1
|
Kodama Y, Nakamura N, Nakano M, Ohtaki K, Hamasaki K, Noda A. Cytogenetic validation of DS02R1-estimated dose for atomic bomb survivors in Hiroshima and Nagasaki with FISH. Int J Radiat Biol 2024; 100:1155-1164. [PMID: 38991111 DOI: 10.1080/09553002.2024.2373750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION For Hiroshima and Nagasaki survivors, it has not been possible to calculate individual doses from the cytogenetic data and compare them with the physically estimated doses. This is because the cytogenetic studies used solid Giemsa staining which only provides the percent of cells bearing at least one stable-type aberration (most of the unstable-type aberrations had already disappeared), and a gamma-ray dose plus a 10-times neutron dose was used to integrate the data for both cities. OBJECTIVES To compare the FISH-derived gamma-ray dose with the DS02R1-derived gamma-ray dose after correcting for a contribution of the neutron dose. It was also an attempt to determine if the frequency of stable-type aberrations had remained unchanged after the exposure. METHODS Stable exchange-type aberration data was obtained using the 2-color FISH method from 1,868 atomic bomb survivors in Hiroshima and Nagasaki. The collected frequency was first extended to a genome-equivalent frequency. Then, by using known induction rates of exchange-type aberrations in vitro caused by neutrons and gamma-rays, respectively, and the mean relationship between the neutron and gamma-ray doses in the DS02R1 estimates for the survivors, the gamma-ray effect was estimated from the total yield of translocations. RESULTS It was found that over 95% of individual cytogenetic gamma-ray doses fell within the expected range of plus/minus about 1 Gy from the DS02R1 dose and the mean slope for the linear regression was 0.98, which reassures us of the validity of the DS02R1 study. CONCLUSIONS The present results demonstrate the validity of the individual DS02R1 doses, and that the frequency of stable-type aberrations in blood lymphocytes did not decay over the years, and thus is useful for retrospective dose evaluations of exposures which took place in the distant past.
Collapse
Affiliation(s)
- Y Kodama
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - N Nakamura
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - M Nakano
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Ohtaki
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - K Hamasaki
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - A Noda
- Departments of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
2
|
Kosik P, Skorvaga M, Belyaev I. Preleukemic Fusion Genes Induced via Ionizing Radiation. Int J Mol Sci 2023; 24:ijms24076580. [PMID: 37047553 PMCID: PMC10095576 DOI: 10.3390/ijms24076580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Although the prevalence of leukemia is increasing, the agents responsible for this increase are not definitely known. While ionizing radiation (IR) was classified as a group one carcinogen by the IARC, the IR-induced cancers, including leukemia, are indistinguishable from those that are caused by other factors, so the risk estimation relies on epidemiological data. Several epidemiological studies on atomic bomb survivors and persons undergoing IR exposure during medical investigations or radiotherapy showed an association between radiation and leukemia. IR is also known to induce chromosomal translocations. Specific chromosomal translocations resulting in preleukemic fusion genes (PFGs) are generally accepted to be the first hit in the onset of many leukemias. Several studies indicated that incidence of PFGs in healthy newborns is up to 100-times higher than childhood leukemia with the same chromosomal aberrations. Because of this fact, it has been suggested that PFGs are not able to induce leukemia alone, but secondary mutations are necessary. PFGs also have to occur in specific cell populations of hematopoetic stem cells with higher leukemogenic potential. In this review, we describe the connection between IR, PFGs, and cancer, focusing on recurrent PFGs where an association with IR has been established.
Collapse
Affiliation(s)
- Pavol Kosik
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Milan Skorvaga
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Igor Belyaev
- Department of Radiobiology, Cancer Research Institute, Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| |
Collapse
|
3
|
Sposto R, Cordova KA, Hamasaki K, Nakamura N, Noda A, Kodama Y. The Association of Radiation Exposure with Stable Chromosome Aberrations in Atomic Bomb Survivors Based on DS02R1 Dosimetry and FISH Methods. Radiat Res 2023; 199:170-181. [PMID: 36602819 DOI: 10.1667/rade-22-00154.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/16/2022] [Indexed: 01/06/2023]
Abstract
The frequency of stable chromosome aberrations (sCA) in lymphocytes is a recognized radiation biological dosimeter. Its analysis can provide insights into factors that affect individual susceptibility as well as into the adequacy of radiation dose estimates used in studies of atomic bomb survivors. We analyzed the relationship between atomic bomb radiation exposure using the most recent DS02R1 dose estimates and the frequency of sCA as determined by FISH in 1,868 atomic bomb survivors. We investigated factors that may affect the background sCA rate and the shape and magnitude of the dose response. As in previous analyses of sCA in atomic bomb survivors that were based on Giemsa staining methods and used older DS86 dose estimates, the relationship between radiation dose and sCA rate was significant (P < 0.0001) with a linear-quadratic relationship at lower doses that did not persist at higher doses. As before, age at the time of the bombing and type of radiation shielding were significant dose-effect modifiers (P < 0.0001), but in contrast the difference in dose response by city was not so pronounced (P = 0.026) with a city effect not evident at doses below 1.25Gy. Background sCA rate increased with age at the time of examination (P < 0.0001), but neither sex, city, nor smoking was significantly associated with background rate. Based on FISH methods and recent dosimetry, the relationship between radiation dose and sCA frequency is largely consistent with previous findings, although the lesser importance of city as an effect modifier may reflect better dosimetry as well as more reproducible scoring of sCA. The persisting difference in sCA dose response by shielding category points to remaining problems with the accuracy or precision of radiation dose estimates in some A-bomb survivors.
Collapse
Affiliation(s)
- Richard Sposto
- Department of Statistics, Radiation Effects Research Foundation
| | | | - Kanya Hamasaki
- Department of Molecular Biosciences, Radiation Effects Research Foundation
| | - Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation
| | - Asao Noda
- Department of Molecular Biosciences, Radiation Effects Research Foundation
| | - Yoshiaki Kodama
- Department of Molecular Biosciences, Radiation Effects Research Foundation
| |
Collapse
|
4
|
Massive expansion of multiple clones in the mouse hematopoietic system long after whole-body X-irradiation. Sci Rep 2022; 12:17276. [PMID: 36241679 PMCID: PMC9568546 DOI: 10.1038/s41598-022-21621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2023] Open
Abstract
Clonal hematopoiesis (CH) is prevalent in the elderly and associates with hematologic malignancy and cardiovascular disease. Although the risk of developing these diseases increases with radiation doses in atomic-bomb survivors, the causal relationship between radiation exposure and CH is unclear. This study investigated whether radiation exposure induces CH in mice 12-18 months after 3-Gy whole-body irradiation. We found radiation-associated increases in peripheral blood myeloid cells and red blood cell distribution width (RDW). Deep sequencing of bone marrow and non-hematopoietic tissue cells revealed recurrent somatic mutations specifically in the hematopoietic system in 11 of 12 irradiated mice but none in 6 non-irradiated mice. The irradiated mice possessed mutations with variant allele frequencies (VAFs) of > 0.02 on an average of 5.8 per mouse; mutations with VAFs of > 0.1 and/or deletion were prevalent. Examining hematopoietic stem/progenitor cells in two irradiated mice revealed several mutations co-existing in the same clones and multiple independent clones that deliver 60-80% of bone marrow nuclear cells. Our results indicate development of massive CH due to radiation exposure. Moreover, we have characterized mutations in radiation-induced CH.
Collapse
|
5
|
Katsube T, Wang B, Tanaka K, Ninomiya Y, Hirakawa H, Liu C, Maruyama K, Vares G, Liu Q, Murakami M, Nakajima T, Fujimori A, Nenoi M. Fluorescence in situ hybridization analysis of chromosomal aberrations in mouse splenocytes at one- and two-months after total body exposure to iron-56 (Fe) ion particles or X-rays. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 882:503548. [PMID: 36155141 DOI: 10.1016/j.mrgentox.2022.503548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
High atomic number and energy (HZE) particles such as iron-56 (Fe) ions are a major contributor to health risks in long-term manned space exploration. The aim of this study is to understand radiation-induced differential genotoxic effects between HZE particles and low linear energy transfer (LET) photons. C57BL/6J Jms female mice of 8 weeks old were exposed to total body irradiation of accelerated Fe-particles with a dose ranging from 0.1 to 3.0 Gy or of X-rays with a dose ranging from 0.1 to 5.0 Gy. Chromosomal aberrations (CAs) in splenocytes were examined by fluorescence in situ hybridization at 1- and 2-months after exposure. Clonal expansions of cells with CAs were found to be induced only by X-rays but not by Fe-particles. Dose-dependent increase in the frequencies of stable-type CAs was observed at 1- as well as 2-months after exposure to both radiation types. The frequencies of stable-type CAs in average were much higher in mice exposed to X-rays than those to Fe-particles and did not change significantly between 1- and 2-months after exposure to both radiation types. On the other hand, the frequencies of unstable-type CAs induced by X-rays and Fe-particles were not much different, and they appeared to decrease with time from 1- to 2-months after exposure. These results suggested that larger fraction of stable-type CAs induced by Fe-particles might be non-transmissible than those by X-rays because of some associating lethal alterations on themselves or on other chromosomes in the same cells and that these cells might be removed by 1-month after Fe-TBI. We also demonstrated that exposure to Fe-particles induced insertions at relatively higher frequency to other stable-type CAs than X-rays. Our findings suggest that insertions can be used as indicators of past exposure to high-LET particle radiation.
Collapse
Affiliation(s)
- Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kaoru Tanaka
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Yasuharu Ninomiya
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Hirokazu Hirakawa
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Cuihua Liu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Kouichi Maruyama
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Guillaume Vares
- Experimental Radiotoxicology and Radiobiology Laboratory, Institute for Radioprotection and Nuclear Safety, B.P. 17 - 92262 Fontenay-aux-Roses Cedex, France
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Masahiro Murakami
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Tetsuo Nakajima
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Akira Fujimori
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan
| | - Mitsuru Nenoi
- Human Resources Development Center, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| |
Collapse
|
6
|
Chromosome Aberrations in Lymphocytes of Patients Undergoing Radon Spa Therapy: An Explorative mFISH Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182010757. [PMID: 34682498 PMCID: PMC8535331 DOI: 10.3390/ijerph182010757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 01/06/2023]
Abstract
In the present exploratory study, we aim to elucidate the action of radon in vivo and to assess the possible health risks. Chromosome aberrations were analyzed in lymphocytes of two patients (P1, P2) undergoing radon spa therapy in Bad Steben (Germany). Both patients, suffering from painful chronic degenerative disorders of the spine and joints, received nine baths (1.2 kBq/L at 34 °C) over a 3-week period. Chromosome aberrations were analyzed before and 6, 12 and 30 weeks after the start of therapy using the high-resolution multiplex fluorescence in situ hybridization (mFISH) technique. For comparison, the lymphocytes from two healthy donors (HD1, HD2) were examined. P1 had a higher baseline aberration frequency than P2 and both healthy donors (5.3 ± 1.3 vs. 2.0 ± 0.8, 1.4 ± 0.3 and 1.1 ± 0.1 aberrations/100 analyzed metaphases, respectively). Complex aberrations, biomarkers of densely ionizing radiation, were found in P1, P2 and HD1. Neither the aberration frequency nor the fraction of complex aberrations increased after radon spa treatment, i.e., based on biological dosimetry, no increased health risk was found. It is worth noting that a detailed breakpoint analysis revealed potentially clonal aberrations in both patients. Altogether, our data show pronounced inter-individual differences with respect to the number and types of aberrations, complicating the risk analysis of low doses such as those received during radon therapy.
Collapse
|
7
|
Yoshida K, Misumi M, Kusunoki Y, Yamada M. Longitudinal changes in red blood cell distribution width decades after radiation exposure in atomic-bomb survivors. Br J Haematol 2020; 193:406-409. [PMID: 33350457 PMCID: PMC8247336 DOI: 10.1111/bjh.17296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023]
Abstract
Red blood cell distribution width (RDW), which generally increases with age, is a risk marker for morbidity and mortality in various diseases. We investigated the association between elevated RDW and prior radiation exposure by examining longitudinal RDW changes in 4204 atomic‐bomb survivors over 15 years. A positive association was found between RDW and radiation dose, wherein RDW increased by 0·18%/Gy. This radiation‐associated effect increased as the participants aged. Elevated RDW was also associated with higher all‐cause mortality. The biological mechanisms underlying these observed associations merit further investigation.
Collapse
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences, Radiation Effects Research Foundation, Hiroshima, Japan
| | - Michiko Yamada
- Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
8
|
|
9
|
Yoshida K, French B, Yoshida N, Hida A, Ohishi W, Kusunoki Y. Radiation exposure and longitudinal changes in peripheral monocytes over 50 years: the Adult Health Study of atomic‐bomb survivors. Br J Haematol 2019; 185:107-115. [DOI: 10.1111/bjh.15750] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Kengo Yoshida
- Department of Molecular Biosciences Radiation Effects Research FoundationHiroshima Japan
| | - Benjamin French
- Department of Statistics Radiation Effects Research FoundationHiroshima Japan
| | - Noriaki Yoshida
- Department of Clinical Studies Radiation Effects Research Foundation Hiroshima Japan
- Department of Pathology Kurume University School of Medicine Kurume Fukuoka
| | - Ayumi Hida
- Department of Clinical Studies Radiation Effects Research Foundation Nagasaki Japan
| | - Waka Ohishi
- Department of Clinical Studies Radiation Effects Research Foundation Hiroshima Japan
| | - Yoichiro Kusunoki
- Department of Molecular Biosciences Radiation Effects Research FoundationHiroshima Japan
| |
Collapse
|
10
|
Hartel C, Nasonova E, Fuss MC, Nikoghosyan AV, Debus J, Ritter S. Persistence of radiation-induced aberrations in patients after radiotherapy with C-ions and IMRT. Clin Transl Radiat Oncol 2018; 13:57-63. [PMID: 30364751 PMCID: PMC6198102 DOI: 10.1016/j.ctro.2018.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/02/2018] [Accepted: 10/08/2018] [Indexed: 11/29/2022] Open
Abstract
A follow-up of aberrations in lymphocytes of cancer patients was performed. The ratio of dicentrics to translocations declined indicating bone marrow damage. Bone marrow exposure was verified by examination of treatment plans. Clonal aberrations were also present before therapy and thus not radiation induced.
Background and purpose Chromosomal aberrations in peripheral blood lymphocytes are a biomarker for radiation exposure and are associated with an increased risk for malignancies. To determine the long-term cytogenetic effect of radiotherapy, we analyzed the persistence of different aberration types up to 2.5 years after the treatment. Materials and methods Cytogenetic damage was analyzed in lymphocytes from 14 patients that had undergone C-ion boost + IMRT treatment for prostate cancer. Samples were taken immediately, 1 year and 2.5 years after therapy. Aberrations were scored using the multiplex fluorescence in situ hybridization technique and grouped according to their transmissibility to daughter cells. Results Dicentric chromosomes (non-transmissible) and translocations (transmissible) were induced with equal frequencies. In the follow-up period, the translocation yield remained unchanged while the yield of dicentrics decreased to ≈40% of the initial value (p = 0.011 and p = 0.001 for 1 and 2.5 years after compared to end of therapy). In 2 patients clonal aberrations were observed; however they were also found in samples taken before therapy and thus were not radiotherapy induced. Conclusion The shift in the aberrations spectrum towards a higher fraction of translocations indicates the exposure of hematopoietic stem and progenitor cells underlining the importance of a careful sparing of bone marrow during radiotherapy to minimize the risk for secondary cancers.
Collapse
Affiliation(s)
- Carola Hartel
- GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | - Elena Nasonova
- GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Darmstadt, Germany.,Joint Institute for Nuclear Research (JINR), Laboratory of Radiation Biology, Dubna, Russia
| | - Martina C Fuss
- GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| | | | - Juergen Debus
- University Heidelberg, Department of Radiation Oncology, Germany
| | - Sylvia Ritter
- GSI Helmholtzzentrum fuer Schwerionenforschung, Biophysics Department, Darmstadt, Germany
| |
Collapse
|
11
|
Kajimura J, Lynch HE, Geyer S, French B, Yamaoka M, Shterev ID, Sempowski GD, Kyoizumi S, Yoshida K, Misumi M, Ohishi W, Hayashi T, Nakachi K, Kusunoki Y. Radiation- and Age-Associated Changes in Peripheral Blood Dendritic Cell Populations among Aging Atomic Bomb Survivors in Japan. Radiat Res 2018; 189:84-94. [PMID: 29324175 PMCID: PMC10949854 DOI: 10.1667/rr4854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Previous immunological studies in atomic bomb survivors have suggested that radiation exposure leads to long-lasting changes, similar to immunological aging observed in T-cell-adaptive immunity. However, to our knowledge, late effects of radiation on dendritic cells (DCs), the key coordinators for activation and differentiation of T cells, have not yet been investigated in humans. In the current study, we hypothesized that numerical and functional decreases would be observed in relationship to radiation dose in circulating conventional DCs (cDCs) and plasmacytoid DCs (pDCs) among 229 Japanese A-bomb survivors. Overall, the evidence did not support this hypothesis, with no overall changes in DCs or functional changes observed with radiation dose. Multivariable regression analysis for radiation dose, age and gender effects revealed that total DC counts as well as subpopulation counts decreased in relationship to increasing age. Further analyses revealed that in women, absolute numbers of pDCs showed significant decreases with radiation dose. A hierarchical clustering analysis of gene expression profiles in DCs after Toll-like receptor stimulation in vitro identified two clusters of participants that differed in age-associated expression levels of genes involved in antigen presentation and cytokine/chemokine production in cDCs. These results suggest that DC counts decrease and expression levels of gene clusters change with age. More than 60 years after radiation exposure, we also observed changes in pDC counts associated with radiation, but only among women.
Collapse
Affiliation(s)
| | - Heather E. Lynch
- Duke Regional Biocontainment Laboratory, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Susan Geyer
- Health Informatics Institute, University of South Florida, Tampa, Florida
| | - Benjamin French
- Statistics, Department of Molecular Biosciences, Hiroshima, Japan
| | - Mika Yamaoka
- Department of Molecular Biosciences, Hiroshima, Japan
| | - Ivo D. Shterev
- Duke Regional Biocontainment Laboratory, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | - Gregory D. Sempowski
- Duke Regional Biocontainment Laboratory, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina
| | | | - Kengo Yoshida
- Department of Molecular Biosciences, Hiroshima, Japan
| | - Munechika Misumi
- Statistics, Department of Molecular Biosciences, Hiroshima, Japan
| | - Waka Ohishi
- Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | - Kei Nakachi
- Department of Molecular Biosciences, Hiroshima, Japan
| | | |
Collapse
|
12
|
Livingston GK, Escalona M, Foster A, Balajee AS. Persistent in vivo cytogenetic effects of radioiodine therapy: a 21-year follow-up study using multicolor FISH. JOURNAL OF RADIATION RESEARCH 2018; 59:10-17. [PMID: 29036595 PMCID: PMC5778502 DOI: 10.1093/jrr/rrx049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Our previous studies demonstrated the cytogenetic effects in the peripheral blood lymphocytes of a 34-year-old male patient who received ablative radioactive 131iodine therapy (RIT) on two different occasions in 1992 and 1994. Assessment of RIT-induced chromosomal damage by the cytokinesis-blocked micronucleus assay (CBMN) showed the persistence of elevated micronucleus frequency in this patient for more than two decades since the first RIT. Subsequent cytogenetic analysis performed in 2012 revealed both stable and unstable aberrations, whose frequencies were higher than the baseline reported in the literature. Here, we report the findings of our recent cytogenetic analysis peformed in 2015 on this patient using the multicolor fluorescence in situ hybridization (mFISH) technique. Our results showed that both reciprocal and non-reciprocal translocations persisted at higher frequencies in the patient than those reported in 2012. Persistence of structural aberrations for more than two decades indicate that these aberrations might have originated from long-lived T-lymphocytes or hematopoietic stem cells. Our study suggests that the long-term persistence of chromosome translocations in circulating lymphocytes can be useful for monitoring the extent of RIT-induced chromosomal instability several years after exposure and for estimating the cumulative absorbed dose after multiple RITs for retrospective biodosimetry purposes. This is perhaps the first and longest follow-up study documenting the persistence of cytogenetic damage for 21 years after internal radiation exposure.
Collapse
Affiliation(s)
- Gordon K Livingston
- Radiation Emergency Assistance Center and Training Site, Cytogenetic Biodosimetry Laboratory, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Maria Escalona
- Radiation Emergency Assistance Center and Training Site, Cytogenetic Biodosimetry Laboratory, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Alvis Foster
- Indiana University Health, Ball Memorial Hospital, 2401 West University Avenue, Muncie, IN 47303, USA
| | - Adayabalam S Balajee
- Radiation Emergency Assistance Center and Training Site, Cytogenetic Biodosimetry Laboratory, Oak Ridge Associated Universities, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| |
Collapse
|
13
|
Tanaka K, Ohtaki M, Hoshi M. Chromosome aberrations in Japanese fishermen exposed to fallout radiation 420-1200 km distant from the nuclear explosion test site at Bikini Atoll: report 60 years after the incident. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:329-337. [PMID: 27017218 DOI: 10.1007/s00411-016-0648-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
During the period from March to May, 1954, the USA conducted six nuclear weapon tests at the "Bravo" detonation sites at the Bikini and Enewetak Atolls, Marshall Islands. At that time, the crew of tuna fishing boats and cargo ships that were operating approximately 150-1200 km away from the test sites were exposed to radioactive fallout. The crew of the fishing boats and those on cargo ships except the "5th Fukuryu-maru" did not undergo any health examinations at the time of the incident. In the present study, chromosome aberrations in peripheral blood lymphocytes were examined in detail by the G-banding method in 17 crew members from 8 fishing boats and 2 from one cargo ship, 60 years after the tests. None of the subjects examined had suffered from cancer. The percentages of both stable-type aberrations such as translocation, inversion and deletion, and unstable-type aberrations such as dicentric and centric ring in the study group were significantly higher (1.4- and 2.3-fold, respectively) than those in nine age-matched controls. In the exposed and control groups, the percentages of stable-type aberrations were 3.35 % and 2.45 %, respectively, and the numbers of dicentric and centric ring chromosomes per 100 cells were 0.35 and 0.15, respectively. Small clones were observed in three members of the exposed group. These results suggest that the crews were exposed to slightly higher levels of fallout than had hitherto been assumed.
Collapse
Affiliation(s)
- Kimio Tanaka
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.
- Institute for Environmental Sciences, Takahoko, Rokkasho, Kakimita, Aomori, 039-3213, Japan.
| | - Megu Ohtaki
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| | - Masaharu Hoshi
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan
| |
Collapse
|
14
|
Relationship between spontaneous γH2AX foci formation and progenitor functions in circulating hematopoietic stem and progenitor cells among atomic-bomb survivors. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 802:59-65. [PMID: 27169377 DOI: 10.1016/j.mrgentox.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 01/04/2023]
Abstract
Accumulated DNA damage in hematopoietic stem cells is a primary mechanism of aging-associated dysfunction in human hematopoiesis. About 70 years ago, atomic-bomb (A-bomb) radiation induced DNA damage and functional decreases in the hematopoietic system of A-bomb survivors in a radiation dose-dependent manner. The peripheral blood cell populations then recovered to a normal range, but accompanying cells derived from hematopoietic stem cells still remain that bear molecular changes possibly caused by past radiation exposure and aging. In the present study, we evaluated radiation-related changes in the frequency of phosphorylated (Ser-139) H2AX (γH2AX) foci formation in circulating CD34-positive/lineage marker-negative (CD34+Lin-) hematopoietic stem and progenitor cells (HSPCs) among 226Hiroshima A-bomb survivors. An association between the frequency of γH2AX foci formation in HSPCs and the radiation dose was observed, but the γH2AX foci frequency was not significantly elevated by past radiation. We found a negative correlation between the frequency of γH2AX foci formation and the length of granulocyte telomeres. A negative interaction effect between the radiation dose and the frequency of γH2AX foci was suggested in a proportion of a subset of HSPCs as assessed by the cobblestone area-forming cell assay (CAFC), indicating that the self-renewability of HSPCs may decrease in survivors who were exposed to a higher radiation dose and who had more DNA damage in their HSPCs. Thus, although many years after radiation exposure and with advancing age, the effect of DNA damage on the self-renewability of HSPCs may be modified by A-bomb radiation exposure.
Collapse
|
15
|
Creation of Mice Bearing a Partial Duplication of HPRT Gene Marked with a GFP Gene and Detection of Revertant Cells In Situ as GFP-Positive Somatic Cells. PLoS One 2015; 10:e0136041. [PMID: 26295470 PMCID: PMC4546575 DOI: 10.1371/journal.pone.0136041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 07/29/2015] [Indexed: 12/27/2022] Open
Abstract
It is becoming clear that apparently normal somatic cells accumulate mutations. Such accumulations or propagations of mutant cells are thought to be related to certain diseases such as cancer. To better understand the nature of somatic mutations, we developed a mouse model that enables in vivo detection of rare genetically altered cells via GFP positive cells. The mouse model carries a partial duplication of 3’ portion of X-chromosomal HPRT gene and a GFP gene at the end of the last exon. In addition, although HPRT gene expression was thought ubiquitous, the expression level was found insufficient in vivo to make the revertant cells detectable by GFP positivity. To overcome the problem, we replaced the natural HPRT-gene promoter with a CAG promoter. In such animals, termed HPRT-dup-GFP mouse, losing one duplicated segment by crossover between the two sister chromatids or within a single molecule of DNA reactivates gene function, producing hybrid HPRT-GFP proteins which, in turn, cause the revertant cells to be detected as GFP-positive cells in various tissues. Frequencies of green mutant cells were measured using fixed and frozen sections (liver and pancreas), fixed whole mount (small intestine), or by means of flow cytometry (unfixed splenocytes). The results showed that the frequencies varied extensively among individuals as well as among tissues. X-ray exposure (3 Gy) increased the frequency moderately (~2 times) in the liver and small intestine. Further, in two animals out of 278 examined, some solid tissues showed too many GFP-positive cells to score (termed extreme jackpot mutation). Present results illustrated a complex nature of somatic mutations occurring in vivo. While the HPRT-dup-GFP mouse may have a potential for detecting tissue-specific environmental mutagens, large inter-individual variations of mutant cell frequency cause the results unstable and hence have to be reduced. This future challenge will likely involve lowering the background mutation frequency, thus reducing inter-individual variation.
Collapse
|
16
|
Nakano M, Kodama Y, Ohtaki K, Nakamura N. Translocations in Spleen Cells from Adult Mice Irradiated as Fetuses are Infrequent, but Often Clonal in Nature. Radiat Res 2012; 178:600-3. [DOI: 10.1667/rr3074.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Kusunoki Y, Yamaoka M, Kubo Y, Hayashi T, Kasagi F, Douple EB, Nakachi K. T-cell immunosenescence and inflammatory response in atomic bomb survivors. Radiat Res 2010; 174:870-6. [PMID: 21128811 DOI: 10.1667/rr1847.1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this paper we summarize the long-term effects of A-bomb radiation on the T-cell system and discuss the possible involvement of attenuated T-cell immunity in the disease development observed in A-bomb survivors. Our previous observations on such effects include impaired mitogen-dependent proliferation and IL-2 production, decreases in naive T-cell populations, and increased proportions of anergic and functionally weak memory CD4 T-cell subsets. In addition, we recently found a radiation dose-dependent increase in the percentages of CD25(+)/CD127(-) regulatory T cells in the CD4 T-cell population of the survivors. All these effects of radiation on T-cell immunity resemble effects of aging on the immune system, suggesting that ionizing radiation might direct the T-cell system toward a compromised phenotype and thereby might contribute to an enhanced immunosenescence. Furthermore, there are inverse, significant associations between plasma levels of inflammatory cytokines and the relative number of naïve CD4 T cells, also suggesting that the elevated levels of inflammatory markers found in A-bomb survivors can be ascribed in part to T-cell immunosenescence. We suggest that radiation-induced T-cell immunosenescence may result in activation of inflammatory responses and may be partly involved in the development of aging-associated and inflammation-related diseases frequently observed in A-bomb survivors.
Collapse
Affiliation(s)
- Yoichiro Kusunoki
- Department of Radiobiology, Radiation Effects Research Foundation, Hiroshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Kyoizumi S, Yamaoka M, Kubo Y, Hamasaki K, Hayashi T, Nakachi K, Kasagi F, Kusunoki Y. Memory CD4 T-cell subsets discriminated by CD43 expression level in A-bomb survivors. Int J Radiat Biol 2010; 86:56-62. [PMID: 20070216 DOI: 10.3109/09553000903272641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE Our previous study showed that radiation exposure reduced the diversity of repertoires of memory thymus-derived cells (T cells) with cluster of differentiation (CD)- 4 among atomic-bomb (A-bomb) survivors. To evaluate the maintenance of T-cell memory within A-bomb survivors 60 years after radiation exposure, we examined functionally distinct memory CD4 T-cell subsets in the peripheral blood lymphocytes of the survivors. METHODS Three functionally different subsets of memory CD4 T cells were identified by differential CD43 expression levels and measured using flow cytometry. These subsets consist of functionally mature memory cells, cells weakly responsive to antigenic stimulation, and those cells functionally anergic and prone to spontaneous apoptosis. RESULTS The percentages of these subsets within the peripheral blood CD4 T-cell pool all significantly increased with age. Percentages of functionally weak and anergic subsets were also found to increase with radiation dose, fitting to a log linear model. Within the memory CD4 T-cell pool, however, there was an inverse association between radiation dose and the percentage of functionally mature memory cells. CONCLUSION These results suggest that the steady state of T cell memory, which is regulated by cell activation and/or cell survival processes in subsets, may have been perturbed by prior radiation exposure among A-bomb survivors.
Collapse
Affiliation(s)
- Seishi Kyoizumi
- Department of Radiobiology, Yasuda Women's University, Hiroshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hamasaki K, Kusunoki Y, Nakashima E, Takahashi N, Nakachi K, Nakamura N, Kodama Y. Clonally expanded T lymphocytes from atomic bomb survivors in vitro show no evidence of cytogenetic instability. Radiat Res 2009; 172:234-43. [PMID: 19630528 DOI: 10.1667/rr1705.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Abstract Genomic instability has been suggested as a mechanism by which exposure to ionizing radiation can lead to cancer in exposed humans. However, the data from human cells needed to support or refute this idea are limited. In our previous study on clonal lymphocyte populations carrying stable-type aberrations derived from A-bomb survivors, we found no increase in the frequency of sporadic additional aberrations among the clonal cell populations compared with the spontaneous frequency in vivo. That work has been extended by using multicolor FISH (mFISH) to quantify the various kinds of chromosome aberrations known to be indicative of genomic instability in cloned T lymphocytes after they were expanded in culture for 25 population doublings. The blood T cells used were obtained from each of two high-dose-exposed survivors (>1 Gy) and two control subjects, and a total of 66 clonal populations (36 from exposed and 30 from control individuals) were established. For each clone, 100 metaphases were examined. In the case of exposed lymphocytes, a total of 39 additional de novo stable, exchange-type aberrations [translocation (t) + derivative chromosome (der)] were found among 3600 cells (1.1%); the corresponding value in the control group was 0.6% (17/3000). Although the ratio (39/3600) obtained from the exposed cases was greater than that of the controls (17/3000), the difference was not statistically significant (P = 0.101). A similar lack of statistical difference was found for the total of all structural chromosome alterations including t, der, dicentrics, duplications, deletions and fragments (P = 0.142). Thus there was no clear evidence suggesting the presence of chromosome instabilities among the clonally expanded lymphocytes in vitro from A-bomb survivors.
Collapse
Affiliation(s)
- K Hamasaki
- Departments of Radiobiology and Molecular Epidemiology, Radiation Effects Research Foundation, Minami-ku, Hiroshima, 732-0815, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Kusunoki Y, Hayashi T. Long-lasting alterations of the immune system by ionizing radiation exposure: implications for disease development among atomic bomb survivors. Int J Radiat Biol 2008; 84:1-14. [PMID: 17852558 DOI: 10.1080/09553000701616106] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE The immune systems of the atomic-bomb (A-bomb) survivors were damaged proportionately to irradiation levels at the time of the bombing over 60 years ago. Although the survivor's immune system repaired and regenerated as the hematopoietic system has recovered, significant residual injury persists, as manifested by abnormalities in lymphoid cell composition and function. This review summarizes the long-lasting alterations in immunological functions associated with atomic-bomb irradiation, and discusses the likelihood that damaging effects of radiation on the immune system may be involved partly in disease development so frequently observed in A-bomb survivors. CONCLUSIONS Significant immunological alterations noted include: (i) attrition of T-cell functions, as reductions in mitogen-dependent proliferation and interleukin-2 (IL-2) production; (ii) decrease in helper T-cell populations; and (iii) increase in blood inflammatory cytokine levels. These findings suggest that A-bomb radiation exposure perturbed one or more of the primary processes responsible for T-cell homeostasis and the balance between cell renewal and survival and cell death among naive and memory T cells. Such perturbed T-cell homeostasis may result in acceleration of immunological aging. Persistent inflammation, linked in some way to the perturbation of T-cell homeostasis, is key in addressing whether such noted immunological changes observed in A-bomb survivors are in fact associated with disease development.
Collapse
Affiliation(s)
- Yoichiro Kusunoki
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, 5-2, Hijiyama-Park, Minami-ward, Hiroshima 732, Japan.
| | | |
Collapse
|
21
|
Sigurdson AJ, Ha M, Hauptmann M, Bhatti P, Sram RJ, Beskid O, Tawn EJ, Whitehouse CA, Lindholm C, Nakano M, Kodama Y, Nakamura N, Vorobtsova I, Oestreicher U, Stephan G, Yong LC, Bauchinger M, Schmid E, Chung HW, Darroudi F, Roy L, Voisin P, Barquinero JF, Livingston G, Blakey D, Hayata I, Zhang W, Wang C, Bennett LM, Littlefield LG, Edwards AA, Kleinerman RA, Tucker JD. International study of factors affecting human chromosome translocations. Mutat Res 2008; 652:112-21. [PMID: 18337160 PMCID: PMC2696320 DOI: 10.1016/j.mrgentox.2008.01.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 01/16/2008] [Accepted: 01/17/2008] [Indexed: 10/22/2022]
Abstract
Chromosome translocations in peripheral blood lymphocytes of normal, healthy humans increase with age, but the effects of gender, race, and cigarette smoking on background translocation yields have not been examined systematically. Further, the shape of the relationship between age and translocation frequency (TF) has not been definitively determined. We collected existing data from 16 laboratories in North America, Europe, and Asia on TFs measured in peripheral blood lymphocytes by fluorescence in situ hybridization whole chromosome painting among 1933 individuals. In Poisson regression models, age, ranging from newborns (cord blood) to 85 years, was strongly associated with TF and this relationship showed significant upward curvature at older ages versus a linear relationship (p<0.001). Ever smokers had significantly higher TFs than non-smokers (rate ratio (RR)=1.19, 95% confidence interval (CI), 1.09-1.30) and smoking modified the effect of age on TFs with a steeper age-related increase among ever smokers compared to non-smokers (p<0.001). TFs did not differ by gender. Interpreting an independent effect of race was difficult owing to laboratory variation. Our study is three times larger than any pooled effort to date, confirming a suspected curvilinear relationship of TF with age. The significant effect of cigarette smoking has not been observed with previous pooled studies of TF in humans. Our data provide stable estimates of background TF by age, gender, race, and smoking status and suggest an acceleration of chromosome damage above age 60 and among those with a history of smoking cigarettes.
Collapse
Affiliation(s)
- Alice J. Sigurdson
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Mina Ha
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Department of Preventive Medicine, Dankook University College of Medicine, Cheonan, Korea
| | - Michael Hauptmann
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Bioinformatics and Statistics, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Parveen Bhatti
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - Radim J. Sram
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine and Health, Institute of Central Bohemia, Prague, Czech Republic
| | - Olena Beskid
- Laboratory of Genetic Ecotoxicology, Institute of Experimental Medicine and Health, Institute of Central Bohemia, Prague, Czech Republic
| | - E. Janet Tawn
- University of Central Lancashire (UCLan), Faculty of Health, Preston, UK
| | | | | | - Mimako Nakano
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Yoshiaki Kodama
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | - Nori Nakamura
- Radiation and Nuclear Safety Authority (STUK), Helsinki, Finland
| | | | - Ursula Oestreicher
- Laboratory of Radiation Genetics, Central Research Institute of Roentgenology and Radiology, Russia
| | - Günther Stephan
- Laboratory of Radiation Genetics, Central Research Institute of Roentgenology and Radiology, Russia
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Lee C. Yong
- Federal Office for Radiation Protection, (BfS), Oberschleissheim, Germany
| | - Manfred Bauchinger
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Ernst Schmid
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, OH, USA
| | - Hai Won Chung
- GSF-National Research Centre for Environment and Health, Institute of Radiobiology, Neuherberg, Germany
| | - Firouz Darroudi
- Seoul National University, Dept. of Molecular Epidemiology, School of Public Health, Seoul, Korea
| | - Laurence Roy
- Leiden University Medical Centre (LUMC), Department of Toxicogenetics, Leiden, Netherlands
| | - Phillipe Voisin
- Leiden University Medical Centre (LUMC), Department of Toxicogenetics, Leiden, Netherlands
| | - Joan F. Barquinero
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - David Blakey
- Radiation Emergency Assistance Center/Training Site, Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | | | - Wei Zhang
- National Institute of Radiological Sciences, Chiba, Japan
| | - Chunyan Wang
- National Institute of Radiological Sciences, Chiba, Japan
| | - L. Michelle Bennett
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, China
| | - L. Gayle Littlefield
- Center for Cancer Research, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Alan A. Edwards
- Oak Ridge Associated Universities, Oak Ridge, TN, USA
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Ruth A. Kleinerman
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, MD, USA
| | - James D. Tucker
- Health Protection Agency, Radiation Protection Division formerly the National Radiological Protection Board (NRPB), Didcot, UK
| |
Collapse
|
22
|
Kodama Y, Ohtaki K, Nakano M, Hamasaki K, Awa AA, Lagarde F, Nakamura N. Clonally Expanded T-Cell Populations in Atomic Bomb Survivors Do Not Show Excess Levels of Chromosome Instability. Radiat Res 2005; 164:618-26. [PMID: 16358484 DOI: 10.1667/rr3455.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation-induced genomic instability has been studied primarily in cultured cells, while in vivo studies have been limited. One major obstacle for in vivo studies is the lack of reliable biomarkers that are capable of distinguishing genetic alterations induced by delayed radiation effects from those that are induced immediately after a radiation exposure. Here we describe a method to estimate cytogenetic instability in vivo using chromosomally marked clonal T-cell populations in atomic bomb survivors. The basic idea is that clonal translocations are derived from single progenitor cells that acquired an aberration, most likely after a radiation exposure, and then multiplied extensively in vivo, resulting in a large number of progeny cells that eventually comprise several percent of the total lymphocyte population. Therefore, if chromosome instability began to operate soon after a radiation exposure, an elevated frequency of additional but solitary chromosome aberrations in clonal cell populations would be expected. In the present study, six additional translocations were found among 936 clonal cells examined with the G-band method (0.6%); the corresponding value with multicolor FISH analysis was 1.2% (4/333). Since these frequencies were no higher than 1.2% (219/17,878 cells), the mean translocation frequency observed in control subjects using the G-band method, it is concluded that chromosome instabilities that could give rise to an increased frequency of persisting, exchange-type aberrations were not commonly generated by radiation exposure.
Collapse
Affiliation(s)
- Y Kodama
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Nakamura N. A Hypothesis: Radiation-Related Leukemia is Mainly Attributable to the Small Number of People who Carry Pre-existing Clonally Expanded Preleukemic Cells. Radiat Res 2005; 163:258-65. [PMID: 15733032 DOI: 10.1667/rr3311] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Human leukemia frequently involves recurrent translocations. Since radiation is a well-known inducer of both leukemia and chromosomal translocations, it has long been suspected that radiation might cause leukemia by inducing specific translocations. However, recent studies clearly indicate that spontaneous translocations specific to acute lymphocytic leukemia (ALL) actually occur much more frequently than do leukemia cases with the same translocations. Moreover, the ALL-associated translocation-bearing cells are often found to have clonally expanded in individuals who do not develop ALL. Since radiation-induced DNA damage is generated essentially randomly in the genome, it does not seem likely that radiation could ever be responsible for the induction of identical translocations of relevance to ALL in multiple cells of an individual and hence be the primary cause of radiation-related leukemia. An alternative hypothesis described here is that the radiation-related ALL risk for a population is almost entirely attributable to a small number of predisposed individuals in whom relatively large numbers of translocation-carrying pre-ALL cells have accumulated. This preleukemic clone hypothesis explains various known characteristics of radiation-related ALL and implies that people who do not have substantial numbers of preleukemic cells (i.e. the great majority) are likely at low risk of developing leukemia. The hypothesis can also be applied to chronic myelogenous leukemia and to young-at-exposure cases of acute myelogenous leukemia.
Collapse
Affiliation(s)
- Nori Nakamura
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan.
| |
Collapse
|
24
|
Yamaoka M, Kusunoki Y, Kasagi F, Hayashi T, Nakachi K, Kyoizumi S. Decreases in percentages of naïve CD4 and CD8 T cells and increases in percentages of memory CD8 T-cell subsets in the peripheral blood lymphocyte populations of A-bomb survivors. Radiat Res 2004; 161:290-8. [PMID: 14982485 DOI: 10.1667/rr3143] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our previous studies have revealed a clear dose-dependent decrease in the percentage of naïve CD4 T cells that are phenotypically CD45RA+ in PBL among A-bomb survivors. However, whether there is a similar radiation effect on CD8 T cells has remained undetermined because of the unreliability of CD45 isoforms as markers of naïve and memory subsets among the CD8 T-cell population. In the present study, we used double labeling with CD45RO and CD62L for reliable identification of naïve and memory cell subsets in both CD4 and CD8 T-cell populations among 533 Hiroshima A-bomb survivors. Statistically significant dose-dependent decreases in the percentages of CD45RO-/CD62L+ naïve cells were found in the CD8 T-cell population as well as in the CD4 T-cell population. Furthermore, the percentages of CD45RO+/CD62L+ and CD45RO+/CD62L- memory T cells were found to increase significantly with increasing radiation dose in the CD8 T-cell population but not in the CD4 T-cell population. These results suggest that the prior A-bomb exposure has induced long-lasting deficits in both naïve CD4 and CD8 T- cell populations along with increased proportions of these particular subsets of the memory CD8 T-cell population.
Collapse
Affiliation(s)
- Mika Yamaoka
- Department of Radiobiology/Molecular Epidemiology, Radiation Effects Research Foundation, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Nakamura N, Nakano M, Kodama Y, Ohtaki K, Cologne J, Awa AA. Prediction of clonal chromosome aberration frequency in human blood lymphocytes. Radiat Res 2004; 161:282-9. [PMID: 14982486 DOI: 10.1667/rr3134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We recently conducted a large-scale screening for clonal aberrations among atomic bomb survivors and proposed a model for the gross clonal composition of blood lymphocytes. Here we show an application of the model indicating that the number, m,of clones detectable by cytogenetic methods in an individual is predictable by the equation m= (1.8 + 6.4FG) x FP x n/500, where FG represents the estimated translocation frequency in the 46 chromosome set, FP is the observed translocation frequency with FISH or other methods, and nis the number of cells examined. Application of the equation to the results of seven other reports gave close agreement between the observed and calculated numbers of clones. Since the model assumes that clonal expansion is ubiquitous, and any translocation can be the constituent of a clone detectable by cytogenetic means, the vast majority of observed clonal expansions of these somatic cells are likely the result of random-hit events that are not detrimental to human health. Furthermore, since our model can predict the majority of clonal aberrations among Chernobyl workers who were examined 5-6 years after irradiation, clonal expansion seems to occur primarily within a few years after exposure to radiation, most likely being coupled with the process of recovery from radiation-induced injury in the lymphoid and hematopoietic systems.
Collapse
Affiliation(s)
- N Nakamura
- Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan.
| | | | | | | | | | | |
Collapse
|