. Resistant starch prevents tumorigenesis of dimethylhydrazine-induced colon tumors via regulation of an ER stress-mediated mitochondrial apoptosis pathway. Int J Mol Med 2018; 41:1887-1898. [PMID: 29393371 PMCID: PMC5810243 DOI: 10.3892/ijmm.2018.3423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/12/2018] [Indexed: 12/11/2022] Open
Abstract
Resistant starch is as common soluble fiber that escapes digestion in the small intestine and can regulate intestinal function, metabolism of blood glucose and lipids, and may prevent tumorigenesis of gastrointestinal cancer. Epidemiology and other evidence have suggested that resistant starch may prevent colon cancer development. The aim of the current study was to explore the ameliorative effects and potential mechanisms of resistant starch in the tumorigenesis of colon tumors induced by dimethylhydrazine in C57BL/6 mice. Western blot analysis, ELISA, microscopy, immunofluorescence and immunohistochemistry were used to analyze the efficacy of resistant starch on the metabolic balance in the colon and tumorigenesis of colon tumors. The results demonstrated that a diet containing resistant starch decreased the animal body weight and reduced free ammonia, pH and short chain fatty acids in feces compared with mice that received a standard diet. Resistant starch reduced the incidence of colon tumors and suppressed the expression of carcinogenesis-associated proteins, including heat shock protein 25, protein kinase C-d and gastrointestinal glutathione peroxidase in colon epithelial cells compared with standard starch and control groups. Colon tumor cells proliferation and dedifferentiation were significantly decreased by a resistant starch diet. The results also demonstrated that resistant starch increased the apoptosis of colon tumor cells through regulation of apoptosis-associated gene expression levels in colon tumor cells. Oxidative stress and endoplasmic reticulum stress were upregulated, and elevation eukaryotic translation initiation factor 2α (eIF2α), activating transcription factor-4 and secretase-β expression levels were increased in the resistant starch diet group. Additionally, the activity of eIF2α and PERK were increased in colon tumor cells from mice that had received resistant starch. Increasing DNA damage-inducible transcript 3 protein (CHOP), binding immunoglobulin protein (BIP) and caspase-12 expression levels upregulated by resistant starch diet may contribute to the resistant starch-induced apoptosis of colon tumor cells induced by 1,2-dimethylhydrazine. In vitro assays demonstrated that knockdown of eIF2α inhibited apoptosis of colon tumor cells isolated from mice fed with resistant starch, which also downregulated CHOP, BIP and caspase-3 expression levels compared with controls. Furthermore, long-term survival of experimental mice was prolonged by the resistant starch diet compared with the standard diet group. In conclusion, the results indicate that resistant starch in the diet may prevent carcinogenesis of colon epithelial cells, mediated by enhancing apoptosis through an endoplasmic reticulum stress-mediated mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Qiuyu Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Peng Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Zhigang Xiao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| |
Collapse
|
9
|
Trivillin VA, Pozzi ECC, Colombo LL, Thorp SI, Garabalino MA, Monti Hughes A, González SJ, Farías RO, Curotto P, Santa Cruz GA, Carando DG, Schwint AE. Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:365-375. [PMID: 28791476 DOI: 10.1007/s00411-017-0704-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 106 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 106 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm3. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm3. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Emiliano C C Pozzi
- Department of Research and Production Reactors, Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Lucas L Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Instituto de Oncología Ángel H. Roffo, Ciudad Autónoma de Buenos Aires, Argentina
| | - Silvia I Thorp
- Department of Instrumentation and Control, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Marcela A Garabalino
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martin, Provincia Buenos Aires, Argentina
| | - Andrea Monti Hughes
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martin, Provincia Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Sara J González
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Department of Instrumentation and Control, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Rubén O Farías
- Department of Instrumentation and Control, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Paula Curotto
- Department of Research and Production Reactors, Centro Atómico Ezeiza, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Gustavo A Santa Cruz
- Department of Boron Neutron Capture Therapy, Comisión Nacional de Energía Atómica (CNEA), Provincia Buenos Aires, Argentina
| | - Daniel G Carando
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Faculty of Exact and Natural Sciences, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Amanda E Schwint
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA San Martin, Provincia Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
10
|
Monti Hughes A, Longhino J, Boggio E, Medina VA, Martinel Lamas DJ, Garabalino MA, Heber EM, Pozzi ECC, Itoiz ME, Aromando RF, Nigg DW, Trivillin VA, Schwint AE. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new "B2" configuration of the RA-6 nuclear reactor. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:377-387. [PMID: 28871389 DOI: 10.1007/s00411-017-0710-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new "B2" configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in "B1" experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the "B1" results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.
Collapse
Affiliation(s)
- Andrea Monti Hughes
- Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Province Buenos Aires, Argentina.
- National Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina.
| | - Juan Longhino
- Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, San Carlos de Bariloche, Province Rio Negro, Argentina
| | - Esteban Boggio
- Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, San Carlos de Bariloche, Province Rio Negro, Argentina
| | - Vanina A Medina
- National Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
- Laboratory of Tumoral Biology and Inflammation, School of Medical Sciences, Institute for Biomedical Research (BIOMED CONICET-UCA), Pontifical Catholic University of Argentina (UCA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Diego J Martinel Lamas
- National Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
- Laboratory of Tumoral Biology and Inflammation, School of Medical Sciences, Institute for Biomedical Research (BIOMED CONICET-UCA), Pontifical Catholic University of Argentina (UCA), Ciudad Autonoma de Buenos Aires, Argentina
| | - Marcela A Garabalino
- Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Province Buenos Aires, Argentina
| | - Elisa M Heber
- Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Province Buenos Aires, Argentina
| | - Emiliano C C Pozzi
- Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Province Buenos Aires, Argentina
| | - María E Itoiz
- Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Province Buenos Aires, Argentina
- Department of Oral Pathology, Faculty of Dentistry, UBA, Ciudad Autonoma de Buenos Aires, Argentina
| | - Romina F Aromando
- Department of Oral Pathology, Faculty of Dentistry, UBA, Ciudad Autonoma de Buenos Aires, Argentina
| | | | - Verónica A Trivillin
- Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Province Buenos Aires, Argentina
- National Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Amanda E Schwint
- Department of Radiobiology, Constituyentes Atomic Center, National Atomic Energy Commission (CNEA), Avenida General Paz 1499, B1650KNA, San Martín, Province Buenos Aires, Argentina
- National Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| |
Collapse
|
11
|
González SJ, Pozzi ECC, Monti Hughes A, Provenzano L, Koivunoro H, Carando DG, Thorp SI, Casal MR, Bortolussi S, Trivillin VA, Garabalino MA, Curotto P, Heber EM, Santa Cruz GA, Kankaanranta L, Joensuu H, Schwint AE. Photon iso-effective dose for cancer treatment with mixed field radiation based on dose–response assessment from human and an animal model: clinical application to boron neutron capture therapy for head and neck cancer. ACTA ACUST UNITED AC 2017; 62:7938-7958. [DOI: 10.1088/1361-6560/aa8986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
‘Close-to-ideal’ tumor boron targeting for boron neutron capture therapy is possible with ‘less-than-ideal’ boron carriers approved for use in humans. Ther Deliv 2015; 6:269-72. [DOI: 10.4155/tde.14.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
13
|
Portu A, Molinari AJ, Thorp SI, Pozzi ECC, Curotto P, Schwint AE, Saint Martin G. Neutron autoradiography to study boron compound microdistribution in an oral cancer model. Int J Radiat Biol 2015; 91:329-35. [PMID: 25510259 DOI: 10.3109/09553002.2014.995381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE We previously reported the therapeutic efficacy of Sequential Boron Neutron Capture Therapy (Seq-BNCT), i.e., BPA (boronophenylalanine) - BNCT followed by GB-10 (decahydrodecaborate) - BNCT 1 or 2 days later, in the hamster cheek pouch oral cancer model. We have utilized the neutron autoradiography methodology to study boron microdistribution in tissue. The aim was to use this method to evaluate if the distribution of GB-10 is altered by prior application of BPA-BNCT in Sequential BNCT protocols. MATERIALS AND METHODS Extensive qualitative and quantitative autoradiography analyses were performed in the following groups: G1 (animals without boron); G2 (animals injected with BPA); G3 (animals injected with GB-10); G4 (same as G3, 24 h after BPA-BNCT); and G5 (same protocol as G4, 48 h interval). RESULTS A detailed study of boron localization in the different tissue structures of tumor, premalignant and normal tissue in the hamster cheek pouch was performed. GB-10 accumulated preferentially in non-neoplastic connective tissue, whereas for BPA neoplastic cells showed the highest boron concentration. Boron distribution was less heterogeneous for GB-10 than for BPA. In premalignant and normal tissue, GB-10 and BPA accumulated mostly in connective tissue and epithelium, respectively. CONCLUSIONS BPA-BNCT could alter boron microlocalization of GB-10 administered subsequently. Boron targeting homogeneity is essential for therapeutic success.
Collapse
Affiliation(s)
- Agustina Portu
- National Atomic Energy Commission (CNEA) , San Martin, Buenos Aires , Argentina
| | | | | | | | | | | | | |
Collapse
|
14
|
Molinari AJ, Thorp SI, Portu AM, Saint Martin G, Pozzi ECC, Heber EM, Bortolussi S, Itoiz ME, Aromando RF, Monti Hughes A, Garabalino MA, Altieri S, Trivillin VA, Schwint AE. Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels. Acta Oncol 2015; 54:99-106. [PMID: 24960584 DOI: 10.3109/0284186x.2014.925140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. MATERIAL AND METHODS Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (Th+ Seq-BNCT) or Seq-Beam Only (Th+ Seq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. RESULTS Th+ Seq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. CONCLUSION Th+ Seq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control.
Collapse
Affiliation(s)
- Ana J Molinari
- Department of Radiobiology, National Atomic Energy Commission (CNEA) , San Martin, Province Buenos Aires , Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Monti-Hughes A, Aromando RF, Pérez MA, Schwint AE, Itoiz ME. The hamster cheek pouch model for field cancerization studies. Periodontol 2000 2014; 67:292-311. [DOI: 10.1111/prd.12066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2014] [Indexed: 12/13/2022]
|
16
|
Trivillin VA, Abramson DB, Bumaguin GE, Bruno LJ, Garabalino MA, Monti Hughes A, Heber EM, Feldman S, Schwint AE. Boron neutron capture synovectomy (BNCS) as a potential therapy for rheumatoid arthritis: boron biodistribution study in a model of antigen-induced arthritis in rabbits. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:635-643. [PMID: 25156017 DOI: 10.1007/s00411-014-0564-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
Boron neutron capture synovectomy (BNCS) is explored for the treatment of rheumatoid arthritis (RA). The aim of the present study was to perform boron biodistribution studies in a model of antigen-induced arthritis (AIA) in female New Zealand rabbits, with the boron carriers boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) to assess the potential feasibility of BNCS for RA. Rabbits in chronic phase of AIA were used for biodistribution studies employing the following protocols: intra-articular (ia) (a) BPA-f 0.14 M (0.7 mg (10)B), (b) GB-10 (5 mg (10)B), (c) GB-10 (50 mg (10)B) and intravenous (iv), (d) BPA-f 0.14 M (15.5 mg (10)B/kg), (e) GB-10 (50 mg (10)B/kg), and (f) BPA-f (15.5 mg (10)B/kg) + GB-10 (50 mg (10)B/kg). At different post-administration times (13-85 min for ia and 3 h for iv), samples of blood, pathological synovium (target tissue), cartilage, tendon, muscle, and skin were taken for boron measurement by inductively coupled plasma mass spectrometry. The intra-articular administration protocols at <40 min post-administration both for BPA-f and GB-10, and intravenous administration protocols for GB-10 and [GB-10 + BPA-f] exhibited therapeutically useful boron concentrations (>20 ppm) in the pathological synovium. Dosimetric estimations suggest that BNCS would be able to achieve a therapeutically useful dose in pathological synovium without exceeding the radiotolerance of normal tissues in the treatment volume, employing boron carriers approved for use in humans. Radiobiological in vivo studies will be necessary to determine the actual therapeutic efficacy of BNCS to treat RA in an experimental model.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Department of Radiobiology, Comisión Nacional de Energía Atómica (CNEA), Avenida General Paz 1499, B1650KNA, San Martin, Provincia de Buenos Aires, Argentina,
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model. Proc Natl Acad Sci U S A 2014; 111:16077-81. [PMID: 25349432 DOI: 10.1073/pnas.1410865111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%.
Collapse
|
18
|
Trivillin V, Garabalino M, Colombo L, González S, Farías R, Monti Hughes A, Pozzi E, Bortolussi S, Altieri S, Itoiz M, Aromando R, Nigg D, Schwint A. Biodistribution of the boron carriers boronophenylalanine (BPA) and/or decahydrodecaborate (GB-10) for Boron Neutron Capture Therapy (BNCT) in an experimental model of lung metastases. Appl Radiat Isot 2014; 88:94-8. [DOI: 10.1016/j.apradiso.2013.11.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 11/27/2013] [Accepted: 11/28/2013] [Indexed: 01/09/2023]
|
19
|
Masunaga SI, Sakurai Y, Tano K, Tanaka H, Suzuki M, Kondo N, Narabayashi M, Watanabe T, Nakagawa Y, Maruhashi A, Ono K. Effect of bevacizumab combined with boron neutron capture therapy on local tumor response and lung metastasis. Exp Ther Med 2014; 8:291-301. [PMID: 24944637 PMCID: PMC4061189 DOI: 10.3892/etm.2014.1704] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/14/2014] [Indexed: 01/03/2023] Open
Abstract
The aim of the present study was to evaluate the effect of bevacizumab on local tumor response and lung metastatic potential during boron neutron capture therapy (BNCT) and in particular, the response of intratumor quiescent (Q) cells. B16-BL6 melanoma tumor-bearing C57BL/6 mice were continuously administered bromodeoxyuridine (BrdU) to label all proliferating (P) tumor cells. The tumors were irradiated with thermal neutron beams following the administration of a 10B-carrier [L-para-boronophenylalanine-10B (BPA) or sodium mercaptoundecahydrododecaborate-10B (BSH)], with or without the administration of bevacizumab. This was further combined with an acute hypoxia-releasing agent (nicotinamide) or mild temperature hyperthermia (MTH, 40°C for 60 min). Immediately following the irradiation, cells from certain tumors were isolated and incubated with a cytokinesis blocker. The responses of the Q cells and the total (P+Q) cell populations were assessed based on the frequency of micronuclei using immunofluorescence staining for BrdU. In other tumor-bearing mice, 17 days following irradiation, lung metastases were enumerated. Three days following bevacizumab administration, the sensitivity of the total tumor cell population following BPA-BNCT had increased more than that following BSH-BNCT. The combination with MTH, but not with nicotinamide, further enhanced total tumor cell population sensitivity. Regardless of the presence of a 10B-carrier, MTH enhanced the sensitivity of the Q cell population. Regardless of irradiation, the administration of bevacizumab, as well as nicotinamide treatment, demonstrated certain potential in reducing the number of lung metastases especially in BPA-BNCT compared with BSH-BNCT. Thus, the current study revealed that BNCT combined with bevacizumab has the potential to sensitize total tumor cells and cause a reduction in the number of lung metastases to a similar level as nicotinamide.
Collapse
Affiliation(s)
- Shin-Ichiro Masunaga
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Yoshinori Sakurai
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Keizo Tano
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Hiroki Tanaka
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Natsuko Kondo
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Masaru Narabayashi
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Tsubasa Watanabe
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Yosuke Nakagawa
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Akira Maruhashi
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| | - Koji Ono
- Department of Radiation Life and Medical Science, Research Reactor Institute, Kyoto University, Osaka 590-0494, Japan
| |
Collapse
|
20
|
Pozzi ECC, Trivillin VA, Colombo LL, Monti Hughes A, Thorp SI, Cardoso JE, Garabalino MA, Molinari AJ, Heber EM, Curotto P, Miller M, Itoiz ME, Aromando RF, Nigg DW, Schwint AE. Boron neutron capture therapy (BNCT) for liver metastasis in an experimental model: dose–response at five-week follow-up based on retrospective dose assessment in individual rats. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:481-491. [PMID: 24077963 DOI: 10.1007/s00411-013-0490-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. Employing an experimental model of liver metastases in rats, we recently demonstrated that BNCT mediated by boronophenylalanine (BPA-BNCT) at 13 Gy prescribed to tumor is therapeutically useful at 3-week follow-up. The aim of the present study was to evaluate dose–response at 5-week follow-up, based on retrospective dose assessment in individual rats. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT (n = 19), Beam only (n = 8) and Sham (n = 7) (matched manipulation, no treatment). For each rat, neutron flux was measured in situ and boron content was measured in a pre-irradiation blood sample for retrospective individual dose assessment. For statistical analysis (ANOVA), individual data for the BPA-BNCT group were pooled according to absorbed tumor dose, BPA-BNCT I: 4.5–8.9 Gy and BPA-BNCT II: 9.2–16 Gy. At 5 weeks post-irradiation, the tumor surface area post-treatment/pre-treatment ratio was 12.2 ± 6.6 for Sham, 7.8 ± 4.1 for Beam only, 4.4 ± 5.6 for BPA-BNCT I and 0.45 ± 0.20 for BPA-BNCT II; tumor nodule weight was 750 ± 480 mg for Sham, 960 ± 620 mg for Beam only, 380 ± 720 mg for BPA-BNCT I and 7.3 ± 5.9 mg for BPA-BNCT II. The BPA-BNCT II group exhibited statistically significant tumor control with no contributory liver toxicity. Potential threshold doses for tumor response and significant tumor control were established at 6.1 and 9.2 Gy, respectively.
Collapse
|
21
|
Cao Z, Shang B, Zhang G, Miele L, Sarkar FH, Wang Z, Zhou Q. Tumor cell-mediated neovascularization and lymphangiogenesis contrive tumor progression and cancer metastasis. Biochim Biophys Acta Rev Cancer 2013; 1836:273-86. [PMID: 23933263 DOI: 10.1016/j.bbcan.2013.08.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/22/2013] [Accepted: 08/01/2013] [Indexed: 12/12/2022]
Abstract
Robust neovascularization and lymphangiogenesis have been found in a variety of aggressive and metastatic tumors. Endothelial sprouting angiogenesis is generally considered to be the major mechanism by which new vasculature forms in tumors. However, increasing evidence shows that tumor vasculature is not solely composed of endothelial cells (ECs). Some tumor cells acquire processes similar to embryonic vasculogenesis and produce new vasculature through vasculogenic mimicry, trans-differentiation of tumor cells into tumor ECs, and tumor cell-EC vascular co-option. In addition, tumor cells secrete various vasculogenic factors that induce sprouting angiogenesis and lymphangiogenesis. Vasculogenic tumor cells actively participate in the formation of vascular cancer stem cell niche and a premetastatic niche. Therefore, tumor cell-mediated neovascularization and lymphangiogenesis are closely associated with tumor progression, cancer metastasis, and poor prognosis. Vasculogenic tumor cells have emerged as key players in tumor neovascularization and lymphangiogenesis and play pivotal roles in tumor progression and cancer metastasis. However, the mechanisms underlying tumor cell-mediated vascularity as they relate to tumor progression and cancer metastasis remain unclear. Increasing data have shown that various intrinsic and extrinsic factors activate oncogenes and vasculogenic genes, enhance vasculogenic signaling pathways, and trigger tumor neovascularization and lymphangiogenesis. Collectively, tumor cells are the instigators of neovascularization. Therefore, targeting vasculogenic tumor cells, genes, and signaling pathways will open new avenues for anti-tumor vasculogenic and metastatic drug discovery. Dual targeting of endothelial sprouting angiogenesis and tumor cell-mediated neovascularization and lymphangiogenesis may overcome current clinical problems with anti-angiogenic therapy, resulting in significantly improved anti-angiogenesis and anti-cancer therapies.
Collapse
Affiliation(s)
- Zhifei Cao
- Cyrus Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu 215006, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Garabalino MA, Heber EM, Monti Hughes A, González SJ, Molinari AJ, Pozzi ECC, Nievas S, Itoiz ME, Aromando RF, Nigg DW, Bauer W, Trivillin VA, Schwint AE. Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:351-361. [PMID: 23591915 DOI: 10.1007/s00411-013-0467-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 03/23/2013] [Indexed: 06/02/2023]
Abstract
Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.
Collapse
Affiliation(s)
- Marcela A Garabalino
- Department of Radiobiology, National Atomic Energy Commission-CNEA, Avenida General Paz 1499, B1650KNA, San Martin, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu Y, Suzuki M, Masunaga SI, Chen YW, Kashino G, Tanaka H, Sakurai Y, Kirihata M, Ono K. Effect of bevacizumab treatment on p-boronophenylalanine distribution in murine tumor. JOURNAL OF RADIATION RESEARCH 2013; 54:260-267. [PMID: 23135099 PMCID: PMC3589940 DOI: 10.1093/jrr/rrs102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Previous studies have demonstrated that angiogenesis inhibitors can enhance tumor inhibitory effects of chemo- and radiotherapy via their action on tumor vessels. Here, we studied the effect of the angiogenesis inhibitor, bevacizumab (Avastin), on boron distribution in a murine tumor model. The human head and neck squamous cell carcinoma cell line was used for inoculation into mice. Boron-10 concentrations in tissues were measured by prompt γ-ray spectrometry (PGA). Hoechst 33342 perfusion and p-boronophenylalanine (BPA) distribution were determined by immunofluorescence staining. Our results revealed enhanced tumor blood perfusion and BPA accumulation in tumors after Avastin treatment, suggesting that combination of angiogenesis inhibition with treatment with boron compound administration may improve the efficacy of boron neutron capture therapy (BNCT) by modifying tumor vessels. In addition, our results also demonstrated the usefulness of immunofluorescence staining for investigating boron compound distribution at the cellular level.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Hughes AM, Pozzi ECC, Thorp S, Garabalino MA, Farías RO, González SJ, Heber EM, Itoiz ME, Aromando RF, Molinari AJ, Miller M, Nigg DW, Curotto P, Trivillin VA, Schwint AE. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model. Oral Dis 2013; 19:789-95. [DOI: 10.1111/odi.12077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/26/2012] [Accepted: 12/28/2012] [Indexed: 11/26/2022]
Affiliation(s)
- A Monti Hughes
- Department of Radiobiology; National Atomic Energy Commission (CNEA); San Martin; Argentina
| | | | - S Thorp
- Department of Technology and Applications of Accelerators; CNEA; Ezeiza; Argentina
| | - MA Garabalino
- Department of Radiobiology; National Atomic Energy Commission (CNEA); San Martin; Argentina
| | - RO Farías
- Department of Technology and Applications of Accelerators; CNEA; Ezeiza; Argentina
| | | | - EM Heber
- Department of Radiobiology; National Atomic Energy Commission (CNEA); San Martin; Argentina
| | | | | | - AJ Molinari
- Department of Radiobiology; National Atomic Energy Commission (CNEA); San Martin; Argentina
| | - M Miller
- Department of Technology and Applications of Accelerators; CNEA; Ezeiza; Argentina
| | - DW Nigg
- Idaho National Laboratory; Idaho Falls; ID; USA
| | - P Curotto
- Department of Research and Production Reactors; CNEA; Ezeiza; Argentina
| | | | | |
Collapse
|
25
|
Pozzi ECC, Cardoso JE, Colombo LL, Thorp S, Monti Hughes A, Molinari AJ, Garabalino MA, Heber EM, Miller M, Itoiz ME, Aromando RF, Nigg DW, Quintana J, Trivillin VA, Schwint AE. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2012; 51:331-339. [PMID: 22544068 DOI: 10.1007/s00411-012-0419-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/14/2012] [Indexed: 05/31/2023]
Abstract
Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT, boronophenylalanine (BPA) + neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA-BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks post-treatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA-BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mg fell significantly to 19 ± 16 mg for BPA-BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA-BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA-BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.
Collapse
Affiliation(s)
- Emiliano C C Pozzi
- Department Radiobiology, National Atomic Energy Commission, Avenida General Paz 1499, B1650KNA, San Martin, Province Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|